In Arctic and Antarctic Areas James P

Total Page:16

File Type:pdf, Size:1020Kb

In Arctic and Antarctic Areas James P CONTRIBUTI ONS FROM THE CUSHMAN FOUNDATION F O R FORAl\lIH IFERAL "'RESEARCH 47 CONTRIBUTIONS FROM THE CUSHMAN' FSmmATION FOR FORAMINIFERAL RESEARCH VOLUM E XXI, PART 2, APRIL, 1970 382. COMPARISON OF GLOBIGERINA PACHYDERMA (EHRENBERG ) IN ARCTIC AND ANTARCTIC AREAS JAMES P. KENNETT Florida State University, Tallahassee, Florida 32306 ABSTRACT Arctic samples examined were obtained by Populations of Glubigerin a Il8chnle rmu, in Al'ctic boltom dredge and bottom trawls from ice islands (Arlis sediments exh ibit distinct m orphological diffe rences from those in Antarc tic bottom sedim e nts, Arctic populations 11; Fletcher's Ice Island-T-3) from 1962-1965 in the are less heavily e nc rus t ed, m ore lobulate, have a highe l' central Arctic Ocean and the northern Beaufort Sea al'chad a perture, and have a dominance of 4 "h -chamber ed (Table 1). Antarctic samples have been examined form s (umbilical v iew), compared with a dominance of from numerous cores collected during operations of 4-chamber ed forms in Antarctic populations . Both are dominated by s inis tra lly coiling form s a nd they h ave s im­ National Science Research Vessel Ellanill in the ila r sIze c haracteristics. Becau se of a s hortage of m orpho­ Antarctic area (Kennett, 1968). For both Arctic logical data on G. J)achYlle rma in s ubArctic a nd northern and Antarctic areas, many thousands of specimens hemisph e r e s u btropical a r eas, It is not possible to deter­ of G. pachyderm a have been examined in order to mine whether these morphological differences result from phenotypiC val'lation or s Ubsoecia tion. make the comparisons. Arctic samples were sup­ C haracteristic ranges of variation of G .•}achY ll erma plied by Dr. J. Mohr and Mr. S. Geiger as part of from l>oth areas are illustrated by scanninG'-e leclmn the Arctic Drift Station Biology Program. The microgr aphs, scanning electron micrographs (Plates 8 and 9) INTRODUCTION were taken by R. Parker, using a Cambridge stereo­ G /obigerilla pachyderma is the only species of scan, mark II-A, in the Biology Department, planktonic foraminifera found in both Arctic and Florida State University. This research was sup­ Antarctic water masses, so it is of special interest in ported by Nonr 228(19) and NR 307-270 (Arctic studies of faunal-floral bipolarity. Despite this, Biology, University of Southern California) and popuiations of this species in the two polar areas N.S.F . GA-4002 (Antarctic foraminifera, Florida have not been compared in detail until now. State University) . Shchedrina (1964), in a discussion of bipolarity of foraminifera, stated that G. pachyderm a is the only species that can be called identical in both areas. MORPHOLOGICAL DIFFERENCES During examination of both Arctic and Antarctic BETWEEN ARCTIC AND ANTARCTIC foraminiferal faunas, I noticed, on the contrary, that distinct differences do occur in G. pachyderma POPULATIONS from the two areas. The purpose of this paper is The fo ll owing comparisons are tabulated between to describe these differences and to discuss briefly G. pachyderma populations in the Antarctic area their possible significance. (A), and populations in Arctic areas (B). A. CHARACTERISTICS OF G. l"ACHYDER?ilA I N ANT ARCTIC B. CHARACTERISTICS OF AREAS (KENNETT. 1968) G. l'A C HYDER~rA IN ARCTIC AREAS I. Dominated by forms with 4 cham- I. Dominated by forms with 4 112 -5 bers (umbilical view). Four-cham- chambers (umbilical view). 4112-5 bered forms constitute 54 - 80% of chambered forms constitute 56-36% G. pachyderma samples, with an of G. pachyderm a samples with an average of 66 % . average of 59 % . 2. Test highly thickened, heavily pit- 2. Test less thickened, less heavily pit- ted, compact, and only slightly ted, less compact and rather lobulate. lobulate. 3. Aperture usually relatively low, 3. Aperture usuall y higher arched, narrow arch; lip thickened. more open; lip less thickened. 4. Sinistrally coiled forms dominate 4. Sinistrally coiled forms dominate (greater than 97 % ). (greater than 95%). 5. Large size. Median diameter in- 5. Large size. Median diameter 180- creases southwards from about 160" 187". near the Antarctic convergence to 200" near the Antarctic continent. 