3,431,070 March 4, 1969

Total Page:16

File Type:pdf, Size:1020Kb

3,431,070 March 4, 1969 March 4, 1969 3,431,070 METHOD OF TREATING AMMON IA AND HYDROGEN SULFIDE GASES To 6 INVENTOR. 274,725 ZA2ZZafar 17724ay 3,431,070 3 4 thiosulfate and sulfur. The sulfur dioxide reacts with the Where the initial feed gas contains hydrogen sulfide, but absorbed ammonia to form ammonium bisulfite according no ammonia, all of the thiosulfate formed by reaction (3) to the reaction: will be reduced to sulfur by reaction (4), resulting in no net yield of thiosulfate. If, on the other hand, ammonia is in excess, the mecha The remainder of the sulfur dioxide, in excess of that re nism of reacting the excess is believed somewhat different. quired to neutralize the ammonia, forms sulfurous acid In this case, reduction of the thiosulfate according to re as follows: action (4) is retarded as the ammonia raises the solution SO--HO->H+--HSO (2) pH. Since insufficient sulfur dioxide has been added to Complete reaction of the ammonia and hydrogen sul 10 convert all of the ammonia to ammonium bisulfite, the fide content of the feed gas to ammonium thiosulfate, to ammonia is probably in solution as a mixture of ammo sulfur, or to a mixture of ammonium thiosulfate and sul nium sulfite and ammonium bisulfite. The sulfite and bi fur requires 0.5 mole of sulfur dioxide per mole of the sulfite are reacted with the excess hydrogen sulfide to form total ammonia plus hydrogen sulfide reactant content of thiosulfate according to the reaction: the feed gas. Addition of the proper quantity of sulfur 15 dioxide is desirable, as the proportion of sulfur dioxide As previously mentioned, product distribution is af in part determines the completeness of reaction and ulti fected not only by feed gas composition, but by the amount mate yield of ammonium thiosulfate and sulfur. Insuffi of sulfur dioxide added. Although 0.5 mole of sulfur diox cient sulfur dioxide results in an incomplete reaction leav ide per mol of total ammonia plus hydrogen sulfide ing unreacted hydrogen sulfide, or, if ammonia is in excess 20 reactants are usually added to achieve complete reaction in the feed gas mixture, yields a product contaminated with of ammonia and hydrogen sulfide to ammonium thiosul ammonium hydrosulfide and other undesirable contami fate and/or sulfur, it is within the scope of my invention to nants. Excess sulfur dioxide merely forms additional am add more, or less, sulfur dioxide. monium bisulfite, sulfurous acid, or thiosulfuric acid, the Although the primary control of the chemical reactions particular byproduct depending on the proportions of am 25 and product yields is by the sulfur dioxide addition rate, monia and hydrogen sulfide in the initial feed gas. Thio pH may be used to monitor this control. The pH varies Sulfuric acid may further decompose to polythionates, sul from point to point within my process, depending on the fur, or sulfates, thereby adding additional impurities to particular reactions taking place and the proportion of the product. reactants. Ammonium thiosulfate in aqueous solution is The ammonium bisulfite and sulfurous acid content of 30 mildly acid, with a pH of about 4, the exact value depend the aqueous ammonium thiosulfate solution can be reacted ing on concentration and temperature. This pH is raised with hydrogen sulfide in the substantially ammonia-free by absorption of ammonia and lowered by absorption of gaseous product from the ammonia scrubbing step accord sulfur dioxide, the magnitude of the changes depending on ing to the reaction: the concentration of these reactants. For example, absorp 35 tion of equimolar quantities of ammonia and sulfur diox ide will first raise the pH of the solution as the ammonia Thiosulfate-forming reaction (3) proceeds moderately is absorbed, and then lower it on addition of the sulfur rapidly and is accompanied by a reduction in pH. If a dioxide, the pH of the resulting solution being about the proper quantity of sulfur dioxide has been added, either same as that of the original solution. On reaction with bisulfite or hydrogen sulfide will be in excess, depending 40 hydrogen sulfide, the solution pH is reduced as the am on the initial proportions of ammonia and hydrogen sul monium bisulfite and/or sulfurous acid are converted to fide in the feed gas. Subsequent reactions then occur stronger thiosulfuric acid and its ammonium salts. As the whereby additional ammonium thiosulfate and/or sulfur is lower thiosulfate reduction reaction (4) is completed, the formed, the exact mechanisms of these reactions again pH again increases to about the original level. depending on the proportions of ammonia and hydrogen 45 All of the reactions noted above occur in an aqueous sulfide in the feed gas. ammonium thiosulfate solution, a portion of which also Unless the feed gas initially contained at least 3.0 moles usually serves as