MINERAL POTENTIAL REPORT for the Lands Now Excluded from Grand Staircase-Escalante National Monument

Total Page:16

File Type:pdf, Size:1020Kb

MINERAL POTENTIAL REPORT for the Lands Now Excluded from Grand Staircase-Escalante National Monument United States Department ofthe Interior Bureau of Land Management MINERAL POTENTIAL REPORT for the Lands now Excluded from Grand Staircase-Escalante National Monument Garfield and Kane Counties, Utah Prepared by: Technical Approval: flirf/tl (Signature) Michael Vanden Berg (Print name) (Print name) Energy and Mineral Program Manager - Utah Geological Survey (Title) (Title) April 18, 2018 /f-P/2ft. 't 2o/ 8 (Date) (Date) M~zr;rL {Signature) 11 (Si~ ~.u.. "'- ~b ~ t:, "4 5~ A.J ~txM:t ;e;,E~ 't"'-. (Print name) (Print name) J.-"' ,·s h;c.-+ (V\ £uA.o...~ fk()~""....:r ~~/,~ L{ ( {Title) . Zo'{_ 2o l~0 +(~it71 ~ . I (Date) (Date) This preliminary repon makes information available to the public that may not conform to UGS technical, editorial. or policy standards; this should be considered by an individual or group planning to take action based on the contents ofthis report. Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding it!I suitability for a panicular use. The Utah Department ofNatural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users ofthis product. TABLE OF CONTENTS SUMMARY AND CONCLUSIONS ........................................................................................................... 4 Oil, Gas, and Coal Bed Methane ............................................................................................................ 4 Coal ........................................................................................................................................................ 4 Tar Sands ................................................................................................................................................ 5 Uranium, Vanadium, Copper, and Minor Associated Metals ................................................................ 5 Titanium and Zirconium ......................................................................................................................... 5 Manganese .............................................................................................................................................. 5 Gypsum .................................................................................................................................................. 5 Silica and Industrial Sand ....................................................................................................................... 5 Sand and Gravel ..................................................................................................................................... 6 Crushed Stone and High-Calcium Limestone ........................................................................................ 6 Building Stone ........................................................................................................................................ 6 Clay ........................................................................................................................................................ 6 Humate ................................................................................................................................................... 6 1.0 INTRODUCTION .................................................................................................................................. 7 1.1 Purpose and Scope ............................................................................................................................ 7 1.2 Lands Involved ................................................................................................................................. 8 1.3 Acknowledgments ............................................................................................................................ 8 2.0 DESCRIPTION OF GEOLOGY .......................................................................................................... 10 2.1 Physiographic Setting ..................................................................................................................... 10 2.2 Stratigraphy .................................................................................................................................... 12 2.2.1 Introduction ........................................................................................................................... 12 2.2.2 Precambrian Rocks ............................................................................................................... 14 2.2.3 Cambrian Rocks .................................................................................................................... 14 2.2.4 Ordovician and Silurian Rocks ............................................................................................. 15 2.2.5 Devonian Rocks .................................................................................................................... 15 2.2.6 Mississippian Rocks .............................................................................................................. 16 2.2.7 Pennsylvanian Rocks ............................................................................................................ 16 2.2.8 Permian Rocks ...................................................................................................................... 17 2.2.9 Triassic Rocks ....................................................................................................................... 18 2.2.10 Jurassic Rocks ..................................................................................................................... 