LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, E.G. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE {(Roofi

Total Page:16

File Type:pdf, Size:1020Kb

LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, E.G. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE {(Roofi CPC - C04B - 2021.08 C04B LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE {(roofing granules E04D 7/005)}; CERAMICS (devitrified glass-ceramics C03C 10/00); REFRACTORIES; TREATMENT OF NATURAL STONE Definition statement This place covers: Chemical aspects of the processing of lime, magnesia or dolomite and of molten slag. Compositional aspects of: • inorganic binders, such as hydraulic cements ; • mortars, concrete and artificial stone, e.g. the choice of fillers or active ingredients therefore; • shaped ceramic products, e.g. clay-wares, refractories , non-oxides. Physico-chemical aspects of methods for obtaining mortars, concrete, artificial stones or ceramics , e.g. for delaying the setting time of mortar compositions. Treatment including defibrillating of materials such as fillers , agglomerated or waste materials, or refuse to enhance their filling properties in mortars, concrete or artificial stone. Porous mortars, concrete, artificial stone or ceramic ware, and the preparation thereof. Methods and apparatus for: • burning or slaking lime; • obtaining mineral binders, e.g. Portland cement or hemihydrate plaster; • the expansion of mineral fillers , such as clay, perlite or vermiculite. After- treatment of artificial stones, mortars, concrete and ceramics , e.g. coating or impregnation of green concrete after primary shaping. Non-mechanical treatment of natural stone. Processing powders of inorganic compounds in preparation to the manufacturing of ceramic products . 1 C04B (continued) CPC - C04B - 2021.08 Definition statement The joining of burned ceramics with other articles by heating. References Limiting references This place does not cover: Granulating apparatus B01J 2/00 Mechanical features relating to the working of mortars, concrete, stone, B28 clay-wares or ceramics , e.g. mixing or shaping ceramic compositions, boring natural stone Chemical preparation of powders of inorganic compounds C01 Devitrified glass-ceramics C03C 10/00 Compositions containing free metal bonded to carbides, diamond, oxides, C22C borides, nitrides, silicides, e.g. cermets, or other metal compounds, such as oxynitrides or sulfides, other than as macroscopic reinforcing agents 2 C04B (continued) CPC - C04B - 2021.08 Limiting references Building elements or constructions; Finishing work on buildings E04 Informative references Attention is drawn to the following places, which may be of interest for search: Materials for prostheses or for coating prostheses A61L 27/00 Chemical or biological purification of waste gases B01D 53/34 Layered products B32B Treating inorganic non-fibrous materials to enhance their pigmenting or C09C filling properties Adhesives C09J Cementing or plastering compositions for boreholes or wells C09K 8/00 Alloys based on refractory metals C22C Shaft or vertical furnaces in general F27B 1/00 Hydraulic hardening materials , e.g. concretes, ceramics or refractories G21F 1/00 for protection against radiation, i.e. shielding Special rules of classification In this subclass, for the parts C04B 2/00-C04B 32/00, C04B 38/00, C04B 40/00, C04B 41/00 the CIS indexing system is used. For details, see below Combination set (C-sets) 1. Introduction 1.1 This manual relates to the rules to be applied when classifying documents using C-sets in the "cement part" of subclass C04B. With the "cement part" we mean the whole of the subclass, with the exception of the range C04B 33/00 - C04B 37/00. However, symbols of the range C04B 33/00 - C04B 35/00 can be used as Indexing Codes (when the classification is in C04B 38/00 or C04B 41/00). 1.2 C-sets are used in three major areas: - C04B 2/00 - C04B 32/00 and C04B 40/00: Compositions of cement/concrete mixtures or of artificial stone like materials - C04B 38/00: porous materials - C04B 41/00: after treatment. 1.3 Symbols that are used in the present C-set system are chosen from: - C04B 2/00 - C04B 41/00 (with the exception of C04B 37/00): these are symbols which can be used as classification as well as symbols in the combination sets (C- set), C04B 2103/00 - C04B 2201/00, C04B 2290/00: these are symbols used as additional information (CCA) or within the C-set (see below). 1.4 The principles of Combination sets are based on the possibilities offered by the IPC (until IPC7) for using classification symbols also as (linked) Indexing Codes. 