48 KENNETT-ARCTIC AND ANTARCTIC GLOUIGERINA PACHYDF': RMA Arctic populations of G. pachyderm a (Plate 8), Environmentally-controlled changes in coiling are readily distinguished from Antarctic popula­ direction in G. pachyderma are well known tions (Plate 9) because they are less heavily en­ (Bandy, 1960; Ericson, 1959). Other gradational crusted, more lobulate, generally have a more morphological changes possibly under environ­ highly arched, more open aperture, and are dom­ mental control have been described for forms from inated by forms with 4 Yz to 5 chambers (umbilical the South Pacific (Kennett, 1968) . It is conceivable view), while those in Antarctic populations are that distinct Arctic and Antarctic forms have arisen dominated by 4-chambered forms (Table 1). In­ as phenotypic variations reflecting environmental deed, Arctic populations have more in common differences in the two oceans. If this is the case, it with subAntarctic populations than with Antarctic is difficult to explain why the Arctic form of G. populations (Kennett, 1968). It is important to pachyderma is more like the subAntarctic form, note that the Arctic forms described in this paper since Arctic water masses are more like those of are mature, relatively thickly encrusted forms, and the Antarctic than the subAntarctic. should not be confused with thin-shelled, immature Unfortunately, since little is known about G. forms characteristi c of relatively shallow Arctic pachyderma in other northern hemisphere areas, it waters (Be, 1960). All of the Arctic samples used is not possible to determine at this time whether the in this study were from depths greater than 1300 m., distinct Arctic and Antarctic forms represent sub­ which is substantially deeper than the critical depth speciation or are merely an expression of pheno­ (200 m.) below which more typical G. pachyderma typic variation. populations, characterized by crystalline thickening of the test wall (Be, 1960), are found. REFERENCES DISCUSSION BANDY, O. L., 1960, The geologic significance of The morphological differences between Arctic coiling ratios in the foraminifera Globigerilla and Antarctic populations of G. pachyderm a can pachydernia (Ehrenberg): JOllr. Pal., vol. 34, be accounted for in two possible ways: no. 4, pp. 671-681, text-figs. 1-7. I. Subspeciation resulting from geographic isolation of the two forms. BE, A. W. H., 1960, Some observations on Arctic planktonic foraminifera: COlllr. Cllshmall 2. Phenotypic variati on reflecting differences FOlllld. FO"'III. Research, vol. II, pI. 2, pp. in the environment of Arctic and Antarctic 64-68. water masses. In present-day seas, G. pachyderm a is essentially ERICSON, D. B., 1959, Coiling direction of Globig­ restricted to water masses as far north as 25 ' S in erinG pachyderm a as a climatic index: Science the southern hemisphere and as far south as 25 ' N vol. 130, no. 3369, pp. 219-220, text-fig. 1. in the northern hemisphere (Parker, 1962). It is KENNETT, J. P., 1968, Latitudinal variation in Glo­ possible that the present-day equatorial water bigerilla pachyderma (Ehrenberg) in surface masses form a barrier to the migration of G. pachy­ sediments of the southwest Pacific Ocean: derma between the northern and southern hemi­ Micropaleolltology, vol. 14, no. 3, pp. 305- spheres. On the other hand, significant oceanic 318, pI. 1. cooling associated with the Pleistocene glacial PARK ER, F. L., 1962, Planktonic foraminiferal spe­ stages possibly enabled the latitudinal range of G. cies in Pacific sediments: Micropaleolltology, pachyderma to be extended close to the equator in vol. 8, no. 2, pp. 219-254, pis. 1-10. some areas, enabling the reasonably free inter­ change of northern and southern hemisphere popu­ SHCHEDRINA, Z. G., 1964, The foraminiferen fauna lations, thereby preventing subspeciation. of the eastern sector of the Antarctic: ill Soviet Alltarctic Expeditioll, Ill/ormatio/! Bull., v. I, An alternative explanation is that subspeciation pp. 125-127, Elsevier Publ. Co. has occurred independently within northern hemi­ sphere populations, and that the Arctic form has SHARP, W. E., and POW-FOONG FAN, 1963, A sort­ evolved as the result of subspeciation in the relative ing index: JOllr. Geol., vol. 71, no. I, pp. isolation of the Arctic Ocean. 