The Challenges of Li Determination in Minerals: a Comparison of Stoichiometrically Determined Li by EPMA with Direct Measurement by LA-ICP-MS and Handheld LIBS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design and Discovery of New Piezoelectric Materials Using Density Functional Theory
DESIGN AND DISCOVERY OF NEW PIEZOELECTRIC MATERIALS USING DENSITY FUNCTIONAL THEORY by Sukriti Manna © Copyright by Sukriti Manna, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering). Golden, Colorado Date Signed: Sukriti Manna Signed: Dr. Cristian V. Ciobanu Thesis Advisor Signed: Dr. Vladan Stevanovi´c Thesis Advisor Golden, Colorado Date Signed: Dr. John Berger Professor and Head Department of Mechanical Engineering ii ABSTRACT Piezoelectric materials find applications in microelectromechanical systems (MEMS), such as surface acoustic wave (SAW) resonators, radio frequency (RF) filters, resonators, and energy harvesters. Using density functional theory calculations, the present study illus- trates the influence of alloying and co-alloying with different nitrides on piezoelectric and mechanical properties of an existing piezoelectric material such as aluminum nitride (AlN). Besides improving the performance of existing piezoelectric material, a high-throughput screening method is used to discover new piezoelectric materials. AlN has several beneficial properties such as high temperature stability, low dielectric permittivity, high hardness, large stiffness constant, high sound velocity, and complementary metal-oxide-semiconductor (CMOS) compatibility. This makes it widely accepted material in RF and resonant devices. However, it remains a challenge to enhance the piezoelectric modulus of AlN. The first part of this thesis establishes that the piezoelectric modulus of AlN could be improved by alloying with rocksalt transition metal nitrides such as scandium nitride (ScN), yttrium nitride (YN), and chromium nitride (CrN). As the content of the rocksalt end member in the alloy increases, the accompanying structural frustration enables a greater piezoelectric response. -
Jadar Lithium Mine,Serbia
2021 Jadar Lithium Mine, Serbia A Raw Deal ICT metal mining case study Author Zvezdan Kalmar, CEKOR Editing Emily Gray Design Milan Trivic Cover SN040288, Depositphotos Acknowledgements Association Protect Jadar and Rađevina Center for Ecology and Sustainable Development (Centar za ekologiju i održivi razvoj – CEKOR) is an environmental and development organisation. Apart from monitoring international financial institutions’ activities in Serbia, CEKOR is working on issues in the areas of transport, waste, biodiversity, genetically modified organisms (GMO) and making the city of Subotica sustainable. CEKOR is a member of CEE Bankwatch Network. Coalition for Sustainable Mining, Serbia (Koalicija za održivo rudarstvo u Srbiji – KORS) is an organisation that promotes the application of the strictest social and environmental standards for mining and mineral use in Serbia. CEE Bankwatch Network is the largest network of grassroots, environmental and human rights groups in central and eastern Europe. It monitors public finance institutions that are responsible for hundreds of billions of investments across the globe. Together with local communities and other NGOs Bankwatch works to expose their influence and provide a counterbalance to their unchecked power. About ICT and the mining-related work of CEE Bankwatch Network CEE Bankwatch Network has been monitoring mining projects in Europe and abroad for years. Bankwatch cooperates with the Make ICT Fair consortium, which seeks to reform the information and communication technology (ICT) manufacture and minerals supply chains and to improve the lives of workers and those impacted along different stages of the ICT supply chain. Our long-term cooperation with groups monitoring the impact of mining on people and environment as well as with communities directly affected by mines or smelters strengthens our conviction that the many negative impacts of mining must finally come under the proper scrutiny. -
List of New Mineral Names: with an Index of Authors
415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis. -
Session 1 Sources and Availability of Materials for Lithium Batteries
