Thermodynamic Properties of Minerals and Related Substances at 298.15°K (25.0°C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamic Properties of Minerals and Related Substances at 298.15°K (25.0°C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures Thermodynamic Properties of Minerals and Related ~ Substances at 298.15°K (25.0°C) o and One Atmosphere (1.013 Bars) hS O Pressure and at Higher Temperatures bd 82 GEOLOGICAL SURVEY BULLETIN 1259 ORTON MEMORIAL LIBRARY i: '£ OHIO STATE UWVEHSITY JUN 1 6 2000 CO a I to Or Thermodynamic Properties of Minerals and Related Substances at 298.15°K (25.0°C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures By RICHARD A. ROBIE ajid DAVID R. WALDBAUM GEOLOGICAL SURVEY BULLETIN 1259 A summary of the thermodynamic data for minerals at 298.15°K together with calculated values of the functions AH°f,T, AGI,T, ST, and (Gr H^.s/T) at temperatures up to 2,000°K ORTON MEMORIAL LIBRARY THE OHIO STATE UNIVERSITY 155 S. OVAL DRIVE UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. OS 68-223 First printing 1968 Second printing 1970 For sale by the Superintendent of Documents, U.S. Government Printing OflBlce Washington, D.C. 20402 - Price $1.25 (paper cover) CONTENTS Page Abstract _____________________________________ 1 Introduction ___________________________________... 1 Acknowledgments ________________________________ 2 Physical constants and atomic weights ________________ 3 Reference states and transitions _________,______________ 5 Sources of data ___________,________________,______ 5 Methods of calculation ______________________________ 8 Thermodynamic properties at 298.15°K ___________________ 11 Thermodynamic properties at high temperatures ______________ 26 References and notes _______________________________ 238 Index of names ___________________________________ 249 Index of formulas ________________________________ 253 TABLES Page TABLE 1. Symbols and constants __________________ 3 2. Atomic weights for 1963 _____________________ 4 3. Chronological list of important critical summaries of thermodynamic data for inorganic substances _______. 6 THERMODYNAMIC PROPERTIES OF MINERALS AND RELATED SUBSTANCES AT 298.15°K (25.0°C) AND ONE ATMOSPHERE (1.013 BARS) PRESSURE AND AT HIGHER TEMPERATURES By RICHARD A. ROBIE and DAVID R. WALDBAUM ABSTRACT Critically selected values for the entropy (S°288.«), molar volume (VWw), and for the heat and Gibbs free energy of formation (AH 0f,z98.i5 and AG°f.288.is) are given for 50 reference elements and 285 minerals and related substances. For 211 materials for which high-temperature heat-capac­ ity or heat-content data are available AH°f,T, AG°f,T, S°T, logKf/r and (G°T H°298.i5/T) are tabulated at 100°K intervals for temperatures up to 2,000°K. For substances having solid-state phase changes or whose melt­ ing or boiling point is less than 2,000°K, we also have tabulated the prop­ erties listed above at the temperature of the phase change so that the heat or entropy changes associated with the transformation form an integral part of the high-temperature tables. INTRODUCTION The purpose of these tables is to present a critical summary of the available thermodynamic data for minerals and related sub­ stances in a convenient form for the use of earth scientists. To make the tables as useful as possible we have tried to include as much of the necessary auxiliary data as possible so that a single set of tables would suffice for most calculations, to insure internal consistency and to provide for the means of rapid revision and expansion as new data become available. This compilation is divided into two sections. In the first section we give values for the entropy (S°288.i5), molar volume (V°298.K), the heat (enthalpy, AH°f.298.i5) and Gibbs free energy (AG0f,288.15), and the logarithm of the equilibrium constant of formation (log Kf, 298.15) for the reference elements, minerals, a number of oxides, and other substances of geological interest. The data have been critically evaluated and uncertainties assigned to the 298.15°K properties. The sources of data are indicated numerically in the tables and listed in complete form following the tables. 