76-84. EXPLANATION OF PLATE 8 Morphological variation in mature specimens of Globigerilla pachydermu (Ehrenberg) from Arctic surface sediments. Sample 298a. All figures X 120............... ......... ................ ................................ ................................................. 48 CONTRIB. CUSHMAN FOUND. FORAM. RESEARCH, VOL. 21 PLATE 8 Kennett: Arctic and Antarctic Globigerina pachyde·rma. CONTRIB. CUSHMAN FOUND. FORAM. RESEARCH, VOL. 21 PLATE 9 Kennett: Arctic and Antarctic Globigel'ina pachyderma. CONTRI BUTIONS FROM THE CUSHMAN F OUNDATION FOR FORAMIN1FERAL RESEARCH 49 TABLE 1 } 'C• 0 'C• Ii: ~ } ~ :l •" ~•" 3 :>~ ~> • :;; ."0 E ~ 0- E ~" ..l• ".'" .<:••- '? ~ ~ •E '" .3 • !oE 0> 'C .; 0" ~ :: 'C•" Z I I -0 ~:> E ;a• 0 0 .§ "E o~ E 0 • in .. .<:~"~ .<:E c • £ ~- E .<: • .~- ~" " ~ ~E " ~ -s;::c ~ (fj • ~ E .. 0 0 0= ' E x ;a 8 0 •0 " • • ~ Ul• ..l ..l C• ", 8 ~ E ;a • " '" "' 2 '" "" 98 87"12'N 64' 06'W 1340 100 97 38 62 432 180 65 298a 84' 22'N 169' 48'E 3175 100 96 43 57 504 180 70 22 76' ll'N 141 ' 56'W 3700 100 95 37 63 360 185 68 73c 74' 28'N 141 ' 58'W 3650 100 97 44 56 450 187 67 Data for Globigerina paclr yderma from Arctic samples. Each parameter determined from counts of more than 200 specimens. The sorting index is explained by Sharp and Pow-Foong Fan (1963 ). An increase in percentage of sorting indicates greater numbers of specimens within a narrower size range.
Recommended publications
  • High Influx of Carbon in Walls of Agglutinated Foraminifers During the Permian–Triassic Transition in Global Oceans Galina P
    This article was downloaded by: [USGS Libraries] On: 18 February 2015, At: 12:06 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Geology Review Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tigr20 High influx of carbon in walls of agglutinated foraminifers during the Permian–Triassic transition in global oceans Galina P. Nestella, Merlynd K. Nestella, Brooks B. Ellwoodb, Bruce R. Wardlawc, Asish R. Basua, Nilotpal Ghoshad, Luu Thi Phuong Lane, Harry D. Rowef, Andrew Hunta, Jonathan H. Tomking & Kenneth T. Ratcliffeh a Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, USA b Department of Geology and Geophysics, Louisiana State University, Baton Rouge, USA c Eastern Geology and Palaeoclimate Science Center, United States Geological Survey, Reston, USA Click for updates d Department of Earth and Environmental Sciences, University of Rochester, Rochester, USA e Department of Geomagnetism, Institute of Geophysics, Vietnamese Academy of Science and Technology, Hanoi, Vietnam f Bureau of Economic Geology, University of Texas at Austin, University Station, Austin, USA g School of Earth, Society, and Environment, University of Illinois, Urbana, USA h Chemostrat Inc, Houston, USA Published online: 16 Feb 2015. To cite this article: Galina P. Nestell, Merlynd K. Nestell, Brooks B. Ellwood, Bruce
    [Show full text]
  • Blue River Valley Stratigraphic Chart
    Blue River Valley Hydrogeologic Geologic Period Phase Stratigraphic Unit Unit Modern Alluvium and outwash deposits Alluvial Aquifer Quaternary Glacial deposits Glacial deposits Glaciation Older stream and outwash terrace Local perched deposits aquifer Troublesome Formation Local aquifer Neogene Extension Volcanic rocks Volcanics Paleogene Transition Paleogene and Cretaceous intrusive Crystalline rocks bedrock Laramide Pierre Shale Smoky Hill Member Fort Hayes Limestone Pierre confining Niobrara Niobrara Formation Cretaceous unit Interior Carlile Shale Seaway Greenhorn Limestone Graneros Shale Benton Group Dakota Sandstone Dakota Aquifer Morrison Formation Morrison Aquifer Jurassic Mesozoic Entrada Sandstone Entrada Aquifer Sandstones Chinle confining Triassic Chinle Formation unit Permian Maroon Formation Ancestral Maroon-Minturn Rocky Aquifer Mountains Minturn Formation Pennsylvanian Mississippian No strata Devonian Chaffee Group Paleozoic Silurian Mississippian- Carbonates Cambrian Ordovician Manitou Formation carbonate aquifer Dotsero Formation and Cambrian Sawatch Sandstone Crystalline rocks of igneous and Crystalline Precambrian Precambrian metamorphic origin in mountainous bedrock region Table 12a-05-01. Blue River Valley stratigraphic chart. Blue River Valley Unit Thickness Hydrogeologic Geologic Period Phase Stratigraphic Unit Physical Characteristics Hydrologic Characteristics (ft) Unit Well to poorly-sorted, uncemented sands, silts and gravels along modern Modern Alluvium and outwash deposits >35 Alluvial Aquifer streams and