3 C04B (continued) CPC - C04B - 2021.08 Special rules of classification The C-sets are present in EPODOC: /CCI : CPC classification symbol /CCA: Additional information /CLC: the combination sets (C-sets) of symbols linked to the classification (CCI) or to the additional information (CCA) The first symbol of a C-set is referred to as the "base class". Symbols in the C-set are separated by a comma (,). The base group can be an CCI or CCA group 2. C-sets in the range C04B 2/00 - C04B 32/00 and C04B 40/00 2.1 This part of C04B relates to cement-, mortar-, concrete- and artificial stone compositions or their constituents or ingredients. As a general rule such compositions (further referred to as "mixtures") contain three types of ingredients: - one or more binders (organic or inorganic) - fillers (inactive ingredients) - active ingredients, e.g. accelerators. [Exception: main group C04B 30/00 relates to compositions not containing binders]. 2.2 Overview of main groups: - C04B 2/00 - C04B 12/00 : relate to inorganic binders as such - C04B 14/00 - C04B 20/00 : relate to fillers - C04B 22/00 - C04B 24/00 : relate to active ingredients - C04B 26/00 - C04B 32/00 : relate to the mixtures - C04B 40/00 : relates to characteristics / preparation of the mixtures 2.3 Classification rules: 2.3.1 When an invention relates to an individual ingredient, classification is made in the range C04B 2/00 - C04B 12/00 if this ingredient is a binder, in the range C04B 14/00 - C04B 20/00 if the ingredient is a filler and in the range C04B 22/00 - C04B 24/00 if it is an active ingredient. 2.3.2 When an invention relates to a mixture, classification is made in the range C04B 26/00 - C04B 32/00, according to the binder used while applying the last place rule (LPR). So if a combination of an organic and an inorganic binder is present, classification is made in C04B 28/00, not in C04B 26/00. If a combination of two inorganic binders is present, classification is done in C04B 28/00 according to the LPR for one of the binders, the others are added as symbols in the C-set and are chosen from C04B 7/00-C04B 12/00 groups. If one of the ingredients is (suspected to be) new or unusual, or special details describing this ingredient are given, classification is also made for this ingredient. 2.3.3 When the invention merely relates to the preparation or characteristics of the mixture, classification is made in C04B 40/00. If the mixture as such or one of its ingredients is considered to be new or unusual, classification is made for these aspects too. For obtaining porous materials see point 3. below. 4 C04B (continued) CPC - C04B - 2021.08 Special rules of classification 2.3.4 When the invention relates to an active additive which is a mixture on its own, e.g. the combination of two specific polymers and a specific inorganic salt, classification is made in C04B 40/0039. If the use of one of the ingredients as such is new to the field, classification for this ingredient as such is made also. 2.4 C-set rules: 2.4.1 Primary goal of the combination set is to identify the individual constituents of the mixtures, using the classification symbols for these ingredients as part of a C-set, linked to the classification symbol which already identifies (one of) the binder(s). Example 1: A mixture containing a mixed binder of aluminium cement, Portland cement and a polymeric co-binder, next to diatomaceous earth and an inorganic sulfate will be classified - according to the LPR - in C04B 28/06, the other ingredients being identified by the appropriate symbols in the C-set: CCI: C04B 28/06 C-set (CLC) : C04B 28/06, C04B 7/02, C04B 14/08, C04B 22/142, C04B 24/26 An organic co-binder next to an inorganic binder is indexed as an active organic ingredient (main group C04B 24/00). Because in this example, all ingredients as such are known in the field, no further classification is made. 2.4.2 When for one of the ingredients alternatives are mentioned, separate C-sets are made. Example 2: If in the example 1, an inorganic chloride was mentioned as an alternative to the sulfate, the indexing would look like: Set 1: C04B 28/06, C04B 7/02, C04B 14/08, C04B 22/142, C04B 24/26 Set 2: C04B 28/06, C04B 7/02, C04B 14/08, C04B 22/12, C04B 24/26 (Putting C04B 22/12 and C04B 22/142 in the same set would mean they are both present in the same mixture). 2.4.3 When classification is made for individual (active) ingredients, their function or in some cases their characteristics can be identified using the C04B 2103/00 series. Example 3: A new organic sulfonated plasticizer: /CCI : C04B 24/16 /CCA : C04B 2103/30 When for a mixture, many alternatives for the same ingredient with a specific function are mentioned, instead of making a set for each alternative, only one C-set with the C04B symbol in the C-set for the function can be made. If one of the alternatives is preferred in the document a second set with the symbol for that alternative can be made too. Example 4: In a concrete mixture, a superplasticizer is added.
