Solid State Metathesis Preparations of Hard Refractory Ceramics

Total Page:16

File Type:pdf, Size:1020Kb

Solid State Metathesis Preparations of Hard Refractory Ceramics S o u p S t a t e M e t a t h e s is P reparations OF H a r d R e f r a c t o r y C e r a m i c s A thesis presented by: Artur Marek Nartowski BSc in partial fulfilment for the award of Ph. D. U n iv e r s it y C o l l e g e Lo n d o n D e p t , o f C h e m is t r y ProQuest Number: 10014877 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10014877 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Acknowledgements This work was supported by EPSRC and was completed under very helpfiil and encouraging supervision of Dr. I. P. Parkin. Grateful acknowledgement is due to members of staff, especially Dr. C. Carmalt, Prof. A. J. Craven, Dr. M. MacKenzie and the departmental microanalyst. I am also indebted to my fellow students, in particular, L. Affleck, L. Price, M. Fields and W. Cross for help and advice. I would like to thank my parents Renata and Luciano for support and hurrying me up with the completion of the work. I also fill grateful to my fi*iends Rafal, Matthias and Jens for their support. Abstract This thesis presents the synthesis of binary and ternary transition metal borides, carbides, nitrides and silicides the solid state metathetical processes. The reactions were initiated both in bulk and in the propagation modes. Rapid solid state metathetical reactions of Group 3-5, 13 and rare earth metal halides with nitriding agents such as LigN, MggN], Ca]N 2 and NaNg lead to formation of crystalline nitrides and co-product salts of Group 1 or 2 metals. Similarly, crystalline transition metal borides, carbides and silicides of Groups 4-8 have been synthesised using the halides and AIB 2, CaC2, SPC2, AI4C3, L%SL Mg 2Si or CaSi 2. The rates of these reactions and their final product crystallinity were related to the reagents used and the mode of reaction initiation. Thermally unstable transition metal nitrides of Group 6 transition metals, manganese, iron and cobalt have been synthesised using their halides and magnesium nitride with the aid of magnesium chloride as an inert heat sink. This work also reports the SSM (Solid State Metathesis) synthesis of highly crystalline transition metal carbides and silicides fi'om the transition metal oxides and CaC 2, SrC2, Mg 2Si, CaSi2. All the co-products fi“om the various reactions were removed using solvents such as THF, methanol, water or dilute acids. The final products were analysed using X-ray powder diffraction, FT-IR and SEM/EDXA. A selected group of carbides and nitrides were analysed using TEM and PEELS/ELNES (photoelectron energy loss spectroscopy/energy loss near-edge structure). Besides the identification of the final products, the main objectives in these analyses were to determine the elemental composition (and oxygen contamination) of these interstitial compounds. The compounds formed by SSM processes were shown to be useful in standardising ELNES measurements. Contents Page Title Acknowledgements Abstract Contents List of Tables List of Figures 13 Chapter I; Introduction 20 1.1 What are ceramics? 20 1.1.1 History of ceramics 20 1.1.2 Classification of ceramics 21 1.2 Carbides and nitrides 22 1.2.1 Properties 22 1.2.2 Applications 27 1.3 Transition metal silicides 32 1.4 Transition metal borides 36 1.5 Commercial preparations of transition metal borides, carbides and nitrides 38 1.6 SHS (self propagative higb-temperature syntheses) Reactions 40 1.6.1 Background and history 40 1.6.2 Synthesis of pore-free materials, items and coatings by SHS 42 1.6.3 Industrial applications of SHS products, materials and items 43 1.7 What are the SSM (solid state metathesis) reactions? 