2 THERMODYNAMIC PROPERTIES OF MINERALS The data are arranged in order of their conventional min- eralogical groups. Within each group (for example the oxides) the listing is by alphabetical order of the chemical symbol of the principal cation. The tables in the second section contain values for the high-temperature thermodynamic properties, H°T H°ns.u, (G°T -H°298.iS)/T, S°T, AG°f,T, AH°,,T, and log Kf,T at 100°K inter­ vals up to 2000°K. Heat-capacity data, as such, have been omitted from these tables in favor of the function H°T H0298.i5 which is the quantity actually measured in most high-temperature experi­ ments. Heat capacities, CP, derived from H°T H°298.i5 data are at best only approximate and their use should be avoided when possible. Approximate values for CP are readily obtained from the first differences of the tabulated H°T H 0298.i5 function. Thermodynamic properties of gases at high pressures have not been included in these tables. High pressure-high temperature functions of the geologically important gases H20 and C02 are given by Bain (1964), Hilsenrath and others (1955), and Robie (1966). These tables entirely supersede two earlier reports on the same subject matter by Robie (1959,1966)! ACKNOWLEDGMENTS Professor E. F. Westrum, Jr., University of Michigan, Profes­ sor 0. J. Kleppa, University of Chicago, and P. B. Barton, Jr., Priestley Toulmin, and D. R. Wones, U.S. Geological Survey, have kindly permitted us to use some of their unpublished data. We are particularly grateful to Keith Beardsley of the U.S. Geological Survey who wrote the computer routines for processing the 298.15°K tables and the bibliography. E-an Zen of the U.S. Geo­ logical Survey and Professor J. B. Thompson, Jr., of Harvard University offered many helpful suggestions for improving the clarity and usefulness of these tables. Computer facilities at the Massachusetts Institute of Technology were used initially to develop the program for compiling high- temperature thermodynamic functions. More recent revisions of the program and the present set of tables were prepared at the Harvard Computing Center, with computer costs supported by the Higgins Fund and the Committee on Experimental Geology and Geophysics of Harvard University. THERMODYNAMIC PROPERTIES OF MINERALS 3 PHYSICAL CONSTANTS AND ATOMIC WEIGHTS The symbols and constants adopted for this report are listed in table 1. Values for the physical constants used in the calculations were those recommended by the National Academy of Science- National Research Council (U.S. Natl. Bur. Standards Tech. News Bull., v. 47, p. 175-177, 1963). For convenience we also give values of the international atomic weights for 1963 (scale C12 = 12.0000) in alphabetical order by their chemical symbol in table 2. Elements for which no atomic weight is listed have no stable isotope. TABLE 1. Symbols and constants T Temperature in degrees Kelvin, (°K) gfw Gram formula weight H° -H° Enthalpy at temperature T relative to 298.15°K in cal gfw 1, T S° Entropy at temperature T in cal deg-gfw"1 G° -H° T SM.15 m Gibbs free energy function in cal deg-gfw"1 A^f° Heat of formation from reference state in cal gfw" 1 AG° Gibbs free energy of formation from reference state in cal gfw"1 Kr Equilibrium constant of formation Cp Heat capacity at constant pressure in cal deg-gfw" 1 0 Superscript indicates the substance is in its standard state » TTO meit Heat of melting at one atmosphere in cal gfw"1 AH° Heat of vaporization to ideal gas at one atmosphere at the "p normal boiling point in cal gfw"1 V° Volume of one gram formula weight at one atmosphere and "* " 298.15°K in cm8 R Gas constant, 1.98717 ±.00030 cal deg-gfw 1, 8.31469 joules deg-gfw"1 cal Calorie, unit of energy, 4.1840 absolute joules, 41.2929 cm* atmosphere A Avogadro's number, (6.02252 ±. 