Recommended publications
  • Superhard and Superconducting B6C
    Superhard and Superconducting B6C Kang Xia a, Mengdong Ma b, Cong Liu a, Hao Gao a, Qun Chen a, Julong He b, Jian Sun a,*, Hui-Tian Wang a, Yongjun Tian b, and Dingyu Xing a a National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China b State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China ABSTRACT Crystal structure searching and ab initio calculations have been used here to explore low-energy structures of boron carbides under high pressure. Under pressures of 85–110 GPa, a metastable B6C with R3 m symmetry is found to be energetically more stable than the mixture of previous B4C and elemental boron. This B6C is a rhombohedral structure and contains mooncake-like B24 clusters with stuffing of C2 pairs. The mechanical and dynamical stabilities of this structure at ambient pressure are confirmed by its elastic constants and phonon dispersions. The bulk modulus and shear modulus of this newly predicted B6C at ambient pressure reach high values of 291 GPa and 272 GPa, respectively. The Vickers hardness is calculated to be around 48 GPa, and its melting temperature at ambient pressure is estimated to be around 2500 K, indicating that this metastable B6C is a potential superhard material with very good thermal stability. Interestingly, this superhard B6C structure is also found to be superconducting and its superconducting critical temperature (Tc) is evaluated to be around 12.5 K at ambient pressure by electron-phonon coupling. * Corresponding author. E-mail address: [email protected] 1.
    [Show full text]
  • Design and Discovery of New Piezoelectric Materials Using Density Functional Theory
    DESIGN AND DISCOVERY OF NEW PIEZOELECTRIC MATERIALS USING DENSITY FUNCTIONAL THEORY by Sukriti Manna © Copyright by Sukriti Manna, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering). Golden, Colorado Date Signed: Sukriti Manna Signed: Dr. Cristian V. Ciobanu Thesis Advisor Signed: Dr. Vladan Stevanovi´c Thesis Advisor Golden, Colorado Date Signed: Dr. John Berger Professor and Head Department of Mechanical Engineering ii ABSTRACT Piezoelectric materials find applications in microelectromechanical systems (MEMS), such as surface acoustic wave (SAW) resonators, radio frequency (RF) filters, resonators, and energy harvesters. Using density functional theory calculations, the present study illus- trates the influence of alloying and co-alloying with different nitrides on piezoelectric and mechanical properties of an existing piezoelectric material such as aluminum nitride (AlN). Besides improving the performance of existing piezoelectric material, a high-throughput screening method is used to discover new piezoelectric materials. AlN has several beneficial properties such as high temperature stability, low dielectric permittivity, high hardness, large stiffness constant, high sound velocity, and complementary metal-oxide-semiconductor (CMOS) compatibility. This makes it widely accepted material in RF and resonant devices. However, it remains a challenge to enhance the piezoelectric modulus of AlN. The first part of this thesis establishes that the piezoelectric modulus of AlN could be improved by alloying with rocksalt transition metal nitrides such as scandium nitride (ScN), yttrium nitride (YN), and chromium nitride (CrN). As the content of the rocksalt end member in the alloy increases, the accompanying structural frustration enables a greater piezoelectric response.
    [Show full text]
  • Explosion of Lithium-Thionyl-Chloride Battery Due to Presence of Lithium Nitride
    Downloaded from orbit.dtu.dk on: Sep 25, 2021 Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride Hennesø, E.; Hedlund, Frank Huess Published in: Journal of Failure Analysis and Prevention Link to article, DOI: 10.1007/s11668-015-0004-y Publication date: 2015 Document Version Early version, also known as pre-print Link back to DTU Orbit Citation (APA): Hennesø, E., & Hedlund, F. H. (2015). Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride. Journal of Failure Analysis and Prevention, 15(5), 600-603. https://doi.org/10.1007/s11668-015-0004-y General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. This article appeared in Journal of Failure Analysis and Prevention, ISSN 1547-7029 http://dx.doi.org/10.1007/s11668-015-0004-y Explosion of lithium-thionyl- chloride battery due to presence of lithium nitride Document no.