19 2.2.11 Cretaceous Rocks ................................................................................................................ 21 2.2.12 Tertiary Rocks ..................................................................................................................... 22 2.3 Structure ......................................................................................................................................... 22 2.3.1 Grand Staircase Area ............................................................................................................ 22 2.3.2 Kaiparowits Basin Area ........................................................................................................ 23 2.3.3 Escalante Canyons Area ....................................................................................................... 24 2.3.4 Circle Cliffs Area .................................................................................................................. 24 2.4 Geologic History ............................................................................................................................ 24 3.0 MINERAL EXPLORATION DESCRIPTION, PRODUCTION, AND OCCURRENCE .................. 27 3.1 Leasable Minerals ........................................................................................................................... 27 3.1.1 Oil and Gas ........................................................................................................................... 27 Introduction ............................................................................................................................. 27 Late Proterozoic/Cambrian Play (USGS-2403) ...................................................................... 27 Paleozoic Devonian-Mississippian Play (UGS-2108) ............................................................. 30 1 Permo-Triassic Unconformity Play (USGS-2106) .................................................................. 32 Cretaceous Sandstone Play (UGS-2107) ................................................................................. 34 Coal Bed Methane Play (UGS-2100) ...................................................................................... 36 3.1.2 Coal ....................................................................................................................................... 37 3.1.3 Tar Sand ................................................................................................................................ 43 3.2 Locatable Minerals ......................................................................................................................... 44 3.2.1 Introduction ........................................................................................................................... 44 3.2.2 Uranium, Vanadium, Copper, and Minor Associated Metals ............................................... 45 3.2.3 Titanium and Zirconium ....................................................................................................... 47 3.2.4 Manganese ............................................................................................................................ 48 3.2.5 Gypsum ................................................................................................................................. 49 3.2.6 Silica and Industrial Sand ..................................................................................................... 51 3.3 Salable Minerals ............................................................................................................................. 51 3.3.1 Sand and Gravel ...................................................................................................................
Recommended publications
  • Ron Blakey, Publications (Does Not Include Abstracts)
    Ron Blakey, Publications (does not include abstracts) The publications listed below were mainly produced during my tenure as a member of the Geology Department at Northern Arizona University. Those after 2009 represent ongoing research as Professor Emeritus. (PDF) – A PDF is available for this paper. Send me an email and I'll attach to return email Blakey, R.C., 1973, Stratigraphy and origin of the Moenkopi Formation of southeastern Utah: Mountain Geologist, vol. 10, no. 1, p. 1 17. Blakey, R.C., 1974, Stratigraphic and depositional analysis of the Moenkopi Formation, Southeastern Utah: Utah Geological Survey Bulletin 104, 81 p. Blakey, R.C., 1977, Petroliferous lithosomes in the Moenkopi Formation, Southern Utah: Utah Geology, vol. 4, no. 2, p. 67 84. Blakey, R.C., 1979, Oil impregnated carbonate rocks of the Timpoweap Member Moenkopi Formation, Hurricane Cliffs area, Utah and Arizona: Utah Geology, vol. 6, no. 1, p. 45 54. Blakey, R.C., 1979, Stratigraphy of the Supai Group (Pennsylvanian Permian), Mogollon Rim, Arizona: in Carboniferous Stratigraphy of the Grand Canyon Country, northern Arizona and southern Nevada, Field Trip No. 13, Ninth International Congress of Carboniferous Stratigraphy and Geology, p. 89 109. Blakey, R.C., 1979, Lower Permian stratigraphy of the southern Colorado Plateau: in Four Corners Geological Society, Guidebook to the Permian of the Colorado Plateau, p. 115 129. (PDF) Blakey, R.C., 1980, Pennsylvanian and Early Permian paleogeography, southern Colorado Plateau and vicinity: in Paleozoic Paleogeography of west central United States, Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, p. 239 258. Blakey, R.C., Peterson, F., Caputo, M.V., Geesaman, R., and Voorhees, B., 1983, Paleogeography of Middle Jurassic continental, shoreline, and shallow marine sedimentation, southern Utah: Mesozoic PaleogeogÂraphy of west central United States, Rocky Mountain Section of Society of Economic Paleontologists and Mineralogists (Symposium), p.