43 1.7.1 Background 43 1.7.2 Initiation and product formation 44 1.7.3 Comparison of SHS and SSM processes 44 1.7.4 Future and advantages of SSM reactions 45 1.8 Aims of this work 48 Chapter 2; Preparations of metal nitrides 49 2.1 Introduction 49 2.1.1. Potential nitriding reagents 49 2.1.2. Aims and background 51 2.2 Synthesis 52 2.3 Characterisation 54 2.3.1 X-ray powder diffraction 54 2.3.2 SEM/EDXA 58 2.3.3 TEM 61 2.3.4 ELNES/PEELS analysis 65 2.3.5 ELNES of CrN and Cr 2N 67 2.4 Discussion 69 2.4.1 Level of nitridation in transition metal nitrides prepared by SSM 72 2.4.2 Decomposition of transition metal nitrides prepared using SSM routes 73 2.4.3. Formation of solid solutions 79 2.5 Thermodynamic considerations 82 2.6 Summary 84 2.7 Experimental 85 Chapter 3; Preparations of transition metal carbides 89 3.1 Introduction 89 3.1.1 Potential carbiding reagents 89 3.1.2 Aims and background 90 3.2 Synthesis 91 3.3 Characterisation 94 3.3.1 X-ray powder diffraction 94 3.3.2 SEM/EDXA 97 3.3.3 TEM 101 3.3.4 ELNES/PEELS analysis 105 3.4 Discussion 107 3.4.1 Level of carburisation in transition metal carbides 111 3.4.2 Formation of bimetallic transition metal carbides and transition metal carbonitrides 113 3.5 Thermodynamic considerations 119 3.6 Summary 121 3.7 Experimental 122 Chapter 4; Preparations of transition metal silicides 125 4.1 Introduction 125 4.2 Synthesis 126 4.3 Characterisation 131 4.3.1 X-ray powder diffraction 131 4.3.2 SEM/EDXA 135 4.4 Discussion 139 4.4.1 Control of stoichiometry in transition metal silicides 141 4.5 Thermodynamic considerations 144 4.6 Summary 145 4.7 Experimental 146 Chapter 5; Preparations of metal borides 149 5.1 Introduction 149 5.1.1 Potential boride precursors 149 5.1.2 Aims and background 150 5.2 Synthesis 150 5.3 Characterisation 151 5.3.1 X-ray powder diffraction analysis 151 5.3.2 SEM/EDXA analysis 153 5.4 Discussion 154 5.5 Thermodynamic considerations 156 5.6 Summary 156 5.7 Experimental 157 Chapter 6; Preparations of transition metal carbides and silicides using metal oxides as metal precursors 159 6.1 Introduction 159 6.1.1 Some commonly available oxides containing transition metals 159 6 .1.2 Aims and background 160 6 .2 Synthesis 161 6.3 Characterisation 165 6.3.1 X-ray powder diffraction 165 6.3.2 SEM 167 6.3.3 EDXA 169 6.3.4 TEM 172 6.4 Discussion 173 6.5 Thermodynamic considerations 174 6 .6 Summary 175 6.7 Experimental 176 er 7; Control of crystallite size in products formed using SSM 179 7.1 Introduction 179 7.1.1 Aims and background 179 7.2 Control of product crystallite size 180 7.2.1 Spreading the reagents 180 7.2.2 Varying the reaction scale 181 7.2.3 Mode of initiation 183 7.2.4 Using a diluent 184 7.2.5 Selection of SSM precursors 189 7.2.6 Increase in pressure 190 7.2.7 Annealing the as prepared SSM products 191 References 193 Publications 202 List o f Tables 1.1 Principal applications of metal carbides typified by several examples. 24 1.2 Melting/decomposition points of selected hardmetals compared with their parent metals, °C. 26 1.3 Microhardness properties of selected transition metal carbides. 27 1.4 Worldwide (unless stated) consumption of carbides and nitrides. 28 1.5 Melting points, °C, of selected transition metal silicides. 32 1.6 Principal properties of selected metal borides. Melting points of the parent metals are in brackets next to the melting points for their borides. All data taken fi*om references [20] and [76]. 37 2.1 Selected reactions of metal halides with lithium nitride or sodium azide initiated with flame (fl), filament (fil) or performed in bulk under vacuum (bkv) or nitrogen pressure (bkp).* Literature lattice parameters were taken from reference [ 152] and [159]. 56 2.2 Selected reactions of metal halides with Group 2 nitrides performed using flame (fl) or filament (fil) initiation, or as a bulk reaction under vacuum (bk).* Literature lattice parameters were taken from references [152] and [159]. 57 2.3 Samples analysed using EELS/ELNES and TEM techniques. 63 2.4 Conditions used to test oxidative stability of a selection of transition metal nitrides prepared using solid state metathesis discussed in this chapter. 76 2.5 Microanalytical data obtained for the samples of aluminium nitride annealed for different periods at 550 °C. 77 3.1 Selected bulk reactions of transition metal halides with calcium and strontium carbide.* Literature lattice parameters were taken from references [18], [159] and [175]. 93 3.2 Selected bulk reactions of transition metal halides with aluminium carbide.* All the literature lattice parameters were taken from reference [18], except for iron carbide, FegC, which was taken from reference [175]. 94 3.3 Reactions of transition metal halides with calcium and strontium carbides initiated with flame.* Literature lattice parameters were taken from references [18] and [175].