    [Show full text]
  • Rock Stratigraphy of the Silurian System in Northeastern and Northwestern Illinois
    2UJ?. *& "1 479 S 14.GS: CIR479 STATE OF ILLINOIS c. 1 DEPARTMENT OF REGISTRATION AND EDUCATION Rock Stratigraphy of the Silurian System in Northeastern and Northwestern Illinois H. B. Willman GEOLOGICAL ILLINOIS ""SURVEY * 10RM* APR 3H986 ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief Urbano, IL 61801 CIRCULAR 479 1973 CONTENTS Page Abstract 1 Introduction 1 Time-stratigraphic classification 3 Alexandrian Series 5 Niagaran Series 5 Cayugan Series 6 Regional correlations 6 Northeastern Illinois 6 Development of the classification 9 Wilhelmi Formation 12 Schweizer Member 13 Birds Member 13 Elwood Formation 14 Kankakee Formation 15 Drummond Member 17 Offerman Member 17 Troutman Member 18 Plaines Member 18 Joliet Formation 19 Brandon Bridge Member 20 Markgraf Member 21 Romeo Member 22 Sugar Run Formation . „ 22 Racine Formation 24 Northwestern Illinois 26 Development of the classification 29 Mosalem Formation 31 Tete des Morts Formation 33 Blanding Formation 35 Sweeney Formation 36 Marcus Formation 3 7 Racine Formation 39 References 40 GEOLOGIC SECTIONS Northeastern Illinois 45 Northwestern Illinois 52 FIGURES Figure 1 - Distribution of Silurian rocks in Illinois 2 2 - Classification of Silurian rocks in northeastern and northwestern Illinois 4 3 - Correlation of the Silurian formations in Illinois and adjacent states 7 - CM 4 Distribution of Silurian rocks in northeastern Illinois (modified from State Geologic Map) 8 - lis. 5 Silurian strata in northeastern Illinois 10 ^- 6 - Development of the classification of the Silurian System in |§ northeastern Illinois 11 7 - Distribution of Silurian rocks in northwestern Illinois (modified ;0 from State Geologic Map) 2 7 8 - Silurian strata in northwestern Illinois 28 o 9 - Development of the classification of the Silurian System in CO northwestern Illinois 30 10 - Index to stratigraphic units described in the geologic sections • • 46 ROCK STRATIGRAPHY OF THE SILURIAN SYSTEM IN NORTHEASTERN AND NORTHWESTERN ILLINOIS H.
    [Show full text]
  • 8.4.0 Wolford Mountain Site C 8.4.1 Location And
    8.4.0 WOLFORD MOUNTAIN SITE C 8.4.1 LOCATION AND TOPOGRAPHY Wolford Mountain Site C is located on Muddy Creek, 5 miles north of Kremmling, Colorado and 3.8 miles upstream from Site A'. The dam site is a 250-foot wide canyon with sides that rise steeply to a height of approximately 80 feet. At that point, the left abutment is relatively flat for about 500 feet, continuing east to the base of Wolford Mountain. The right abutment slopes gently upwards towards Highway U.S. 40, located 0.7 miles west of the site. Figure 8.4.1 presents a plan view of the Wolford Mountain Site C. A 120-foot high dam at Site C would impound a reservoir of 60,000 af capacity with a water surface elevation of 7485 feet. This is 10 feet higher than the water surface elevation proposed for an alternative reservoir at Site A'. Approximately 1900 acres would be occupied by the reservoir and lake shore area. An area-capacity curve is presented on Figure 8.4.2. 8.4.2 PRIOR STUDIES Wolford Mountain Site C has been under investigation by the CRWCD. A report titled "Rock Creek Dam Project", prepared by Morrison-Knudsen Engineers, Inc. (1986) for the River District, considered three reservoir capacities for this Muddy Creek Site: 60,000, 46,800 and 30,400 af. The feasibility report illustrates a preliminary design for the selected 46,800 af size. Information from this report has been liberally incorporated into this section on Wolford Mountain Site C. The report titled "Seismotectonic Hazard Evaluation, Rock Creek Project Near Kremmling, Grand And Routt Counties, Colorado", was prepared by Michael West and Associates (1986) for Morrison-Knudsen Engineers as part of their study for the CRWCD.