an absorbent for the ammonia, although of ammonia per mole of hydrogen sulfide, a portion of the other solutions may also be used as absorbents. The prod thiosulfate formed according to reaction (3) will be re lucts of the hydrogen sulfide reactions are, except at the duced to sulfur by reaction with unreacted hydrogen 50 extremes of concentration range, an aqueous ammonium sulfide as follows: thiosulfate solution containing elemental sulfur crystals. Although these crystals are extremely finely divided, they can be removed by air flotation, filtration, or other sep Since hydrogen ions produced in reaction (3) are con aratory means. Thus, the final products of my process sumed in reduction reaction (4), the reaction is pH de 55 are finely divided elemental sulfur and a concentrated pendent and will not proceed where the solution pH is ammonium thiosulfate solution. As will be hereinafter above about 6.3, which condition can occur with insuffi described, the finely divided elemental sulfur can be fur cient sulfur dioxide addition or excess ammonia. ther processed to molten liquid sulfur, all or a portion of Where the initial feed gas contains equal molar propor which can then be oxidized to supply the sulfur dioxide tions of ammonia and hydrogen sulfide, an equivalent 60 requirement of the process. Minor amounts of polythionic quantity of sulfur dioxide is required and the reactions of acids can also be formed, but these react further with hy Equations 3 and 4 can be expressed by the net reaction: drogen sulfide to form thiosulfate and/or sulfur by reac tions such as: If the initial feed gas contains other than equal molar 65 H2SOs--H2S->2H2SO (8) quantities of ammonia and hydrogen sulfide, the excess In any event, no appreciable quantities of polythio reactant is consumed by further reactions, the particular nates are contained in the final product of my process, mechanism and final products depending on whether am thus constituting a marked advantage over some of the monia or hydrogen sulfide is in excess. In the case where prior art processes, such as that of U.S. Patent No. the initial feed contains hydrogen sulfide in excess of am 70 1,868,843 to Overdick, which yield considerable quanti monia, the excess hydrogen Sulfide reacts with a portion ties of polythionates. of the thiosulfate produced in the reaction of Equation 3 The above reactions are believed the mechanisms to form sulfur according to Equation 4. The net reaction whereby ammonia and hydrogen sulfide are converted to for the excess hydrogen sulfide can be expressed as: ammonium thiosulfate and sulfur in my process. Even 75 though the actual mechanism may not be completely 3,431,070 5 6 understood, or may be otherwise than as set forth above, any dissolved hydrogen sulfide from the ammonium thio I have conclusively demonstrated that ammonia and hy sulfate solution containing the absorbed ammonia pass drogen sulfide can be reacted to ammonium thiosulfate ing out of the bottom of absorber 1. Although carbon and/or sulfur by the method set forth herein. dioxide stripping is not absolutely necessary, it is ad Since the net reaction of my process is exothermic, heat vantageous particularly where inerts contained in the will build up which must be removed, either by radiation 5 sulfur dioxide are vented to the atmosphere. Thus, the losses to the atmosphere or by interchange of the hot section of the contacting zone of ammonia absorber 1 reaction media with a coolant. A desirable temperature below the point of feed gas entry is a stripping section range is from about 35° C. to about 70° C., although serving the sole purpose of preventing hydrogen sulfide temperatures up to about 100° C. or higher can be em from being retained in the ammonia thiosulfate solution ployed depending upon the system pressure, the upper 10 leaving absorber 1. Displacement of substantially all of limit being established by the boiling point of the solu the absorbed hydrogen sulfide is particularly important tion. The lower limit of the operable temperature range where the sulfur dioxide is obtained from combustion of is established by the temperature at which precipitation sulfur or byproduct recovery as absorbed hydrogen sulfide of salts commences. A higher temperature favors in 15 would be stripped from the solution on contact with the creased reaction rates, but reduces the absorptivity of the sulfur dioxide and vented with the inerts from the sulfur gases in the ammonium thiosulfate solution. Thus, the dioxide contacting step. effect of a temperature change on reaction rate depends The ammonia content of the feed gas is substantially on whether the reaction rate is, under those conditions, lowered by contact with the ammonium thiosulfate solu controlled by chemical reaction rate or by gas absorption 20 tion and if proper contacting is obtained can be substan TateS. tially completely removed.
