DESIGN AND DISCOVERY OF NEW PIEZOELECTRIC
MATERIALS USING DENSITY FUNCTIONAL
THEORY
by
Sukriti Manna
© Copyright by Sukriti Manna, 2018
All Rights Reserved
A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering).
Golden, Colorado Date
Signed:
Sukriti Manna
Signed:
Dr. Cristian V. Ciobanu
Thesis Advisor
Signed:
Dr. Vladan Stevanovi´c
Thesis Advisor
Golden, Colorado Date
Signed:
Dr. John Berger
Professor and Head
Department of Mechanical Engineering
ii
ABSTRACT
Piezoelectric materials find applications in microelectromechanical systems (MEMS), such as surface acoustic wave (SAW) resonators, radio frequency (RF) filters, resonators, and energy harvesters. Using density functional theory calculations, the present study illustrates the influence of alloying and co-alloying with different nitrides on piezoelectric and mechanical properties of an existing piezoelectric material such as aluminum nitride (AlN). Besides improving the performance of existing piezoelectric material, a high-throughput screening method is used to discover new piezoelectric materials.
AlN has several beneficial properties such as high temperature stability, low dielectric permittivity, high hardness, large stiffness constant, high sound velocity, and complementary metal-oxide-semiconductor (CMOS) compatibility. This makes it widely accepted material in RF and resonant devices. However, it remains a challenge to enhance the piezoelectric modulus of AlN. The first part of this thesis establishes that the piezoelectric modulus of AlN could be improved by alloying with rocksalt transition metal nitrides such as scandium nitride (ScN), yttrium nitride (YN), and chromium nitride (CrN). As the content of the rocksalt end member in the alloy increases, the accompanying structural frustration enables a greater piezoelectric response. This structural frustration is also accompanied by thermodynamic driving forces for phase separation which, with increased alloy concentration, lead to the destruction of the piezoelectric response upon transition to the (centrosymmetric, cubic) rocksalt structure. Thus, it becomes necessary to identify suitable alloying elements that may yield highest piezoelectric response with minimal alloying additions. The study reveals that the alloying with CrN would lead to the lowest transition composition (occurring at approximately 25% CrN concentration) between the wurtzite and rocksalt structures, thereby allowing piezoelectric enhancements at alloying levels that are easier to stabilize during the synthesis. The present study indicates that, for 25% CrN alloying, the piezoelectric modulus
iii is about 4 times larger than that of pure AlN. Thus, it is proposed to use CrxAl1−xN as a suitable replacement for AlN.
One of the adverse effect of transition metal nitride alloying for improvement of piezoelectric response is accompanied by the softening of AlN lattice. This would make the material less desirable for resonant applications. Our subsequent research establishes that co-alloying with YN and BN would enable the most superior combination of piezoelectric and mechanical properties of AlN.
The rest of the thesis describes our efforts for identifying new piezoelectric materials. This requires high-throughput screening of inorganic materials for their piezoelectric properties. Our quest to search for new piezoelectric compounds is motivated by the notion that soft materials have the opportunity to exhibit large piezoelectric response (piezoelectric modulus d), and the knowledge that the van der Waals (vdW) layered materials are typically soft in the layer stacking direction. From a pool of 869 vdW structures, we have discovered 50 new compounds such as In2Te5, GeTe, and CuVO3 having piezoelectric response larger than AlN. Remarkably, 70% of our discovered piezoelectric candidates do not contain any toxic elements like Pb. Our analysis reveals that the large components of d always couple with the deformations (shearing or axial) of van der Waals “gaps” between the layers. This research establishes a wide scope of synthesizing vdW materials for applications demanding high piezoelectric modulus.