Session 1: Sources and Availability of Materials for Lithium Batteries Session 1 Sources and Availability of Materials for Lithium Batteries Adrian Griffin Managing Director, Lithium Australia NL ABSTRACT Lithium, as a feedstock for the battery industry, originates from two primary sources: hard-rock (generally spodumene and petalite), and brines. Brine processing results in the direct production of lithium chemicals, whereas the output from hard-rock production is tradeable mineral concentrates that require downstream processing prior to delivery, as refined chemicals, into the battery market. The processors of the concentrates, the 'converters', are the major constraint in a supply chain blessed with abundant mineral feed. The battery industry must overcome the constraints imposed by the converters, and this can be achieved through the application of the Sileach™ process, which produces lithium chemicals from concentrates direct, without the need for roasting. The cathode chemistries of the most efficient lithium batteries have a common thread – a high dependence on cobalt. Battery manufacturers consume around 40% of the current production of cobalt, a by-product of the nickel and copper industries. This means cobalt is at a tipping point – production will not keep up with demand. In the short term, the solution lies in developing alternative cathode compositions, while in the longer term recycling may be the answer. Lithium Australia NL is researching the application of its Sileach™ process to waste batteries to achieve a high-grade, low-cost source of battery materials and, in so doing, ease the supply constraints on cathode metals. To ensure that the battery industry is sustainable, better utilisation of mineral resources, more efficient processing technology, an active battery reprocessing capacity and less reliance on cobalt as a cathode material are all necessary. -
Lii Foi - Ifil Rhkl = ---'--'---'---'--'-' = 0.15
Mineral. Soc. Amer. Spec. Pap. 2, 111-115 (1969). JOESMITHITE: A NOVEL AMPHIBOLE CRYSTAL CHEMISTRY PAUL B. MOORE Department oj the Geophysical Sciences, University oj Chicago, Chicago, Illinois 60637 ABSTRACT Joesmithite, a 9.885 (15), b 17.875 (18), c 5.227 (5) A, B 105.67 (17)0, P2/a, is a beryllo-silicate clinoamphibole 3 with composition (Ca,Pb)Ca2(Mg,Fe'+,Fe +),[Si,Be20,,] (OH)2, Z = 2. One out of four tetrahedra in the asymmetric unit is occupied by beryllium, at the cross-linking site in one of the pyroxene chain sub-units. The A site is not centered but displaced 0.6 A along the two-fold rotor and toward the beryllate tetrahedron. It is suggested that a coupled relationship exists between A' (the off-centered A site) and Be, a condition ensuring reasonable charge balance around their mutual anions. The A' and Be atomic species lower the symmetry of the crystal: though joesmithite is topologically akin to the C-centered c1inoamphiboles, its chemical contents are somewhat different. The lower symmetry induced by these atomic species probably accounts for the unequal octahedral cation distribution, which was assessed by least-squares analysis of three-dimensional single-crystal X-ray data. INTRODUCTION TABLE 1. JOESMITHITE. CRYSTAL CELL Joesmithite, a new mineral discovered by the author three years ago, proved to be related to the clinoamphibole a 9.885(15) A b mineral group. This mineral has been previously reported 17.875(18) 5.227(5) in two papers, one which describes the species for the first (3 105. -
Lithium 2017
2017 Minerals Yearbook LITHIUM [ADVANCE RELEASE] U.S. Department of the Interior September 2020 U.S. Geological Survey Lithium By Brian W. Jaskula Domestic survey data and tables were prepared by Annie Hwang, statistical assistant. In the United States, one lithium brine operation with an cobalt oxide and 2,160 kg of lithium-nickel-cobalt-aluminum associated lithium carbonate plant operated in Silver Peak, oxide (Defense Logistics Agency Strategic Materials, 2017). At NV. Domestic and imported lithium carbonate, lithium yearend 2017, the NDS held 540 kg of lithium-cobalt oxide and chloride, and lithium hydroxide were consumed directly 1,620 kg of lithium-nickel-cobalt-aluminum oxide. in industrial applications