Recommended publications
  • Chemical Properties
    Technical Bulletin Mar/20 UHMW CHEMICAL RESISTANCE TABLE Reagente 23°C 60°C Reagente 23°C 60°C Reagente 23°C 60°C Reagente 23°C 60°C Acetic acid 10% A A Cetyl alcohol A A Hydrobromic acid A A Potassium ferrocyanide sat. A A Acetic acid 100% A B Chlorinated water 2% A A Hydrobromic acid B X Potassium fluoride A A Acetic acid 60% A A Chlorinated water sat. A B Hydrobromic acid aq.50% A A Potassium hydroxide A A Acetic aldehyde 100% B X Chlorine (dry gas) B X Hydrochloric acid aq.10% A A Potassium nitrate sat. A A Acetic aldehyde 40% B X Chlorine (liquid) B X Hydrocyanic acid aq.sat. A A Potassium perborate sat. A A Acetic anhydride A B Chlorine (wet gas) B X Hydrofluoric acid aq.40-75% A A Potassium perchlorate 10% A A Acetone A A ChlorineBenzene B X Hydrogen A A Potassium permanganate A A Acetophenone B A Chloroacetic acid X X Hydrogen bromide 10% A A Potassium sulfite A A Acrylic emulsion A A Chloroform X X Hydrogen peroxide 30% A A Potassium sulphate conc. A A Acrylonitrile A A Chlorosulfonic acid X X Hydrogen peroxide 90% A B Potassium sulphide conc. A A Adipic acid A A Chrome alum sat. A A Hydrogen phosphite 100% A A Propane (gas) A A Alumens A A Chromic acid 80% A A Hydrogen sulfide A A Propanol A A Aluminum acetate A A Citric acid A A Hydroquinone A A Propargyl alcohol A A Aluminum chloride A A Citronella oil B X Iodine (in alcohol) B B Propylene dichloride 100% X X Aluminum fluoride A A Clove oil A B Isobutyl alcohol 100% A A Propylene glycol A A Aluminum hydroxide A A Coclohexanona B X Isopropyl alcohol 100% A A Pyridine A B Aluminum oxalate A A Coconut oil A A Kerosene A B Resorcinol A A Aluminum sulfate A A Cod liver oil A A Ketchup A A Royal water B B Ammonia (gas) A A Coffee A A Lactic acid 10-90% A A Salicylic acid A A Ammoniacal ferrous citrate A A Copper chloride sat.