iv
TABLE OF CONTENTS
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Piezoelectric Effect and Applications . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Classification of Piezoelectric Materials . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Vector/Tensor Quantities Related to Piezoelectricity . . . . . . . . . . . . . . . 4 1.4 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Figures of Merit of Piezoelectric Devices . . . . . . . . . . . . . . . . . . . . . . 7
1.5.1 Figures of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.2 Piezoelectric Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Piezoelectric Materials: Present Status and Motivation for Computational
Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6.1 Materials based on Single Crystal . . . . . . . . . . . . . . . . . . . . . 15 1.6.2 Materials Based on Polycrystalline Materials . . . . . . . . . . . . . . . 18 1.6.3 Toxicity of Lead-based Piezoelectrics . . . . . . . . . . . . . . . . . . . 23
v
1.6.4 Motivation for Computational Research on Improving Piezoelectric
Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6.5 Prior Computational Studies of Piezoelectric Properties . . . . . . . . . 25
1.7 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7.1 Improving Performance of Existing Piezoelectric Materials . . . . . . . 27 1.7.2 Searching for New Piezoelectric Materials . . . . . . . . . . . . . . . . . 27
1.8 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CHAPTER 2 ENHANCED PIEZOELECTRIC RESPONSE OF AlN via CrN
ALLOYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Paramagnetic Representation of Cr-AlN Alloys . . . . . . . . . . . . . . 34 2.2.2 Details of the DFT Calculations . . . . . . . . . . . . . . . . . . . . . . 34 2.2.3 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Enthalpy of Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.2 Piezoelectric Stress Coefficients . . . . . . . . . . . . . . . . . . . . . . 37 2.3.3 Comparison with Other Wurtzite-Based Alloys . . . . . . . . . . . . . . 42 2.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
CHAPTER 3 TUNING THE PIEZOELECTRIC AND MECHANICAL
PROPERTIES OF THE AlN SYSTEM VIA ALLOYING WITH YN AND BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
vi
3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CHAPTER 4 LARGE PIEZOELECTRIC RESPONSE OF VAN DER WAALS
LAYERED SOLIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Computational Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.1 Automated Identification of Quasi-2D Materials . . . . . . . . . . . . . 70 4.2.2 Calculating Piezoelectric Properties of Quasi-2D Materials . . . . . . . 71 4.2.3 Workflow for identifying quasi-2D piezoelectrics . . . . . . . . . . . . . 74
4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.1 Promising Quasi-2D Piezoelectric Materials . . . . . . . . . . . . . . . 75 4.3.2 Role of van der Waals Interactions . . . . . . . . . . . . . . . . . . . . 80 4.3.3 Axial Piezoelectric and Elastic Anisotropy . . . . . . . . . . . . . . . . 82
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
CHAPTER 5 SUMMARY & CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . 86
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . 87
REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 APPENDIX A CLASSIFICATION OF PIEZOELECTRIC MATERIALS . . . . . . . 110 APPENDIX B DENSITY FUNCTIONAL THEORY METHODS . . . . . . . . . . . 112
B.1 Many-body Schr¨odinger equation . . . . . . . . . . . . . . . . . . . . . . . . 112 B.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.2.1 Hohenberg-Kohn Theorem . . . . . . . . . . . . . . . . . . . . . . . . 113
vii
B.2.2 The Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . 114 B.2.3 Local Density Approximation . . . . . . . . . . . . . . . . . . . . . . 115 B.2.4 Generalized Gradient Approximation . . . . . . . . . . . . . . . . . . 116
B.3 Technical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
APPENDIX C SIMULATING ELASTIC PROPERTIES . . . . . . . . . . . . . . . . 117 APPENDIX D MODELING OF RANDOM ALLOYS . . . . . . . . . . . . . . . . . 118
D.1 Details for Generating SQS Structures . . . . . . . . . . . . . . . . . . . . . 118 D.2 Dispersion of e33 and C33 values for different Y concentration . . . . . . . . . 119