    [Show full text]
  • Ostracoda of the Limestones of the Permian System
    OSTRACODA OF TEE / . SY, .D DAVIS . ., Aanaas State Colic of .~'C and Applied Science, 1950 A THESIS submitted in partial fulf illnent of tlie re, - I -ts for the decree [ Department of Geology and Geography K . : COLLEGE OP AGRICUL LIED SCIENCE • :' LO T4 i Pua i or t i Area Covered h .3 Irrv nation ••••••• 1 Stra ;!it ••••••••«•••••• 3 Pi. ads La • Methods* ••••• •• Identification of the - % *•#*«•*# ll|, . , 17 . Stra c DIstx- • . ..-oi'ossiln. « . s . 9k . .rposo o I Xxxvefl tion This investigation of the ostracode r.iicrofauna C . 10 line stones of the WoIfcamp seizes In Kansas v;as undertaken to obtain data on the abundance, and the strati/graphic and paloo- ccolocical distribution of the ostracodes. pus Studies of microfaunas have been devoted almost exclusively to bods of shale with only scattered sampling of the limestone..; of ore, it was felt that an investigation of this nature would add to our know- ledge of the micropaleontology of ostracodes. The spars ity of information on techniques of samolinr and prepax^ing limestones for mieropaleontological examination were other factors which posed a problem. It was fully realised that this problem would necessitate various trial and error methods both in the field and laboratory before a satisfactory technique could be developed. Although the main emphasis of the study was to be . ;n to the ostracodes of the limestones, other mierofossiis were not to be die . _'ded; on the contrary, they night yield valuable strat- -•aphic information, She forms, other than ostracodes, consid- ered to be most valuable stratigraphlcally were the foraminifers and the conodonts.
    [Show full text]
  • Palaeoecology of a Hypersaline Carboniferous Ostracod Fauna
    J.rnicropalueontol., 6(2): 29-33, November 1987 Palaeoecology of a hypersaline Carboniferous ostracod fauna Chris P. Dewey Department of Geology and Geography, Mississippi State University, Mississippi State, MS 39762, U.S.A. ABSTRACT- A high abundance, low diversity ostracod fauna has been collected from the Lower Carboniferous Dimock and Phillips limestones in Nova Scotia, Canada. The ostracod fauna consists of Paraparchites sp. aff. P. kellettae Sohn and Beyrichiopsis lophota Copeland, as well as rare specimens of Acratia acuta (Jones & Kirkby), Bythocypris aequalis (Jones & Kirkby), and Chamishaella sirborbiculata (Munster). Growth parameters for the dominant ostracod, Paraparchites sp. aff. P. kellettae, show that a multi-generation, progenetic, parthenogenetic population developed. This reproduc- tive strategy caused rapid population growth and thereby allowed the species to take advantage of the available environmental resources. When considered together, the ostracod fauna and the sedimentology indicate that physiologically stressful hypersaline conditions prevailed. The combined data therefore provide evidence for hypersalinity tolerance and heterochronous development amongst Carboniferous ostracods. INTRODUCTION (Dewey, 1983, 1985, in press). Most of the assemblages Lower Carboniferous deposits in the Maritime Basin are dominated by paraparchitacean ostracods, which of Nova Scotia, Canada, document a series of eustati- are often considered to be indicative of nearshore cally controlled, transgressive-regressive cycles (Giles, environments (van Ameron ef d..1Y70; Becker et af., 1981). Tectonic activity resulted in the development of 1974; Bless, 1983). several interconnected sub-basins (Howie & Barss, This paper exam i n e s t 11 e para parch i t a c ea n - 1975; Bradley, 1982). Consequently. the complex dominated ostracod fauna of a carbonate sabkha interaction of eustacy, tectonism and climate resulted environment from the Windsor Group of the Minas- in a range of palaeoenvironments that include alluvial Shubenacadie Sub-Basin in Nova Scotia (Fig.