    [Show full text]
  • APP202482 APP202482 Application Form Final.Pdf(PDF, 920
    Application for the modified reassessment of a hazardous substance Under Section 63A of the Hazardous Substances and New Organisms Act 1996 Chemical Review 2012 – 2014 A modified reassessment of a range of substances for which new information was obtained in the period 2012 - 2014 Application number: APP202482 Applicant: Chief Executive, Environmental Protection Authority www.epa.govt.nz Chemical Review 2012 – 2014 (APP202482) 2 Applicant’s details Name: Rob Forlong, Chief Executive Address: EPA, Level 10, 215 Lambton Quay, Private Bag 63002, Wellington 6140 Phone: 04 474 5403 Fax: 04 914 0433 Email: [email protected] Applicant’s contact person Name: Asela Atapattu Address: EPA, Level 10, 215 Lambton Quay, Private Bag 63002, Wellington 6140 Phone: 04 474 5463 Fax: 04 914 0433 Email: [email protected] Signature of Applicant 3 June 2015 Rob Forlong Date Chief Executive Environmental Protection Authority Chemical Review 2012 – 2014 (APP202482) 3 Background The Environmental Protection Authority regularly receives new information from stakeholders regarding the classifications and controls of substances. EPA staff also note where changes to approvals are needed. Where those changes are not minor or technical, these changes require a reassessment or a modified reassessment of the approval of the substance under the HSNO Act 1996 (“the Act”) The Chemical Review is intended as a means of making changes to a number of approvals at once, taking into account the new information available to the EPA. This is undertaken as a modified reassessment under section 63A of the Act. This application makes recommendations to change some or all of the following aspects of the approvals in this application: - The approval name of the substance - The hazard classification(s) applied to the substance - The controls applied to the substance The controls changes proposed are largely as a result of changes to the hazard classifications of the substances in this application.
    [Show full text]
  • STAC-V : Chemical Resistance List Max Temperature
    S TA C Industrial Coatings STAC-V : Chemical Resistance List Max Temperature Chemical Formula Alias Concentration V1 V2 Note Acetaldehyde CH3-CH=O Acetic aldehyde 100 % n.r. n.r. Aldehyde Ethanal Ethyl aldehyde Acetic acid CH3-CO-OH Acetic acid glacial 010 % 90 100 0 Ethanoic acid Ethylic acid Glacial acetic acid Methane carboxylic acid Vinegar acid Vinegar Hac 015 % 90 100 0 025 % 90 100 0 040 % 80 90 050 % 70 80 075 % 60 65 080 % 45 45 085 % 45 45 100 % n.r. 25 Acetic acid : nitric acid : CH3-CO-OH : HNO3 : Cr2O3 Ethylic acid : salpeterzuur : 03:05:03 65 80 chromic oxide chromium oxide Acetic acid : sulfuric acid CH3-CO-OH : H2SO4 Ethylic acid : dihydrogen sulfate 20:10 100 100 Acetic anhydride CH3-CO-O-CO-CH3 Acetyl acetate 100 % n.r. n.r. Acetanhydride Acetic oxide Acetyl ether Acetyl oxide Acetone CH3-CO-CH3 Propanone 005 % 80 80 Propan-2-one Dimethyl ketone β-Ketopropane[ Propanone 2-Propanone Dimethyl formaldehyde Pyroacetic spirit (archaic) 010 % 80 80 100 % n.r. n.r. Acetone : MEK : MiBK CH3-CO-CH3 : CH3-CO-CH2- Acetone : methylethyl ketone : 02:02:02 n.r. 40 CH3 : CH3-CO-CH2-CH2-CH3 methylisobutyl ketone Acetonitrile CH3-CN Cyanomethane all n.r. n.r. Ethanenitrile Ethyl nitrile Methanecarbonitrile Methyl cyanid Acetyl chloride CH3-CO-Cl Acetic chloride 100 % n.r. n.r. Ethanoyl chloride Acetylacetone CH3-CO-CH2-CO-CH3 Pentane-2,4-dione 020 % 40 50 2,4-Pentanedione 2,4-Dioxopentane 2,4-Pentadione acetyl-2-Propanone Acac Acetoacetone Diacetylmethane 100 % n.r.