    [Show full text]
  • Scoping Report: Grand Staircase-Escalante National
    CONTENTS 1 Introduction .............................................................................................................................................. 1 2 Scoping Process ....................................................................................................................................... 3 2.1 Purpose of Scoping ........................................................................................................................... 3 2.2 Scoping Outreach .............................................................................................................................. 3 2.2.1 Publication of the Notice of Intent ....................................................................................... 3 2.2.2 Other Outreach Methods ....................................................................................................... 3 2.3 Opportunities for Public Comment ................................................................................................ 3 2.4 Public Scoping Meetings .................................................................................................................. 4 2.5 Cooperating Agency Involvement ................................................................................................... 4 2.6 National Historic Preservation Act and Tribal Consultation ....................................................... 5 3 Submission Processing and Comment Coding .................................................................................... 5
    [Show full text]
  • Terrestrial Vertebrate Fauna of the Kaiparowits Basin
    Great Basin Naturalist Volume 40 Number 4 Article 2 12-31-1980 Terrestrial vertebrate fauna of the Kaiparowits Basin N. Duane Atwood U.S. Forest Service, Provo, Utah Clyde L. Pritchett Brigham Young University Richard D. Porter U.S. Fish and Wildlife Service, Provo, Utah Benjamin W. Wood Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Atwood, N. Duane; Pritchett, Clyde L.; Porter, Richard D.; and Wood, Benjamin W. (1980) "Terrestrial vertebrate fauna of the Kaiparowits Basin," Great Basin Naturalist: Vol. 40 : No. 4 , Article 2. Available at: https://scholarsarchive.byu.edu/gbn/vol40/iss4/2 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. TERRESTRIAL VERTEBRATE FAUNA OF THE KAIPAROWITS BASIN N. Diiane Atwood', Clyde L. Pritchctt', Richard D. Porter', and Benjamin W. Wood' .\bstr^ct.- This report inehides data collected during an investigation by Brighani Young University personnel to 1976, as well as a literature from 1971 review. The fauna of the Kaiparowits Basin is represented by 7 species of salamander, toads, mnphihians (1 5 and 1 tree frog), 29 species of reptiles (1 turtle, 16 lizards, and 12 snakes), 183 species of birds (plus 2 hypothetical), and 74 species of mammals. Geographic distribution of the various species within the basin are discussed. Birds are categorized according to their population and seasonal status.
    [Show full text]
  • A Preliminary Assessment of Archaeological Resources Within the Grand Staircase-Escalante National Monument, Utah
    A PRELIMINARY ASSESSMENT OF ARCHAEOLOGICAL RESOURCES WITHIN THE GRAND STAIRCASE-ESCALANTE NATIONAL MONUMENT, UTAH by David B. Madsen Common rock art elements of the Fremont and Anasazi on the Colorado Plateau and the Grand Staircase-Escalante National Monument. ,I!! CIRCULAR 95 . 1997 I~\' UTAH GEOLOGICAL SURVEY ." if;~~ 6EPARTMENT OF NATURAL RESOURCES ISBN 1-55791-605-5 STATE OF UTAH Michael O. Leavitt, Governor DEPARTMENT OF NATURAL RESOURCES Ted Stewart, Executive Director UTAH GEOLOGICAL SURVEY M. Lee Allison~ Director UGS Board Member Representing Russell C. Babcock, Jr. (chairman) .................................................................................................. Mineral Industry D. Cary Smith ................................................................................................................................... Mineral Industry Richard R. Kennedy ....................................................................................................................... Civil Engineering E.H. Deedee O'Brien ......................................................................................................................... Public-at-Large C. William Berge .............................................................................................................................. Mineral Industry Jerry Golden ..................................................................................................................................... Mineral Industry Milton E. Wadsworth ...............................................................................................