00028) xlO23 formula ' units gfw1 P Pressure, either in atmosphere or bars atm Atmosphere, 1,013,260 dynes cm"* bar Bar, 1,000,000 dynes cm"2 log Common logarithm, base 10 In Natural logarithm, base e= 2.71828. THERMODYNAMIC PROPERTIES OF MINERALS TABLE 2. Atomic weights for 1963 Atomic Atomic Element Symbol weight Element Symbol weight Ac _ N 14.0067 SllvPT* A<r 107.870 Sodium Na 22.9898 Aluminum _ Al 26.9815 Nb no onft Americium _ _ Am243 243.061 Neodymium Nd 144 94 Argon _ - Ar 39.948 Ne 9ft 1 8°. Arsenic As 74.9216 Ajlf»lfp1 Ni 58.71 Astatine At Np237 OQ7 ft/lQ Gold Au 196.967 Owcrpri _ 0 15 9994 Boron B 10.811 Osmium Os 1Qft 9 Barium Ba 137.34 _ _P on 0700 Beryllium __ Be Q 01 99 Protactinium _ Pa Bismuth Bi 208.980 Lead _ Pb 207.19 Br 7Q ana Palladium _ .. Pd 106.4 Carbon _ _ C 12.01115 Polonium __ Po Calcium _ _ Ca 40.08 Promethium _ _ Pm Cadmium _ Cd 112.40 Praseodymium __ Pr 140.907 Cerium . _Ce 140.12 Platinum _ Pt 195.09 Chlorine Cl 35.453 Plutonium Pu239 239.052 Cobalt Co 58.9332 Radium Ra Cr 51.996 Rubidium _ _ Rb 85.47 Cesium ._ Cs 132.905 Rhenium __ Re 186.2 Rhodium _ Rh Copper - Cu 63.54 102.905 Radon _ Rn Dysprosium _____Dy 162.50 _ Ru Erbium Er 167.26 Ruthenium 101.07 Sulfur _ S Europium Eu 151.96 32.064 Antimony _ Sb Fluorine F 18.9984 121.75 Scandium _ .Sc Iron Fe 55.847 44.956 Francium Fr Selenium - -Se 78.96 Silicon _ _Si Gallium Ga 69.72 28.086 Samarium Gadolinium 157.25 Sm 150.35 Tin .
Recommended publications
  • Design and Discovery of New Piezoelectric Materials Using Density Functional Theory
    DESIGN AND DISCOVERY OF NEW PIEZOELECTRIC MATERIALS USING DENSITY FUNCTIONAL THEORY by Sukriti Manna © Copyright by Sukriti Manna, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering). Golden, Colorado Date Signed: Sukriti Manna Signed: Dr. Cristian V. Ciobanu Thesis Advisor Signed: Dr. Vladan Stevanovi´c Thesis Advisor Golden, Colorado Date Signed: Dr. John Berger Professor and Head Department of Mechanical Engineering ii ABSTRACT Piezoelectric materials find applications in microelectromechanical systems (MEMS), such as surface acoustic wave (SAW) resonators, radio frequency (RF) filters, resonators, and energy harvesters. Using density functional theory calculations, the present study illus- trates the influence of alloying and co-alloying with different nitrides on piezoelectric and mechanical properties of an existing piezoelectric material such as aluminum nitride (AlN). Besides improving the performance of existing piezoelectric material, a high-throughput screening method is used to discover new piezoelectric materials. AlN has several beneficial properties such as high temperature stability, low dielectric permittivity, high hardness, large stiffness constant, high sound velocity, and complementary metal-oxide-semiconductor (CMOS) compatibility. This makes it widely accepted material in RF and resonant devices. However, it remains a challenge to enhance the piezoelectric modulus of AlN. The first part of this thesis establishes that the piezoelectric modulus of AlN could be improved by alloying with rocksalt transition metal nitrides such as scandium nitride (ScN), yttrium nitride (YN), and chromium nitride (CrN). As the content of the rocksalt end member in the alloy increases, the accompanying structural frustration enables a greater piezoelectric response.