    [Show full text]
  • Ammonium Thiosulfate, Solution ((NH4)2S2O3) Safety Data Sheet According to Federal Register / Vol
    Ammonium Thiosulfate, Solution ((NH4)2S2O3) Safety Data Sheet According To Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations And According To The Hazardous Products Regulation (February 11, 2015). Revision Date: 04/03/2019 Date of Issue: 01/22/2014 Supersedes Date: 03/08/2017 Version: 2.1 SECTION 1: IDENTIFICATION 1.1. Product Identifier Product Form: Mixture Product Name: Ammonium Thiosulfate, Solution ((NH4)2S2O3) Synonyms: Ammonium Hyposulfite, Solution 1.2. Intended Use of the Product No use is specified. 1.3. Name, Address, and Telephone of the Responsible Party Company Manufacturer Poole Chemical Co., Inc. Poole Chemical Co., Inc. P.O. Box 10 P.O. Box 10 100 N. 1st Street 100 N. 1st Street Texline, TX 79087 - United States Texline, TX 79087 - United States T 806-362-4261 T 806-362-4261 1.4. Emergency Telephone Number Emergency Number : 1-800-424-9300 (CHEMTREC) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the Substance or Mixture GHS-US/CA Classification Not classified 2.2. Label Elements GHS-US/CA Labeling No labeling applicable 2.3. Other Hazards Exposure may aggravate pre-existing eye, skin, or respiratory conditions. 2.4. Unknown Acute Toxicity (GHS-US/CA) No data available SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS 3.1. Substance Not applicable 3.2. Mixture Name Synonyms Product Identifier % * GHS Ingredient Classification Ammonium thiosulfate Ammonium thiosulphate / Thiosulfuric acid, (CAS-No.) 7783-18-8 60 Not classified diammonium salt / Thiosulfuric acid (H2S2O3), diammonium salt / Thiosulfuric acid (H2S2O3), ammonium salt (1:2) / Diammonium thiosulfate Water AQUA / Aqua (CAS-No.) 7732-18-5 40 Not classified *Percentages are listed in weight by weight percentage (w/w%) for liquid and solid ingredients.
    [Show full text]
  • Ammonium Thiosulfate 12-0-0, 26% Sulfur
    Secondary Nutrients Ammonium Thiosulfate 12-0-0, 26% Sulfur Guaranteed Analysis Directions for Use: Greens, Tees and Fine Turf: Apply 3.0 - 12.0 oz. of Ammonium Thiosulfate with 1.5 -2 gallons of Total Nitrogen (N) ................................... 12.00% water per 1,000 sq. ft. (1.0 - 4.1 gallons of Ammonium Thiosulfate with 66 - 88 gallons of water per 12% Ammoniacal Nitrogen Sulfur (S) ................................................. 26.00% Acre) every 14 days throughout the growing season. Irrigate after application. This application shall provide 0.03 - 0.12 lb. of actual Nitrogen per 1,000 sq. ft. Derived from Ammonium Thiosulfate Fairways, Roughs, Sports Turf and Lawns: Apply 3.1 - 4.1 gallons of Ammonium Thiosulfate Ammonium Thiosulfate is an excellent source with 44 - 88 gallons of water per Acre (9.0 - 12.0 oz. of Ammonium Thiosulfate with 1 - 2 gallons of of ammoniacal nitrogen that is quickly absorbed water per 1,000 sq. ft.) every 14 days throughout the growing season. This application shall provide by the plant. This results in greener turf, even at 0.09 - 0.12 lb. of actual nitrogen per 1,000 sq. ft. low soil temperatures. Use when a liquid type of ammoniacal nitrogen source and sulfur are Fertigation: Apply 1.0 - 5.0 gallons per Acre (3 - 15 oz. per 1,000 sq. ft.) of Ammonium Thiosulfate required. with the irrigation water every 7 to 14 throughout the growing season. Ammonium Thiosulfate is a neutral to slightly Application Precautions: basic (7 - 8 pH), clear liquid solution, containing 12% nitrogen and 26% sulfur. Ammonium Do not apply Ammonium Thiosulfate directly on or below germinating seeds such as in a “pop Thiosulfate is compatible with most liquid up” fertilizer.