    [Show full text]
  • Roscoelite K(V ; Al; Mg)2Alsi3o10(OH)2 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic
    3+ Roscoelite K(V ; Al; Mg)2AlSi3O10(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As minute scales, in druses, rosettes, or fan-shaped groups; ¯brous and in felted aggregates; as impregnations, massive. Physical Properties: Cleavage: Perfect on 001 . Hardness = Soft. D(meas.) = 2.92{2.94 D(calc.) = [2.89] f g Optical Properties: Transparent to translucent. Color: Dark clove-brown, greenish brown to dark greenish brown. Luster: Pearly. Optical Class: Biaxial ({). Pleochroism: X = green-brown; Y = Z = olive-green. ® = 1.59{1.610 ¯ = 1.63{1.685 ° = 1.64{1.704 2V(meas.) = 24.5±{39.5± Cell Data: Space Group: C2=c: a = 5.26 b = 9.09 c = 10.25 ¯ = 101:0± Z = 2 X-ray Powder Pattern: Paradox Valley, Colorado, USA. 10.0 (100), 4.54 (80), 3.35 (80), 2.60 (80), 1.52 (60), 3.66 (50), 3.11 (50) Chemistry: (1) SiO2 47.82 Al2O3 12.60 V2O5 19.94 FeO 3.30 MgO 2.43 CaO trace Na2O 0.33 K2O 8.03 + H2O 5.13 Total 99.58 (1) Stuckslager mine, California, USA. Polymorphism & Series: Forms a series with muscovite; 1M polytype. Mineral Group: Mica group. Occurrence: An early-stage gangue mineral in low-temperature epithermal Au-Ag-Te deposits; from the oxidized portions of low-temperature sedimentary U-V ores. Association: Quartz, pyrite, carbonates, °uorite, gold (Au-Ag-Te mineral association); corvusite, hewettite, carnotite, tyuyamunite (U-V mineral association). Distribution: In the USA, from the Stuckslager mine, Lotus, El Dorado Co., California; in Colorado, from Cripple Creek, Teller Co., La Plata district, La Plata Co., Magnolia district, Boulder Co., the Gateway district, Mesa Co., in the Uravan and Paradox, Bull Canyon, and Slick Rock districts, in Montrose, San Miguel, and Dolores Cos.
    [Show full text]
  • Grand-Canyon-South-Rim-Map.Pdf
    North Rim (see enlargement above) KAIBAB PLATEAU Point Imperial KAIBAB PLATEAU 8803ft Grama Point 2683 m Dragon Head North Rim Bright Angel Vista Encantada Point Sublime 7770 ft Point 7459 ft Tiyo Point Widforss Point Visitor Center 8480ft Confucius Temple 2368m 7900 ft 2585 m 2274 m 7766 ft Grand Canyon Lodge 7081 ft Shiva Temple 2367 m 2403 m Obi Point Chuar Butte Buddha Temple 6394ft Colorado River 2159 m 7570 ft 7928 ft Cape Solitude Little 2308m 7204 ft 2417 m Francois Matthes Point WALHALLA PLATEAU 1949m HINDU 2196 m 8020 ft 6144ft 2445 m 1873m AMPHITHEATER N Cape Final Temple of Osiris YO Temple of Ra Isis Temple N 7916ft From 6637 ft CA Temple Butte 6078 ft 7014 ft L 2413 m Lake 1853 m 2023 m 2138 m Hillers Butte GE Walhalla Overlook 5308ft Powell T N Brahma Temple 7998ft Jupiter Temple 1618m ri 5885 ft A ni T 7851ft Thor Temple ty H 2438 m 7081ft GR 1794 m G 2302 m 6741 ft ANIT I 2158 m E C R Cape Royal PALISADES OF GO r B Zoroaster Temple 2055m RG e k 7865 ft E Tower of Set e ee 7129 ft Venus Temple THE DESERT To k r C 2398 m 6257ft Lake 6026 ft Cheops Pyramid l 2173 m N Pha e Freya Castle Espejo Butte g O 1907 m Mead 1837m 5399 ft nto n m A Y t 7299 ft 1646m C N reek gh Sumner Butte Wotans Throne 2225m Apollo Temple i A Br OTTOMAN 5156 ft C 7633 ft 1572 m AMPHITHEATER 2327 m 2546 ft R E Cocopa Point 768 m T Angels Vishnu Temple Comanche Point M S Co TONTO PLATFOR 6800 ft Phantom Ranch Gate 7829 ft 7073ft lor 2073 m A ado O 2386 m 2156m R Yuma Point Riv Hopi ek er O e 6646 ft Z r Pima Mohave Point Maricopa C Krishna Shrine T
    [Show full text]
  • A New Microvertebrate Assemblage from the Mussentuchit
    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America Haviv M. Avrahami1,2,3, Terry A. Gates1, Andrew B. Heckert3, Peter J. Makovicky4 and Lindsay E. Zanno1,2 1 Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA 2 North Carolina Museum of Natural Sciences, Raleigh, NC, USA 3 Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA 4 Field Museum of Natural History, Chicago, IL, USA ABSTRACT The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Submitted 30 May 2018 fi fi Accepted 8 October 2018 Member. To better re ne taxonomic identi cations of isolated theropod dinosaur Published 16 November 2018 teeth, we used quantitative analyses of taxonomically comprehensive databases of Corresponding authors theropod tooth measurements, adding new data on theropod tooth morphodiversity in Haviv M. Avrahami, this poorly understood interval. We further provide the first descriptions of [email protected] tyrannosauroid premaxillary teeth and document the earliest North American record of Lindsay E.