    [Show full text]
  • CALCARI GRIGI, EARL Y JURASSIC, SOUTHERN ALPS) Si Accettano Manoscritti in Italiano, Inglese E Francese
    Direttore Responsabile: Prof. FRANCESCO CoNCONI DIPARTIMENTO DI SCIENZE GEOLOGICHE E PALEONTOLOGICH DELL'UNIVERSITÀ DI FERRARA Aut. Trib. Ferrara n. 36/20.5.53 Biblioteca A.P.A.T. Comitato di redazione della Sezione Scienze della Terra: Proff. A. BosELLINI, C. LORIGA BROGLIO, A. ALBERTI, E. SEMENZA. Gli Annali dell'Università di Ferrara, Sezione Scienze della Terra, vengono inviati in cambio di Riviste scientifiche italiane ed estere; tali riviste sono cedute alle Bibliote­ che del Dipartimento di Scienze Geologiche e Paleontologiche e dell'Istituto di Mi­ B 79565 neralogia dell'Università di Ferrara. I lavori da pubblicare (in duplice copia + dischetto) ed ogni comunicazione relativa FAUNAL ASSEMBLAGE AND PALAEOENVIRONMENT alla stampa devono essere inviati in duplice copia a: OF SHALLOW WATER BLACK SHALES Redazione degli Annali, Sezione Se. della T erra, Dipartimento di Scienze Geologiche IN THE TONEZZA AREA e Paleontologiche, C.so Ercole I d'Este 32, 44100 Ferrara. (CALCARI GRIGI, EARL Y JURASSIC, SOUTHERN ALPS) Si accettano manoscritti in italiano, inglese e francese. Gli autori ricevono gratuitamente 50 estratti del loro articolo, senza copertina: BASSI D., BOOMER 1., FUGAGNOLI A., Nome dell'Autore o degli Autori, titolo completo e titolo abbreviato su foglio a parte. LORIGA C., POSENATO R. and WHATLEY R.C. Riassunti: in inglese (ampio se il testo è in italiano) e in italiano (ampio se il testo è in inglese o francese). n riassunto deve evidenziare soprattutto i risultati ottenuti dalla ricerca trala­ sciando il metodo di lavoro, a meno che questo non rappresenti una novità e parte impo'rtante della pubblicazione. Ringraziamenti, riassunti, key words: con questa successione alla fine del testo e INTRODUCTION prima della bibliografia.
    [Show full text]
  • Columnals (PDF)
    2248 22482 2 4 V. INDEX OF COLUMNALS 8 Remarks: In this section the stratigraphic range given under the genus is the compiled range of all named species based solely on columnals assigned to the genus. It should be noted that this range may and often differs considerably from the range given under the same genus in Section I, because that range is based on species identified on cups or crowns. All other abbreviations and format follow that of Section I. Generic names followed by the type species are based on columnals. Genera, not followed by the type species, are based on cups and crowns as given in Section I. There are a number of unlisted columnal taxa from the literature that are indexed as genera recognized on cups and crowns. Bassler and Moodey (1943) did not index columnal taxa that were not new names or identified genera with the species unnamed. I have included some of the omissions of Bassler and Moodey, but have not made a search of the extensive literature specifically for the omitted citations because of time constraints. Many of these unlisted taxa are illustrated in the early state surveys of the eastern and central United States. Many of the columnal species assigned to genera based on cups or crowns are incorrect assignments. An uncertain, but significant, number of the columnal genera are synonyms of other columnal genera as they are based on different parts of the stem of a single taxon. Also a number of the columnal genera are synonyms of genera based on cups and crowns as they come from more distal parts of the stem not currently known to be associated with the cup or crown.