    [Show full text]
  • Orca Corrosion Chart
    Unsaturated Polyester Vinylster (Epoxy Acrylate Resins) CHEMICAL Conc Resins NO ISO BIS Novolac Bromine ENVIRONMENT % 511/512 301 585 570 545/555 A 1 Acetaldehyde 20 NR 40 40 40 2 Acetic Acid 10 80 100 100 100 3 Acetic Acid 15 60 100 100 100 4 Acetic Acid 25 60 100 100 100 5 Acetic Acid 50 - 80 80 80 6 Acetic Acid 75 NR 65 65 65 7 Acetic Acid, Glacial 100 NR NR 40 NR 8 Acetic Anhydride 100 NR NR 40 NR 9 Acetone 10 NR NR 80 80 10 Acetone 100 NR NR NR NR 11 Acetonitrile 20 - 40 40 40 12 Acetyl Acetone 20 - 40 50 40 13 Acrolein (Acrylaldehyde) 20 - 40 40 40 14 Acrylamide 50 NR 40 40 40 15 Acrylic Acid 25 NR 40 40 40 16 Acrylic Latex All - 80 80 80 17 Acrylonitrile Latex Dispersion 2 NR 25 25 25 Activated Carbon Beds, Water 18 - 80 100 80 Treatment Adipic Acid(1.5g solution in 19 23 - 80 80 80 water at 25℃, sol in hot water) 20 ALAMINE amines - 65 80 65 21 Alkyl(C8-10) Dimethyl Amine 100 - 80 100 80 22 Alkyl(C8-10) Chloride All - 80 100 95 23 Alkyl Benzene Sulfonic Acid 90 NR 50 50 50 Alkyl Tolyl Trimethyl 24 - - 40 50 40 Ammonium Chloride 25 Allyl Alcohol 100 NR NR 25 NR 26 Allyl Chloride All NR 25 25 25 27 Alpha Methylstyrene 100 NR 25 50 25 28 Alpha Oleum Sulfates 100 NR 50 50 50 29 Alum Sat'd 80 100 120 100 30 Aluminum Chloride Sat'd 80 100 120 100 31 Aluminum Chlorohydrate All - 100 100 100 32 Aluminum Chlorohydroxide 50 - 100 100 100 33 Aluminum Fluoride All - 25 25 25 34 Aluminum Hydroxide 100 80 80 95 80 35 Aluminum Nitrate All 80 100 100 100 36 Aluminum Potassium Sulfate Sat'd 80 100 120 100 37 Aluminum Sulfate Sat'd 80 100 120 100
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET SECTION 1) CHEMICAL PRODUCT AND SUPPLIER'S IDENTIFICATION Product ID: Ammonium Thiosulfate Product Name: Ammonium Thiosulfate Revision Date: Jul 13, 2015 Date Printed: Sep 29, 2015 Version: 2.0 Supersedes Date: Jun 05, 2015 Manufacturer's Name: Martin Operating Partnership, L.P. Address: P.O. Box 191, Kilgore, TX, US, 75663 Emergency Phone: CHEMTREC (800) 424-9300 Information Phone: 800-231-4595 Fax: Product/Recommended Uses: Industrial uses SECTION 2) HAZARDS IDENTIFICATION Classification: Acute toxicity, Oral - Category 4 Pictograms: Signal Word: Warning Hazardous Statements - Health: Harmful if swallowed Precautionary Statements - General: If medical advice is needed, have product container or label at hand. Keep out of reach of children. Read label before use. Precautionary Statements - Prevention: Wash with soap and water thoroughly after handling. Do not eat, drink or smoke when using this product. Precautionary Statements - Response: IF SWALLOWED: Call a POISON CENTER/doctor if you feel unwell. Rinse mouth. Precautionary Statements - Storage: No precautionary statement available. Precautionary Statements - Disposal: Dispose of contents/container to disposal recycling center. Under RCRA it is the responsibility of the user of the product to determine at the time of disposal whether the product meets RCRA criteria for hazardous waste. Waste management should be in full compliance with federal, state and local laws. Ammonium Thiosulfate www.martinresources.com Page 1 of 7 SECTION 3) COMPOSITION / INFORMATION ON INGREDIENTS CAS Chemical Name % By Weight 0007783-18-8 AMMONIUM THIOSULFATE 48% - 66% 0007732-18-5 WATER 34% - 46% 0007783-20-2 AMMONIUM SULFATE 0.9% - 2% 0010196-04-0 AMMONIUM SULFITE 0.1% - 2% SECTION 4) FIRST-AID MEASURES Inhalation: Remove source of exposure or move person to fresh air and keep comfortable for breathing.