    [Show full text]
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Observation of Quadrupole Helix Chirality and Its Domain Structure in Dyfe3(BO3)4
    ARTICLES PUBLISHED ONLINE: 6 APRIL 2014 | DOI: 10.1038/NMAT3942 Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4 T. Usui1, Y. Tanaka2, H. Nakajima1, M. Taguchi2, A. Chainani2, M. Oura2, S. Shin2, N. Katayama3, H. Sawa3, Y. Wakabayashi1 and T. Kimura1* Resonant X-ray diraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using circularly polarized X-rays, this technique has been developed to verify symmetry breaking eects arising from chirality, the asymmetry of an object upon its mirroring. Chirality plays a crucial role in the emergence of functionalities such as optical rotatory power and multiferroicity. Here we apply spatially resolved RXD to reveal the helix chirality of Dy 4f electric quadrupole orientations and its domain structure in DyFe3(BO3)4, which shows a reversible phase transition into an enantiomorphic space-group pair. The present study provides evidence for a helix chiral motif of quadrupole moments developed in crystallographic helix chirality. t is well known that chirality often plays a critical role in various detect not only crystallographic helix handedness but also the disciplines, such as biology, organic chemistry and particle chirality ascribed to the periodic motif of multipole moments, such Iphysics1,2. In contrast, chirality in solid-state physics, which as magnetic dipoles and electric quadrupoles12–14. In the case of is largely concerned with crystals possessing periodic arrays of magnetic dipoles, the handedness of a `helical magnetic structure' atoms, has attracted less attention.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 59, pages 906-918, 1974 Domainsin Minerals Rosnnr E. NpwNnarvr Materials ResearchLaboratory, The PennsylaaniaState Uniuersity, Uniuersity Park, Pennsyluania16802 Abstract Mimetic twinning in minerals is reviewed in terms of the tensor properties of the orientation states, showing which forces are eftective in moving domain walls. Following the Aizu method, various types of ferroic species are developed frorn the free energy function. Examples of ferroelectric, ferromagnetic, ferroelastic, ferrobielectric, ferrobimagnetic, ferrobielastic, ferro- elastoelectric, ferromagnetoelastic, and ferromagnetoelectric minerals are described. Introduction and ferromagnetoelectric.As explained later, each Twinning is widely used in mineral identification type of domain reorientationarises from a particular and in elucidating the formation conditions of rocks. term in the free energy function. The distribution of transformation twins in rock- A ferroic crystal contains two or more possible forming minerals enables one to establish the orientationstates or domains;under a suitably chosen thermal processes that have occurred in the rock. driving force the domain walls move, switching the Mechanical twinning is studied by petrologists in crystal from one orientation stateto another. Switch- the analysis of flow effects. In rock magnetism, it ing may be accomplishedby mechanicalstress (a), is the arrangement of ferromagnetic domains which electricfield (E), magneticfield (I/), or somecombina- determines remanent magnetization. These are but tion of the three. Ferroelectric, ferroelastic, and a few examples of twin phenomena in minerals. ferromagneticmaterials are well known examplesof In the past twinned crystals have been classified primary ferroic crystals in which the orientation according to twin-laws and morphology, or accord- statesdiffer respectivelyin spontaneouspolarization ing to their mode of origin, or on a structural basis, P,",, spontaneousstrain 6r"r and spontaneous but there is another classification scheme which magnetizatiorrMr"t.
    [Show full text]
  • Nickel Minerals from Barberton, South Africa: I
    American Mineralogist, Volume 58, pages 733-735, 1973 NickelMinerals from Barberton,South Africa: Vl. Liebenbergite,A NickelOlivine SvsneNoA. nn Wnar Nationnl Institute lor Metallurgy, I Yale Road.,Milner Park, I ohannesburg,South Alrica Lnwrs C. ClI.x Il. S. GeologicalSuruey, 345 Middlefield Road, Menlo Park, California 94025 Abstract Liebenbergite, a nickel olivine from the mineral assemblage trevorite-liebenbergite-nickel serpentine-nickel ludwigite-bunsenite-violarite-millerite-gaspeite-nimite, is described mineral- ogically.Ithasa-1.820,P-1.854,7-1.888,ZVa-88",specificgravity-4'60,Mohs hardness- 6 to 6.5, a - 4.727, b - 10.191,c = 5.955A, and Z - 4. X-ray powder data (48 lines) were indexed according to the space grottp Pbnm. The mean chemical composi- tion, calculated from electron microprobe analyses of eight separate liebenbergite grains, gives the mineral formula: (NL eMgoaCoo,sFeo o)Sio "nOn The name is for W. R. Liebenberg, Deputy Director-General of the National Institute for Metallurgy, South Africa. Introduction mission on New Minerals and Mineral Names (rMA). A re-investigationof the trevorite deposit at Bon Accord in the Barberton Mountain Land, South Experimental Methods Africa, led to the discovery of two peculiar but distinct nickel mineral assemblages.Minerals from The refractive indices were determined by the the assemblagewillemseite-nimite-feroan trevorite- conventional liquid immersion method using a reevesite-millerite-violarite-goethitehave been de- sodium lamp as light source.The optical and crystal scribed in earlier papers in this series (de Waal, morphologicalparameters were studiedwith the aid 1969, l97oa, 1970b;de Waal and Viljoen, I97L). of a universal stage.