APPENDIX E ADDITIONAL SUPPLEMENTARY INFORMATION OF
CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
E.1 Variations of e31 and C11 with Y and B composition . . . . . . . . . . . . . 121 E.2 Piezoelectric moduli as functions of composition . . . . . . . . . . . . . . . . 121
APPENDIX F SUPPLEMENTARY INFORMATION OF CHAPTER 4 . . . . . . . 124
F.1 Comparison of Experimental and Calculated Piezoelectric Modulus . . . . . 124 F.2 Axial Anisotropies: C vs e . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 F.3 Experimentally Measured Elastic Constants of Quasi-2D Materials . . . . . . 125 F.4 Schematics of Different Modes of d . . . . . . . . . . . . . . . . . . . . . . . 126 F.5 Rotation of d, e, and C-matrices . . . . . . . . . . . . . . . . . . . . . . . . 127
APPENDIX G PERMISSIONS FOR CONTENT REUSED . . . . . . . . . . . . . . 129
viii
LIST OF FIGURES
Figure 1.1 Schematics of direct piezoelectric effects: (a) at applied compressive stress, (b) at applied tension. (c) and (d) describe the schematics of converse piezoelectric effect at applied electric field. . . . . . . . . . . . . . 3
Figure 1.2 Classification of piezoelectric materials. They are classified into of piezoelectric, pyroelectric, and ferroelectric materials. . . . . . . . . . . . . 4
Figure 1.3 Correlation between different FOMs . . . . . . . . . . . . . . . . . . . . . 13 Figure 1.4 The advancement and milestones of piezoelectric single crystals . . . . . . 15 Figure 1.5 α-Quartz used as a piezoelectric oscillator in a watch . . . . . . . . . . . 17 Figure 2.1 Schematics of cation sublattice of CrxAl1−xN alloy. Al (Cr) sites are shown as gray (green) spheres. At a given Cr concentration, the Cr sites of each configuration have a different and random spin initialization with zero total spin in order to capture the paramagnetic state. . . . . . . 35
Figure 2.2 (a) DFT-calculated mixing enthalpies of the wurtzite and rocksalt phases of CrxAl1−xN as functions of Cr concentration. (b) Calculated mixing enthalpies for several wurzite-based nitride alloys grown experimentally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 2.3 The 18 components of the piezoelectric tensor calculated for SQS supercells with different spin configurations and compositions of Cr. At each Cr composition, the open circles represent data for each SQS cell used, while the red solid circles represent the average values across the random initial configurations. . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 2.4 Variation of (a) et3o3tal, (b) e3cl3amped component of e33, (c) e3n3onclamped, (d)
33 component of the Born effective charge tensor, (e) strain sensitivity of internal parameter, (f) c/a ratio with respect to Cr addition. . . . . . . 40
Figure 2.5 (a) Variation of internal parameter, u with Cr addition. (b) Crystal structure of wurzite AlN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 2.6 Comparison of change in e33 with addition of different transition metals for x ≤ 25% regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 2.7 Variation of (a) C33 and (b) d33 for several nitride-based wurtzite alloys. . 43
ix
Figure 2.8 Variation of e33 as function of Cr concentration for wurtzite phase alloys up to 50%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 2.9 Representative transmission electron microscopy (TEM) image (a) and an energy dispersive spectroscopy (EDS) line scan (b) of an (Al1−xCrx)N film cross section containing ∼7% Cr, confirming the incorporation of Cr into wurtzite solid solution. EDS data were collected along the dashed black line shown in panel (a). . . . . . . . . . . 47
Figure 2.10 X-ray diffraction patterns of the thin film combinatorial libraries plotted against the film composition, with comparison to the patterns for wurtzite (WZ) and rocksalt(RS) structures. For alloying content x < 30%, the films grow predominantly with the wurtzite structure. At higher Cr concentrations, x > 30%, both rocksalt and wurtzite phases are detected, and the wurtzite exhibits degraded texture. No films were produced with compositions in regions where no intensity is shown. . . . 48
Figure 3.1 Atomic structure of a representative SQS Al50Y25B25N alloy structure . . 54 Figure 3.2 [(a) and (b)] Lattice constants a and c for AlN-YN and AlN-BN alloys as a function of dopant (Y or B) cation concentration x. Panel (c) shows the c/a ratio for these alloys. . . . . . . . . . . . . . . . . . . . . . 55