    [Show full text]
  • Vol. 7 National Family Farm Discovery Dox
    Case: 19-70115, 08/13/2019, ID: 11396549, DktEntry: 36-7, Page 1 of 233 No. 19-70115 UNITED STATES COURT OF APPEALS FOR THE NINTH CIRCUIT NATIONAL FAMILY FARM COALITION, et al., Petitioners, v. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, et al., Respondents, and MONSANTO COMPANY, Intervenor-Respondent. ON PETITION FOR REVIEW FROM THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY PETITIONERS’ EXCERPTS OF RECORD VOLUME VII of IX ______________________ CENTER FOR FOOD SAFETY CENTER FOR BIOLOGICAL George A. Kimbrell DIVERSITY Sylvia Shih-Yau Wu Stephanie M. Parent Amy van Saun PO Box 11374 2009 NE Alberta St., Suite 207 Portland, OR 97211 Portland, OR 97211 T: (971) 717-6404 T: (971) 271-7372 [email protected] [email protected] [email protected] [email protected] Counsel for Petitioners Case: 19-70115, 08/13/2019, ID: 11396549, DktEntry: 36-7, Page 2 of 233 INDEX TO PETITIONERS’ EXCERPTS OF RECORD VOLUME I Admin. R. ER Date 1 Document Description Doc. No. Page No. 2 11/1/2018 M.8 Registration Decision for the ER 0001 Continuation of Uses of Dicamba on Dicamba Tolerant Cotton and Soybean 11/1/2018 M.9 Approval Master Label for EPA ER 0025 Registration No. 524-617, Primary Brand Name: M1768 Herbicide Alternate Brand Name: XtendiMax® With VaporGrip® Technology 11/5/2018 M.4 Notice of Conditional Registration ER 0065 and Approved Master Label for EPA Registration No. 524-617, Primary Brand Name: M1768 Herbicide Alternate Brand Name: XtendiMax® With VaporGrip® Technology 11/5/2018 M.3 Notice of Conditional Registration ER 00121 EPA Reg Number 352-913 DuPont FeXapan Herbicide Decision 545658 and Approved Label 11/1/2018 M.5 Notice of Conditional Registration ER 0167 EPA Registration Number 7969- 345 Engenia Herbicide Decision No.
    [Show full text]
  • Jurassic Algae of the Perachora-Peninsula: Biostratigraphical and Paleoecological Implications
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Paläontologie Jahr/Year: 1994 Band/Volume: 19 Autor(en)/Author(s): Dragastan Ovidiu, Gielisch Hartwig, Richter Detlef K., Grewer Till, Kaziur Thomas, Kube Bärbel, Radusch Christoph Artikel/Article: Jurassic algae of the Perachora-Peninsula: Biostratigraphical and paleoecological implications 49-81 ©Verein zur Förderung der Paläontologie am Institut für Paläontologie, Geozentrum Wien Beitr. Paläont., 19:49-81, Wien 1994 Jurassic algae of the Perachora-Peninsula: Biostratigraphical and paleoecological implications Jurassische Algen der Perachora Halbinsel: Biostratigraphische und paläoökologische Folgerungen by DRAGASTAN, Ovidiu,* GIELISCH, Hartwig**, RICHTER, Detlev K.**, GREWER, TiU**, KAZIUR, Thomas**, KUBE, Bärbel **& RADUSCH, Christoph** DRAGASTAN, O., GIELISCH, H„ RICHTER, D.K., GREWER, T„ KAZIUR, T„ KUBE, B. & RADUSCH, C., 1994. Jurassic algae of the Perachora-Peninsula: Biostratigraphical and paleoecological implications. — Beitr. Palaont., 19:49-81, 9 Figures, 6 Plates, Wien. ceae), Rivularia (Rivulariaceae), Alpinelia graeca n.sp. Contents (Scytonemataceae), Girvanella, Hedstroemia (Porostro- Abstract, Zusammenfassung.................................................. 49 mata) and Microproblematicae. 1. Introduction..............................................................................50 Biostratigraphically, a succession of algae and foramini- 2. Geological setting.................................................................