    [Show full text]
  • Metastable Scaln and Yaln Thin Films Grown by Reactive Magnetron Sputter Epitaxy
    Linköping Studies in Science and Technology Dissertation No. 1566 Metastable ScAlN and YAlN Thin Films Grown by Reactive Magnetron Sputter Epitaxy Agnė Žukauskaitė Thin Film Physics Division Department of Physics, Chemistry, and Biologylogy (IFM)(IFM) Linköping University, Sweden 2014 The cover image The image on the cover is based on an elemental energy dispersive x-ray spectroscopy map of Sc0.2Al0.8N deposited at 400°C obtained in a transmission electron microscope. Each individual square represents an area of ~1x1 nm. Here, scandium was assigned the green color, and aluminum is mapped using purple. No tendencies to cluster into Sc-rich or Al-rich regions can be seen, indicating a solid solution. A special Thank You for recording this data goes to Dr. Justinas Pališaitis! © Agnė Žukauskaitė ISBN: 978-91-7519-434-9 ISSN: 0345-7524 Printed by LiU-Tryck Linköping, Sweden, 2014 Abstract Metastable ScxAl1-xN and YxAl1-xN thin films were deposited in an ultra high vacuum system using reactive magnetron sputter epitaxy from elemental Al, Sc, and Y targets in Ar/N2 gas mixture. Their structural, electrical, optical, mechanical, and piezoelectrical properties were investigated by using the transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, I-V and C-V measurements, nanoindentation, and two different techniques for piezoelectric characterization: piezoresponse force microscopy and double beam interferometry. Compared to AlN, improved electromechanical coupling and increase in piezoelectric response was found in ScxAl1-xN/TiN/Al2O3 structures with Sc content up to x=0.2. Decreasing the growth temperature down to 400 °C improved the microstructure and crystalline quality of the material.
    [Show full text]
  • Stone Veneer Mortar High Strength, Polymer Modified Mortar
    STONE VENEER MORTAR HIGH STRENGTH, POLYMER MODIFIED MORTAR DESCRIPTION: STONE VENEER MORTAR is polymer modified PLACEMENT: mortar designed to provide a high performance bond for veneer 1. Apply STONE VENEER MORTAR at approximately 3/8”-1/2” units to base surfaces. thick to the lath and surface. Before the mortar begins to harden, scratch or scarify the mortar surface with the appropri- USES: STONE VENEER MORTAR is ideal for grouting and placing ate scratching tool. thin clay brick, natural or artificial stone veneer units. It is de- 2. Trowel a thin layer on the scratch, brown or substrates, as signed to be cohesive with excellent workability and superior well, apply a thick layer of mortar to the back of each stone. bond strength. STONE VENEER MORTAR will create an aestheti- 3. Place and press the stone into place and allow the mortar to cally pleasing, non load bearing, exterior or interior stone veneer squeeze out around edges. In certain applications, the use of finished wall. temporary shims is needed between the stones until the mor- STONE VENEER MORTAR can be used as a: tar sets. This is to maintain even spacing between the stones. scratch or brown coat 4. After placing the stone and the mortar has set to thumb print bond coat hard (approximately 1 hour), remove the shims. Use a grout joint fill grout bag or pointing trowel to fill in joints where additional mortar is needed. ADVANTAGES: STONE VENEER MORTAR offers the fol- 5. Using a metal jointing tool, compact and seal edges around lowing advantages: stone and rake out excess mortar.