Figure 3.3 Calculated mixing enthalpy curves for AlN alloyed with YN in the wurtzite (w) and rocksalt (rs) structures. . . . . . . . . . . . . . . . . . . 57
Figure 3.4 The design premise behind co-alloying AlN with YN and BN. (a)
Higher YN content in Al1−xYxN increases the piezoelectric coefficient e33 but decreases the elastic modulus C33. (b) Increasing concentration of BN in Al1−yByN has a small effect on the piezoelectric coefficient, but increases the elastic modulus. Thus, co-alloying with YN and BN could lead to increases in both piezoelectric coefficient and stiffness relative to pure AlN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 3.5 Variation of piezoelectric coefficient in Al1−xYxN with strained applied along the a and c axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 3.6 The key piezoelectric (e33, red, left vertical axis) and elastic (C33, green, right axis) properties of Al-Y-B nitrides as functions of the Y concentration at constant boron levels ranging from (a) 0.00% B to (h) 43.75% B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 3.7 The coupling constants (a) k323 and (b) k321 as functions of the Y and B concentrations in Al1−x−yYxByN with at least 50% Al. . . . . . . . . . . . 63
x
Figure 4.1 Illustration of a quasi-2D material (TaSe2), showing the atomic structure of the layers and the van der Waals spacing between them. . . . 68
Figure 4.2 Correlation between experimentally measured longitudinal piezoelectric modulus (d33) and their elastic modulus (C33) . . . . . . . . . . . . . . . 69
Figure 4.3 Elastic constants of quasi-2D materials calculated with (a) GGA and
(b) vdW-corrected functional. The calculated values are compared with experimental ones. The calculations with the vdW-corrected functional are all within 50% error relative to the measurements. Details of measurement techniques, measurement temperatures, etc., are provided in the supplementary informations. . . . . . . . . . . . . . . . . . . . . . 72
Figure 4.4 Workflow for calculations of piezoelectric coefficient tensor eij, the elastic stiffness Cij, and the piezoelectric modulus tensor dij of quasi-2D materials. A vdW-corrected functional (optB86) is used in all calculations. We have calculated piezoelectric modulus of 80 quasi-2D materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 4.5 Left panel: plot of dmax = max(|dij|) against the space group number for 63 quasi-2D vdW materials with dmax > 0 (out of 135 non-centrosymmetric compounds). The two horizontal dotted lines denote the d33 values of PbTiO3 (119 pC/N) and AlN (5.5 pC/N). The blue square in this plot represents the hypothetical structure of PbS (distorted NiAs found in ICSD), not the ground rocksalt structure. Right panel: crystal structures of quasi-2D materials with large piezoelectric moduli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 4.6 Histogram of the maximum components of (a) the piezoelectric coefficient tensor, emax and (b) piezoelectric modulus tensor, dmax. The most frequent emax is e33, whereas for dmax the most frequent maximum values are d15, d24 and d33. (c) Schematics of several important piezoelectric operating modes with their corresponding deformation types. The schematics of other relevant piezoelectric operating modes, i.e., components of dij are shown in the supplementary information. . . . 79
Figure 4.7 Correlation between axial anisotropy, i.e., out-of-plane to in-plane response ratio) of (a) d and e (b) d and C. The results reveal that majority of quasi-2D piezoelectric materials are dominated by out-of-plane piezoelectric responses (both in e and d) but elastically they are dominated in in-plane direction. . . . . . . . . . . . . . . . . . . 83
Figure A.1 Centrosymmetric and non-centrosymmetric (polar and non-polar) point groups. Only non-centrosymmetric point groups allow piezoelectricity. . 110
xi
Figure D.1 Calculated e33 and C33, for each individual SQS and averaged, at each concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure E.1 Piezoelectric coefficient e31 and elastic modulus C11 as functions of Y and B concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122