    [Show full text]
  • Further Paleomagnetic Evidence for Oroclinal Rotation in the Central Folded Appalachians from the Bloomsburg and the Mauch Chunk Formations
    TECTONICS, VOL. 7, NO. 4, PAGES 749-759, AUGUST 1988 FURTHER PALEOMAGNETIC EVIDENCE FOR OROCLINAL ROTATION IN THE CENTRAL FOLDED APPALACHIANS FROM THE BLOOMSBURG AND THE MAUCH CHUNK FORMATIONS Dennis V. Kent Lamont-DohertyGeological Observatory and Departmentof GeologicalSciences ColumbiaUniversity, Palisades, New York Abstract.Renewed paleomagnetic investigations of red fromthe Bloomsburg, Mauch Chunk, and revised results bedsof theUpper Silurian Bloomsburg and the Lower recentlyreported for theUpper Devonian Catskill Formation Carboniferous Mauch Chunk Formations were undertaken togetherindicate 22.8•>+_11.9 oof relativerotation, accounting with theobjective of obtainingevidence regarding the for approximatelyhalf thepresent change in structuraltrend possibilityof oroclinalbending as contributing to thearcuate aroundthe Pennsylvania salient. The oroclinalrotation can be structuraltrend of thePennsylvania salient. These formations regardedas a tightenS.*'.3 o/'a lessarcuate depositional package cropout on both limbs of thesalient and earlier, but less thatdeveloped across a basementreentrant, to achievea definitivepaleomagnetic studies on these units indicate that curvaturecloser to that of the earlierzigzag continental margin earlyacquired magnetizations can be recovered. Oriented outline. sampleswere obtained from nine sites on the southern limb of thesalient and eight sites from the northern limb in the INTRODUCTION Bloomsburg.The naturalremanent magnetizations are multivectorial,dominated by a component(B) with a A testof the oroclinehypothesis
    [Show full text]
  • IGS 2015B-Maquoketa Group
    ,QGLDQD*HRORJLFDO6XUYH\ $ERXW8V_,*66WDII_6LWH0DS_6LJQ,Q ,*6:HEVLWHIGS Website Search ,1',$1$ *(2/2*,&$/6859(< +20( *HQHUDO*HRORJ\ (QHUJ\ 0LQHUDO5HVRXUFHV :DWHUDQG(QYLURQPHQW *HRORJLFDO+D]DUGV 0DSVDQG'DWD (GXFDWLRQDO5HVRXUFHV 5HVHDUFK ,QGLDQD*HRORJLF1DPHV,QIRUPDWLRQ6\VWHP'HWDLOV 9LHZ&DUW 7ZHHW *1,6 0$482.(7$*5283 $ERXWWKH,*1,6 $JH 6HDUFKIRUD7HUP 2UGRYLFLDQ 6WUDWLJUDSKLF&KDUW 7\SHGHVLJQDWLRQ 7\SHORFDOLW\7KH0DTXRNHWD6KDOHZDVQDPHGE\:KLWH S IRUH[SRVXUHVRIEOXHDQGEURZQVKDOH 025(,*65(6285&(6 WKDWDJJUHJDWHIW P LQWKLFNQHVVDORQJWKH/LWWOH0DTXRNHWD5LYHULQ'XEXTXH&RXQW\,RZD *UD\DQG6KDYHU 5HODWHG%RRNVWRUH,WHPV +LVWRU\RIXVDJH 6LQFHLWVILUVWXVHWKHWHUPKDVVSUHDGJUDGXDOO\HDVWZDUGLQWKHSURFHVVEHFRPLQJDJURXSWKDWHPEUDFHVVHYHUDO IRUPDWLRQV *UD\DQG6KDYHU ,WLVQRZXVHGWKURXJKRXW,OOLQRLV :LOOPDQDQG%XVFKEDFKS ZDV H[WHQGHGLQWRQRUWKZHVWHUQ,QGLDQDE\*XWVWDGW DQGZDVDGRSWHGIRUXVHLQDJURXSVHQVHWKURXJKRXW,QGLDQD 5(/$7('6,7(6 E\*UD\ *UD\DQG6KDYHU 86*6*(2/(; 'HVFULSWLRQ 1RUWK$PHULFDQ6WUDWLJUDSKLF $VGHVFULEHGE\*UD\ WKH0DTXRNHWD*URXSLQ,QGLDQDLVDZHVWZDUGWKLQQLQJZHGJHIW P WKLFNLQ &RGH VRXWKHDVWHUQ,QGLDQDDQGIW P WKLFNLQQRUWKZHVWHUQ,QGLDQD *UD\DQG6KDYHU ,WFRQVLVWVSULQFLSDOO\RI $$3*&2681$&KDUW VKDOH DERXWSHUFHQW OLPHVWRQHFRQWHQWLVPLQLPDOWKURXJKRXWPRVWRI,QGLDQDEXWLQFUHDVHVSURPLQHQWO\LQWKH VRXWKHDVWVRWKDWSDUWVRIWKHJURXSDUHLQSODFHVGRPLQDQWO\OLPHVWRQH *UD\DQG6KDYHU 7KHORZHUSDUWRIWKH JURXSLVHYHU\ZKHUHDOPRVWHQWLUHO\VKDOHDQGWKHORZHUSDUWRIWKHVKDOHLVGDUNEURZQWRQHDUO\EODFN *UD\DQG 6KDYHU $VDFRQVHTXHQFHRIWKLVSDWWHUQRIURFNGLVWULEXWLRQWZRVFKHPHVRIQRPHQFODWXUHDUHXVHGLQVXEGLYLVLRQRIWKH 0DTXRNHWD*URXSLQ,QGLDQD
    [Show full text]