    [Show full text]
  • Reactions of Lithium Nitride with Some Unsaturated Organic Compounds. Perry S
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1963 Reactions of Lithium Nitride With Some Unsaturated Organic Compounds. Perry S. Mason Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mason, Perry S. Jr, "Reactions of Lithium Nitride With Some Unsaturated Organic Compounds." (1963). LSU Historical Dissertations and Theses. 898. https://digitalcommons.lsu.edu/gradschool_disstheses/898 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 64—5058 microfilmed exactly as received MASON, Jr., Perry S., 1938- REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS. Louisiana State University, Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. REACTIONS OF LITHIUM NITRIDE WITH SOME UNSATURATED ORGANIC COMPOUNDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requireiaents for the degree of Doctor of Philosophy in The Department of Chemistry by Perry S. Mason, Jr. B. S., Harding College, 1959 August, 1963 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
    [Show full text]
  • 1 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Wi
    © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Williams,1 and Karthish Manthiram1* 1Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge, MA 02139, USA *Corresponding Author: [email protected] 1 © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Summary Ammonia is a large-scale commodity chemical that is crucial for producing nitrogen- containing fertilizers. Electrochemical methods have been proposed as renewable and distributed alternatives to the incumbent Haber-Bosch process, which utilizes fossils for ammonia production. Herein, we report a mechanistic study of lithium-mediated electrochemical nitrogen reduction to ammonia in a non-aqueous system. The rate laws of the main reactions in the system were determined. At high current densities, nitrogen transport limitations begin to affect the nitrogen reduction process. Based on these observations, we developed a coupled kinetic-transport model of the process, which we used to optimize operating conditions for ammonia production. The highest Faradaic efficiency observed was 18.5 ± 2.9%, while the highest production rate obtained was (7.9 ± 1.6) × 10-9 mol cm-2 s-1. Our understanding of the reaction network and the influence of transport provides foundational knowledge for future improvements in continuous lithium- mediated ammonia synthesis.
    [Show full text]
  • Volumetric Determination of Boron in Boron Carbide V
    B. A. R. C.-1017 ei GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION VOLUMETRIC DETERMINATION OF BORON IN BORON CARBIDE V. K. Manchanda and M. S. Subramanian Radiochemistry Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1979 B. A. R.C.-1017 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION U erf < ffl VOLUMETRIC DETERMINATION OF BORON IN BORON CARBIDE by V.K. Manchanda and M. S. Subramantan Radlochernlstry Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1979 INIS Subject Category : Bll Descriptor a : BORON CARBIDES BORON QUANTITATIVE CHEMICAL ANALYSIS TITRATION ACCURACY ABSTRACT Boron carbide is used for oontrol rods and as a shielding material In nuclear reactors. As such, the boron carbide must conform to rigid chemical specifications. Impurities present have a significant effect on the life time of the control rods under conditions of high temperature and i neutron flux. Therefore, methods for the accurate determination of the various constituents in boron carbide is of utmost importance. This-report discusses p\volumetric procedure for i •_ . •' i : ((.•>;•" ••%. the, determination of boron content In boron carbide/ '•••>',••. A VOLtCIKTRIC DET3SIINATI0N 0? BCRON IN BORON CAR3IDE by V.K. Jfenchanda and M.S. Subramanian IU7R0DVCT10N Boron carbide is an important nuclear material a.3 it is used in nuclear reactors for control rods and as a shielding material « Preparation of boron carbide yields a product often contaminated with either unreacted carbon or boric acid. These impurities affect the physical, chemical and neutron absorption properties of the material, Particularly under conditions of high temperature and neutron flux in a reactor, tlie life time of the control rods depends on its composition.
    [Show full text]
  • Microstructure and Piezoelectric Response of Yxal1âˆ'xn Thin Films
    Acta Materialia 100 (2015) 81–89 Contents lists available at ScienceDirect Acta Materialia journal homepage: www.elsevier.com/locate/actamat Microstructure and piezoelectric response of YxAl1ÀxN thin films ⇑ P.M. Mayrhofer a, , H. Riedl b, H. Euchner b, M. Stöger-Pollach c, P.H. Mayrhofer b, A. Bittner a, U. Schmid a a Institute of Sensor and Actuator Systems, TU Wien, Floragasse 7, 1040 Vienna, Austria b Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria c University Service Center for Transmission Electron Microscopy (USTEM), TU Wien, Wiedner Hauptstrasse 8-10/052, 1040 Vienna, Austria article info abstract Article history: Transition metal doping of aluminium nitride (AlN) type thin films was recently employed to increase the Received 6 July 2015 piezoelectric constants for application in micro electromechanical systems. YxAl1ÀxN thin films were Revised 7 August 2015 synthesized with varying x up to 11.6% by reactive co-sputtering from elemental Al and Y targets. Ab initio Accepted 11 August 2015 density functional theory studies up to x = 50% yttrium in YxAl1ÀxN suggest increasing piezoelectric constants d33 and d31 with increasing yttrium content. Experimental measurements of d33 yield increasing values for increasing yttrium content though, remaining below the prediction from ab initio Keywords: calculations. Detailed X-ray diffraction and transmission electron microscopy studies prove that, Yttrium aluminum nitride although the thin films are highly c-axis oriented, their nucleation at the Si (100) substrates leads to Piezoelectric the formation of an amorphous interface region with increasing Y. d33 PFM Ó 2015 Acta Materialia Inc. Published by Elsevier Ltd.