and used as raw materials for downstream lithium compounds. In 2017, lithium consumption Production in the United States was estimated to be equivalent to The U.S. Geological Survey (USGS) collected domestic 3,000 metric tons (t) of elemental lithium (table 1) [16,000 t production data for lithium from a voluntary canvass of the of lithium carbonate equivalent (LCE)], primarily owing to only U.S. lithium carbonate producer, Rockwood Lithium Inc. demand for lithium-based battery, ceramic and glass, grease, (a subsidiary of Albemarle Corp. of Charlotte, NC). Production pharmaceutical, and polymer products. In 2017, the gross weight and stock data collected from Rockwood Lithium were withheld of lithium compounds imported into the United States increased from publication to avoid disclosing company proprietary data. by 7% and the gross weight of exports increased by 29% from The company’s 6,000-metric-ton-per-year (t/yr) Silver Peak those in 2016. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
Report on the Sonora Lithium Project
Report on the Sonora Lithium Project (Pursuant to National Instrument 43-101 of the Canadian Securities Administrators) Huasabas - Bacadehuachi Area (Map Sheet H1209) Sonora, Mexico o o centered at: 29 46’29”N, 109 6’14”W For 330 – 808 – 4th Avenue S. W. Calgary, Alberta Canada T2P 3E8 Tel. +1-403-237-6122 By Carl G. Verley, P. Geo. Martin F. Vidal, Lic. Geo. Geological Consultant Vice-President, Exploration Amerlin Exploration Services Ltd. Bacanora Minerals Ltd. 2150 – 1851 Savage Road Calle Uno # 312 Richmond, B.C. Canada V6V 1R1 Hermosillo, Mexico Tel. +1-604-821-1088 Tel. +52-662-210-0767 Ellen MacNeill, P.Geo. Geological Consultant RR5, Site25, C16 Prince Albert, SK Canada S6V 5R3 Tel. +1-306-922-6886 Dated: September 5, 2012. Bacanora Minerals Ltd. Report on the Sonora Lithium Project, Sonora, Mexico Date and Signature Page Date Dated Effective: September 5, 2012. Signatures Carl G. Verley, P.Geo. ____________________ Martin F. Vidal, Lic. Geo. Ellen MacNeill, P.Geo. Amerlin Exploration Services Ltd. - Consulting mineral exploration geologists ii Bacanora Minerals Ltd. Report on the Sonora Lithium Project, Sonora, Mexico Table of Contents 1.0 Summary ................................................................................................................................... 1 2.0 Introduction ............................................................................................................................... 3 3.0 Reliance on Other Experts ....................................................................................................... -
Kalenga Tite Mwepu a Dissertation Submitted in Partial Fulfillment of The
LITHIUM EXTRACTION FROM ZIMBABWEAN PETALITE WITH AMMONIUM BIFLUORIDE DIGESTION Kalenga Tite Mwepu A dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Applied Science (Chemical Technology) in the Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology. Supervisor: Prof. Philip Crouse Co-supervisor: Dr Salmon Lubbe February 2020 Declaration I, Kalenga Tite Mwepu, student No. 15261043, do hereby declare that this research is my original work and that it has not previously, in its entirety or in part, been submitted and is not currently being submitted, either in whole or in part, at any other university for a degree or diploma, and that all references are acknowledged. SIGNED on this ________________________ day of_____12/02______________ 2020. __________________ Kalenga Tite Mwepu ii Synopsis Lithium carbonate is the precursor for most other lithium compounds. The market demand for lithium is increasing because it is used for many applications such as the preparation of electrode material and electrolyte for lithium-ion batteries, for treatment of manic depression, production of electronic grade crystals of lithium niobate and tantalite, and preparation of battery-grade lithium metal. Previously reported methods of lithium extraction require high temperature calcination for phase transformation from α-spodumene into β-spodumene, that is energy consuming and costly. This step is required because of the higher chemical reactivity of β-spodumene. The objectives of this research were to investigate the viability of ammonium bifluoride digestion of the petalite concentrate from the Bikita deposits without the initial thermal conversion to β- spodumene, in order to produce a high purity lithium carbonate in a cost efficient way, and optimising the remaining process parameters of the full process. -