    [Show full text]
  • Effect of Surface Application of Ammonium Thiosulfate on Field
    Science of the Total Environment 580 (2017) 316–323 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Effect of surface application of ammonium thiosulfate on field-scale emissions of 1,3-dichloropropene S.R. Yates a,⁎, D.J. Ashworth a,b,Q.Zhanga a USDA-ARS, U.S. Salinity Laboratory, 450 W. Big Springs Rd., Riverside, CA 92507, United States b University of California, Department of Environmental Sciences, Riverside, CA 92521, United States HIGHLIGHTS GRAPHICAL ABSTRACT • Five methods and two independent da- ta sets were used to calculate emissions • Total 1,3-dichloropropene mass loss was 18.4 ± 6.7% and ranged 12–26% • Spraying ammonium thiosulfate fertil- izer on soil reduced 1,3-D emissions • Results compared to four related large- scale field experiments article info abstract Article history: Soil fumigation is important for food production but has the potential to discharge toxic chemicals into the environ- Received 29 September 2016 ment, which may adversely affect human and ecosystem health. A field experiment was conducted to evaluate the Received in revised form 17 November 2016 effect of applying ammonium thiosulfate fertilizer to the soil surface prior to fumigating with 1,3-dichloropropene Accepted 17 November 2016 (1,3-D). The ammonium thiosulfate solution was applied as a spray with minimal water to minimize the effect on Available online 21 December 2016 emissions from saturating (e.g. sealing) the soil pores with water. Two independent data sets were collected for de- Editor: Jay Gan termining the emission rate. One data set was used with three micrometeorological approaches: aerodynamic, inte- grated horizontal flux and theoretical profile shape; the other dataset with two indirect, back calculation methods Keywords: that used the CALPUFF and ISCST3 dispersion models.
    [Show full text]
  • Ammonium Thiosulfate MSDS
    Material Safety Data Sheet NFPA HMIS Personal Protective Equipment Health Hazard 0 1 1 0 Fire Hazard 0 Reactivity 0 See Section 15. Section 1. Chemical Product and Company Identification Page Number: 1 Common Name/ Ammonium Thiosulfate Catalog A1273 Trade Name Number(s). CAS# 7783-18-8 Manufacturer SPECTRUM LABORATORY PRODUCTS INC. RTECS XN6465000 14422 S. SAN PEDRO STREET TSCA TSCA 8(b) inventory: GARDENA, CA 90248 Ammonium Thiosulfate Commercial Name(s) Thio-sul CI# Not available. Synonym Diammonium Thiosulfate; Ammonium Hyposulfite IN CASE OF EMERGENCY Chemical Name Thiosulfuric acid, diammonium salt CHEMTREC (24hr) 800-424-9300 Chemical Family Not available. CALL (310) 516-8000 Chemical Formula H8-N2.O3-S2 Supplier SPECTRUM LABORATORY PRODUCTS INC. 14422 S. SAN PEDRO STREET GARDENA, CA 90248 Section 2.Composition and Information on Ingredients Exposure Limits Name CAS # TWA (mg/m3) STEL (mg/m3) CEIL (mg/m3) % by Weight 1) Ammonium Thiosulfate{2} 7783-18-8 100 Toxicological Data Not applicable. on Ingredients Section 3. Hazards Identification Potential Acute Health Effects Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. Potential Chronic Health CARCINOGENIC EFFECTS: Not available. Effects MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. Repeated or prolonged exposure is not known to aggravate medical condition. Continued on Next Page Ammonium Thiosulfate Page Number: 2 Section 4. First Aid Measures Eye Contact Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. Get medical attention if irritation occurs.