    [Show full text]
  • Chapter 2 Paleozoic Stratigraphy of the Grand Canyon
    CHAPTER 2 PALEOZOIC STRATIGRAPHY OF THE GRAND CANYON PAIGE KERCHER INTRODUCTION The Paleozoic Era of the Phanerozoic Eon is defined as the time between 542 and 251 million years before the present (ICS 2010). The Paleozoic Era began with the evolution of most major animal phyla present today, sparked by the novel adaptation of skeletal hard parts. Organisms continued to diversify throughout the Paleozoic into increasingly adaptive and complex life forms, including the first vertebrates, terrestrial plants and animals, forests and seed plants, reptiles, and flying insects. Vast coal swamps covered much of mid- to low-latitude continental environments in the late Paleozoic as the supercontinent Pangaea began to amalgamate. The hardiest taxa survived the multiple global glaciations and mass extinctions that have come to define major time boundaries of this era. Paleozoic North America existed primarily at mid to low latitudes and experienced multiple major orogenies and continental collisions. For much of the Paleozoic, North America’s southwestern margin ran through Nevada and Arizona – California did not yet exist (Appendix B). The flat-lying Paleozoic rocks of the Grand Canyon, though incomplete, form a record of a continental margin repeatedly inundated and vacated by shallow seas (Appendix A). IMPORTANT STRATIGRAPHIC PRINCIPLES AND CONCEPTS • Principle of Original Horizontality – In most cases, depositional processes produce flat-lying sedimentary layers. Notable exceptions include blanketing ash sheets, and cross-stratification developed on sloped surfaces. • Principle of Superposition – In an undisturbed sequence, older strata lie below younger strata; a package of sedimentary layers youngs upward. • Principle of Lateral Continuity – A layer of sediment extends laterally in all directions until it naturally pinches out or abuts the walls of its confining basin.
    [Show full text]
  • Spectral Evolution Gold Exploration
    spectral evolution Gold Exploration SPECTRAL EVOLUTION’s oreXpress and oreXpress Platinum with EZ-ID software for mineral identification are well-suited for gold exploration. These rugged, field spectrometers can be used in field mapping and mineral identification for many different gold deposit types, including: Paleoplacer deposits Massive sulfides Hot spring deposits Low sulfidation High sulfidation Breccia pipes Porphyry gold deposits Skarns Orogenic deposits Carbonate placements Greenstone belts oreXpress and oreXpress Platinum spectrometers are ideal With our oreXpress spectrometers and EZ-ID software, geologists can scan and identify for single-user field exploration in common alteration minerals, such as: gold mining. For low sulfidation: illite, kaolinite, chlorite, illite/smectite, buddingtonite, epidote, montmorillonite, zeolite, quartz, calcite, hematite For high sulfidation: alunite, opal, dickite, pyrophyllite, diaspora, zunyite, topaz, illite, kaolinite, chlorite, epidote, quartz, montmorillonite, goethite, jaosite, hematite For orogenic gold: muscovite, paragonite muscovite, roscoelite, illite, kaolinite, quartz, siderite, ankerite, calcite, dolomite, carbonates Using EZ-ID with the USGS spectral library, or the SpecMIN™ library available from Spectral International, the software quickly provides accurate matching of an unknown target with a known mineral spectra. With an oreXpress spectrometer and EZ-ID a geologist can identify minerals indicating gold in real-time, in the field. Benefits include: Quickly collect a lot of scans EZ-ID software identifies minerals Cover more ground in less time for better mapping in real-time by matching your Collect more accurate data for a more complete picture of the area target spectra against a known you are exploring spectral library such as the USGS Get results immediately instead of waiting for lab analysis library, or the SpecMIN library.