    [Show full text]
  • The Challenges of Li Determination in Minerals: a Comparison of Stoichiometrically Determined Li by EPMA with Direct Measurement by LA-ICP-MS and Handheld LIBS
    The challenges of Li determination in minerals: A comparison of stoichiometrically determined Li by EPMA with direct measurement by LA-ICP-MS and handheld LIBS Robin Armstrong (NHM) THE TEAM & ACKNOWLEDGEMENTS • This work was carried out as part of the WP2 of the FAME project • The “analysts”: John Spratt & Yannick Buret (NHM) and Andrew Somers (SciAps) • The “mineralogists”: Fernando Noronha &Violeta Ramos (UP), Mario Machado Leite (LNEG), Jens Anderson, Beth Simmons & Gavyn Rollinson (CSM), Chris Stanley, Alla Dolgopolova, Reimar Seltmann & Mike Rumsey* (NHM) • Literature mineral data is taken from Mindat, Webmineral and DHZ • Robin Armstrong ([email protected]) INTRODUCTION • The analytical problems of Li • Whole Rock analysis (WR) • Examples and is it safe to make mineralogical assumptions on the base of WR • Li Mineral analysis • Li-minerals overview • Li-minerals examined • EPMA • LA-ICP-MS • LIBS • Summary and thoughts for the future LITHIUM ORES ARE POTENTIALLY COMPLEX 50mm • Li-bearing phases identified: • Lepidolite, Amblygonite-Montebrasite Li = 1.17 wt% group, Lithiophosphate(tr) and Petalite WHOLE ROCK ANALYSIS (Li ASSAYS) • Li is not that straight forward to analyse in whole rock • Its low mass means that there are low fluorescence yields and long wave-length characteristic radiation rule out lab-based XRF and pXRF • We cannot use conventional fluxes as these are generally Li- based • We can use “older” non Li fluxes such as Na2O2 but then there maybe contamination issues in the instruments • We can use multi-acid digests (HF+HNO3+HClO4 digestion with HCl-leach) (FAME used the ALS ME-MS61) however there may still be contamination issues and potentially incomplete digestion.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]
  • Carbonation of Borehole Seals: Comparing Evidence from Short-Term Laboratory Experiments and Long-Term Natural Analogues Christopher A
    Carbonation of borehole seals: Comparing evidence from short-term laboratory experiments and long-term natural analogues Christopher A. Rochelle* and Antoni E. Milodowski British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham, NG12 5GG, UK * Corresponding author: [email protected], tel +44 115 9363259, fax +44 115 363200 Abstract It is crucial that the engineered seals of boreholes in the vicinity of a deep storage facility remain effective for considerable timescales if the long-term geological containment of stored CO2 is to be effective. These timescales extend beyond those achievable by laboratory experiments or industrial experience. Study of the carbonation of natural Ca silicate hydrate (CSH) phases provides a useful insight into the alteration processes and evolution of cement phases over long-timescales more comparable with those considered in performance assessments. Samples from two such natural analogues in Northern Ireland have been compared with samples from laboratory experiments on the carbonation of Portland cement. Samples showed similar carbonation reaction processes even though the natural and experimental samples underwent carbonation under very different conditions and timescales. These included conversion of the CSH phases to CaCO3 and SiO2, and the formation of a well-defined reaction front. In laboratory experiments the reaction front is associated with localised Ca migration, localised matrix porosity increase, and localised shrinkage of the cement matrix with concomitant cracking. Behind the reaction front is a zone of CaCO3 precipitation that partly seals porosity. A broader and more porous/permeable reaction zone was created in the laboratory experiments compared to the natural samples, and it is possible that short-term experiments might not fully replicate slower, longer-term processes.
    [Show full text]