    [Show full text]
  • Exhibit 2D-3
    Exhibit 2D–3. Hazardous Substances 1. Acetaldehyde 73. Captan 144. Ferrous sulfate 2. Acetic acid 74. Carbaryl 145. Formaldehyde 3. Acetic anhydride 75. Carbofuran 146. Formic acid 4. Acetone cyanohydrin 76. Carbon disulfide 147. Fumaric acid 5. Acetyl bromide 77. Carbon tetrachloride 148. Furfural 6. Acetyl chloride 78. Chlordane 149. Guthion 7. Acrolein 79. Chlorine 150. Heptachlor 8. Acrylonitrile 80. Chlorobenzene 151. Hexachlorocyclopentadiene 9. Adipic acid 81. Chloroform 152. Hydrochloric acid 10. Aldrin 82. Chloropyrifos 153. Hydrofluoric acid 11. Allyl alcohol 83. Chlorosulfonic acid 154. Hydrogen cyanide 12. Allyl chloride 84. Chromic acetate 155. Hydrogen sulfide 13. Aluminum sulfate 85. Chromic acid 156. Isoprene 14. Ammonia 86. Chromic sulfate 157. Isopropanolamine dodecylbenzenesulfonate 15. Ammonium acetate 87. Chromous chloride 158. Kelthane 16. Ammonium benzoate 88. Cobaltous bromide 159. Kepone 17. Ammonium bicarbonate 89. Cobaltous formate 160. Lead acetate 18. Ammonium bichromate 90. Cobaltous sulfamate 161. Lead arsenate 19. Ammonium bifluoride 91. Coumaphos 162. Lead chloride 20. Ammonium bisulfite 92. Cresol 163. Lead fluoborate 21. Ammonium carbamate 93. Crotonaldehyde 164. Lead fluorite 22. Ammonium carbonate 94. Cupric acetate 165. Lead iodide 23. Ammonium chloride 95. Cupric acetoarsenite 166. Lead nitrate 24. Ammonium chromate 96. Cupric chloride 167. Lead stearate 25. Ammonium citrate 97. Cupric nitrate 168. Lead sulfate 26. Ammonium fluoroborate 98. Cupric oxalate 169. Lead sulfide 27. Ammonium fluoride 99. Cupric sulfate 170. Lead thiocyanate 28. Ammonium hydroxide 100. Cupric sulfate ammoniated 171. Lindane 29. Ammonium oxalate 101. Cupric tartrate 172. Lithium chromate 30. Ammonium silicofluoride 102. Cyanogen chloride 173. Malathion 31. Ammonium sulfamate 103. Cyclohexane 174. Maleic acid 32. Ammonium sulfide 104.
    [Show full text]
  • ATS: the Multi-Use Sulfur Fertilizer Researcher Cites Data That Demonstrate the Muli-Benefits of This Valuable Sulfur Source
    Dr. R. J. Goos ATS: The Multi-Use Sulfur Fertilizer Researcher cites data that demonstrate the muli-benefits of this valuable sulfur source. Summary: Ammonium thiosulfate is a Mn availability. ATS reacts rapidly and hydrolysis significantly. Research also has widely used fluid source of nitrogen and abiotically with Mn-oxides in the soil, shown that the strength of ATS as a urease sulfur. It oxidizes rapidly. When mixed with producing Mn2+. Agronomists or growers inhibitor can be enhanced with large other fluid fertilizers and applied to the soil who work in regions of Mn deficiency, or fertilizer droplets and at lower water con- in concentrated fertilizer bands, ammonium where Mn fertilization helps reduce certain tents. thiosulfate can enhance micronutrient crop diseases, are encouraged to experiment Figure 1 shows how adding 5 percent availability, slow soil urease, slow nitrifi- with ATS. ATS by volume to UAN or UAN-APP cation, and improve the availability of P mixtures slowed but did not prevent fertilizers. Ammonium thiosulfate is used for Soil urease slowed ammonia loss. Note also that the banded its convenience and other beneficial ATS can slow soil urease when mixed solutions performed much better than those interactions. with UAN and surface banded (dribbled). broadcast. Where ATS was added and the Urease is an enzyme that converts urea and fertilizer was banded, ammonia loss was Ammonium thiosulfate (ATS 12-0-0-26S) water to ammonia and carbon dioxide. If reduced more than 60 percent! Other is a standard product of the U.S. fluid surface-applied urea is hydrolyzed too research, while also successful, has shown fertilizer industry.
    [Show full text]