Chen Mines 0052E 11348.Pdf
UNDERSTANDING STRUCTURE-PROPERTY RELATIONS IN -EUCRYPTITE UNDER PRESSURE AND AT ELEVATED TEMPERATURE by Yachao Chen A thesis submitted to the faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Materials Science) Golden, Colorado Date: _______________________ Signed: _______________________ Yachao Chen Signed: _______________________ Dr. Ivar E. Reimanis Thesis Advisor Golden, Colorado Date: _______________________ Signed: _______________________ Dr. Angus Rockett Professor and Department Head Department of Metallurgical and Materials Engineering ii ABSTRACT -eucryptite (LiAlSiO4) has received widespread attention from both industry and academia due to its negative coefficient of thermal expansion (CTE) and one-dimensional Li ionic conductivity. Additionally, -eucryptite undergoes a pressure-induced phase transformation at relatively low pressures. These various behaviors arise because the crystal structure is open and highly anisotropic. The present study uses several experimental methods to better understand the relation between the structure and the electrical and mechanical behavior of -eucryptite. Synthesis and processing methods were developed to make pure -eucryptite and - eucryptite doped with Mg of varying particle sizes. In-situ diamond anvil cell - x-ray diffraction was performed to study the pressure induced phase transformation from -eucryptite to the high pressure phase -eucrypite. With the assistance of Rietveld refinement and atomistic modeling, the crystal structure of the -eucrypite was determined to be an orthorhombic with space group Pna21. This is the first time that both space group and atomic positions of the high pressure phase have been reported. It is also observed that Mg-doped -eucryptite undergoes the pressure induced transformation at slightly higher pressures than pure -eucryptite (2.47 GPa compared with 1.8 GPa hydrostatic stress), implying that Mg stabilizes -eucryptite. -
A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits
Exploration and Mining Geology, Vol. 14, Nos. 1-4, pp. 1-30, 2005 © 2006 Canadian Institute of Mining, Metallurgy and Petroleum. All rights reserved. Printed in Canada. 0964-1823/00 $17.00 + .00 A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits JULIE B. SELWAY, FREDERICK W. BREAKS Precambrian Geoscience Section, Ontario Geological Survey 933 Ramsey Lake Road, Sudbury, ON P3E 6B5 ANDREW G. TINDLE Department of Earch Sciences, Open University Milton Keynes, Buckinghamshire, UK MK7 6AA (Received February 16, 2004; accepted September 20, 2004) Abstract — Rare-element pegmatites may host several economic commodities, such as tantalum (Ta- oxide minerals), tin (cassiterite), lithium (ceramic-grade spodumene and petalite), and cesium (pollucite). Key geological features that are common to pegmatites in the Superior province of Ontario and Manitoba, Canada, and in other large tantalum deposits worldwide, can be used in exploration. An exploration project for rare-element pegmatites should begin with an examination of a regional geology map. Rare-element pegmatites occur along large regional-scale faults in greenschist and amphibolite facies metamorphic terranes. They are typically hosted by mafic metavolcanic or metasedimentary rocks, and are located near peraluminous granite plutons (A/CNK > 1.0). Once a peraluminous granite pluton has been identified, then the next step is to determine if the pluton is barren or fertile. Fertile granites have elevated rare element contents, Mg/Li ratio < 10, and Nb/Ta ratio < 8. They commonly contain blocky K-feldspar and green muscovite. Key fractionation indicators can be plotted on a map of the fertile granite pluton to determine the fractionation direction: presence of tourmaline, beryl, and ferrocolumbite; Mn content in garnet; Rb content in bulk K-feldspar; and Mg/Li and Nb/Ta ratios in bulk granite samples. -
Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.