    [Show full text]
  • Index 1 INDEX
    Index 1 INDEX A Blue Spring 76, 106, 110, 115 Bluff Spring Trail 184 Adeii Eechii Cliffs 124 Blythe 198 Agate House 140 Blythe Intaglios 199 Agathla Peak 256 Bonita Canyon Drive 221 Agua Fria Nat'l Monument 175 Booger Canyon 194 Ajo 203 Boundary Butte 299 Ajo Mountain Loop 204 Box Canyon 132 Alamo Canyon 205 Box (The) 51 Alamo Lake SP 201 Boyce-Thompson Arboretum 190 Alstrom Point 266, 302 Boynton Canyon 149, 161 Anasazi Bridge 73 Boy Scout Canyon 197 Anasazi Canyon 302 Bright Angel Canyon 25, 51 Anderson Dam 216 Bright Angel Point 15, 25 Angels Window 27 Bright Angel Trail 42, 46, 49, 61, 80, 90 Antelope Canyon 280, 297 Brins Mesa 160 Antelope House 231 Brins Mesa Trail 161 Antelope Point Marina 294, 297 Broken Arrow Trail 155 Apache Junction 184 Buck Farm Canyon 73 Apache Lake 187 Buck Farm Overlook 34, 73, 103 Apache-Sitgreaves Nat'l Forest 167 Buckskin Gulch Confluence 275 Apache Trail 187, 188 Buenos Aires Nat'l Wildlife Refuge 226 Aravaipa Canyon 192 Bulldog Cliffs 186 Aravaipa East trailhead 193 Bullfrog Marina 302 Arch Rock 366 Bull Pen 170 Arizona Canyon Hot Springs 197 Bush Head Canyon 278 Arizona-Sonora Desert Museum 216 Arizona Trail 167 C Artist's Point 250 Aspen Forest Overlook 257 Cabeza Prieta 206 Atlatl Rock 366 Cactus Forest Drive 218 Call of the Canyon 158 B Calloway Trail 171, 203 Cameron Visitor Center 114 Baboquivari Peak 226 Camp Verde 170 Baby Bell Rock 157 Canada Goose Drive 198 Baby Rocks 256 Canyon del Muerto 231 Badger Creek 72 Canyon X 290 Bajada Loop Drive 216 Cape Final 28 Bar-10-Ranch 19 Cape Royal 27 Barrio
    [Show full text]
  • Bryce Canyon National Park
    Lees Ferry, Arizona), White (which surround Utah Zion Canyon), Gray and Pink. Most of the Grand Staircase is now contained within the BLM-managed Grand Staircase - Escalante National Monument. The rocks that give Bryce Canyon its distinctive colors are members of the Claron Formation, a mixed Highlights limestone/sandstone layer, and are also found exposed, with similarly intricate forms, in other nearly locations such as Red Canyon and Cedar Breaks. Erosion: Water is responsible for creating the rock shapes in Bryce Canyon National Park. Rain and melting snow flowing down the Pink Cliffs towards the Paria River form ridges, or fins, which subsequently erode into the spires, pinnacles and other shapes (collectively known as ‘hoodoos’) which are left standing. In time these too erode, and the whole process moves very gradually westwards as more of the cliff is slowly worn away. During the long, cold winters, the cliffs are further weakened by freezing water Bryce Canyon National Park expanding in cracks, resulting in more erosion when the ice Bryce Canyon National Park does not contain one main thaws in spring. canyon, but rather a dozen smaller ravines eroded into the east side of a ridge running approximately north-south at Bryce Canyon Trails: As with most national parks, the best the edge of the Paunsaugunt Plateau in southwest Utah. This way to appreciate Bryce Canyon is to explore away from erosion has resulted in thousands of bizarre and fragile rock the main roads. There are various trails both along the rim formations, large and small, in many subtle shades of pink, and down through the formations, but probably the best white, yellow, orange and red, extending in quite a narrow is the Fairyland Loop Trail, an 8 mile, little-used route which band for over 25 miles along the plateau rim.
    [Show full text]
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]