    [Show full text]
  • Federal LCA Commons Elementary Flow List: Background, Approach, Description and Recommendations for Use
    EPA/600/R-19/092 | September 2019 | www.epa.gov/research The Federal LCA Commons Elementary Flow List: Background, Approach, Description and Recommendations for Use 0 Federal LCA Commons Elementary Flow List: Background, Approach, Description and Recommendations for Use by Ashley Edelen, Troy Hottle, Sarah Cashman Eastern Research Group Wesley Ingwersen U.S. EPA/National Risk Management Research Laboratory/ Land and Materials Management Division ii Notice/Disclaimer Although the U.S. Environmental Protection Agency, through its Office of Research and Development, funded and conducted the research described herein under an approved Quality Assurance Project Plan (Quality Assurance Identification Number G-LMMD-0031522-QP-1-0), with the support of Eastern Research Group, Inc. through EPA Contract Number EP-C-16-015, it does not necessarily reflect the views of the Agency, and no official endorsement should be inferred. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. iii Foreword The U.S. Environmental Protection Agency (U.S. EPA) is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, U.S. EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future.
    [Show full text]
  • The Formation and Reactivity of I BORON CARBIDE and Related
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 1970 The Formation and Reactivity of BORON CARBIDE and related materials JONES, JAMES ALFRED http://hdl.handle.net/10026.1/1880 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. The Formation and Reactivity of I BORON CARBIDE and related materials A Thesis presented for the Research Degree of DOCTOR OF PHILOSOPHY of the COUNCIL FOR NATIONAL ACADEMIC AWARDS London by JAMES ALFRED JONES Department of Chemistry Plymouth Polytechnic Plymouth, Devon- February^ 1970o F'.V flCCH. i'iC. 1 CLASS, T Shi LJl JoH 13' ABSTRACT 1 The formation of boron carbide, (CBC)*B^^0*^(3^0 is re• viewed with special reference to newer production methods and fabrication techniques. Its crystal structure and the nature of its bonding are discussed in relation to those of other borides and carbides. Information so far available on the sintering of this material is summarised in relation to its reactivity. Sintering into monolithic compoaentBcan only be achieved by hot pressing at pressures between 200 and 300 Kgcm'^ and at temperatures above 2000°C preferably at about 2,300^0 for the most rapid achievement of theoretical density, i.e.
    [Show full text]
  • The 5-Th Element a New High Pressure High Temperature Allotrope
    The 5-th element A new high pressure high temperature allotrope Von der Fakultät für Chemie und Geowissenschaften Der Universität Bayreuth zur Erlangung der Würde eines Doctors der Naturwissenschaften -Dr. rer. nat.- Dissertation vorgelegt von Evgeniya Zarechnaya aus Moskau (Russland) Bayreuth, April 2010 TABLE OF CONTENTS SUMMARY................................................................................................................................................... 1 ZUSAMMENFASSUNG.............................................................................................................................. 3 1 INTRODUCTION....................................................................................................................... 6 1.1 History of the discovery of boron................................................................................................... 6 1.2 Basic chemistry and crystal-chemistry of boron........................................................................... 7 1.3 Boron in natural systems ................................................................................................................ 9 1.4 Physical properties of boron and its application ........................................................................ 12 1.5 Boron at high pressure.................................................................................................................. 15 1.6 Experimental techniques and sample characterization ............................................................
    [Show full text]