Recommended publications
  • Growth, Optimization, and Characterization of Transition Metal
    GROWTH, OPTIMIZATION, AND CHARACTERIZATION OF TRANSITION METAL NITRIDES AND TRANSITION METAL OXIDES FOR ELECTRONIC AND OPTICAL APPLICATIONS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Electro-Optics By Zachary Biegler UNIVERSITY OF DAYTON Dayton, Ohio December 2019 GROWTH, OPTIMIZATION, AND CHARACTERIZATION OF TRANSITION METAL NITRIDES AND TRANSITION METAL OXIDES FOR ELECTRONIC AND OPTICAL APPLICATIONS Name: Biegler, Zachary Jay APPROVED BY: Andrew Sarangan, Ph.D., P.E. Amber Reed, Ph.D. Advisory Committee Chairman Committee Member Professor Materials Engineer Department of Electro-Optics and Photonics AFRL/RXAN Partha Banerjee, Ph.D. Committee Member Professor Department of Electro-Optics and Photonics Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii ABSTRACT GROWTH, OPTIMIZATION, AND CHARACTERIZATION OF TRANSITION METAL NITRIDES AND TRANSITION METAL OXIDES FOR ELECTRONIC AND OPTICAL APPLICATIONS Name: Biegler, Zachary J. University of Dayton Advisor: Dr. Andrew Sarangan The next generation of electronic and optical devices require high quality, crystalline materials in order to obtain relevant properties for novel devices. Two classes of materials offer unique material properties that can satisfy the requirements for next generation devices. These two classes of materials are the transition metal nitrides (TMNs) and transition metal oxides (TMOs). These materials offer electronic properties that range from conductive, metallic, materials to semiconducting and insulating materials. However, for many optical and electronic applications, the band structure and crystalline symmetries must be preserved.
    [Show full text]
  • Design and Discovery of New Piezoelectric Materials Using Density Functional Theory
    DESIGN AND DISCOVERY OF NEW PIEZOELECTRIC MATERIALS USING DENSITY FUNCTIONAL THEORY by Sukriti Manna © Copyright by Sukriti Manna, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering). Golden, Colorado Date Signed: Sukriti Manna Signed: Dr. Cristian V. Ciobanu Thesis Advisor Signed: Dr. Vladan Stevanovi´c Thesis Advisor Golden, Colorado Date Signed: Dr. John Berger Professor and Head Department of Mechanical Engineering ii ABSTRACT Piezoelectric materials find applications in microelectromechanical systems (MEMS), such as surface acoustic wave (SAW) resonators, radio frequency (RF) filters, resonators, and energy harvesters. Using density functional theory calculations, the present study illus- trates the influence of alloying and co-alloying with different nitrides on piezoelectric and mechanical properties of an existing piezoelectric material such as aluminum nitride (AlN). Besides improving the performance of existing piezoelectric material, a high-throughput screening method is used to discover new piezoelectric materials. AlN has several beneficial properties such as high temperature stability, low dielectric permittivity, high hardness, large stiffness constant, high sound velocity, and complementary metal-oxide-semiconductor (CMOS) compatibility. This makes it widely accepted material in RF and resonant devices. However, it remains a challenge to enhance the piezoelectric modulus of AlN. The first part of this thesis establishes that the piezoelectric modulus of AlN could be improved by alloying with rocksalt transition metal nitrides such as scandium nitride (ScN), yttrium nitride (YN), and chromium nitride (CrN). As the content of the rocksalt end member in the alloy increases, the accompanying structural frustration enables a greater piezoelectric response.
    [Show full text]
  • Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides
    Article pubs.acs.org/cm Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides Wenhao Sun,†,‡ Aaron Holder,§,⊥ Bernardo Orvañanos,‡ Elisabetta Arca,§ Andriy Zakutayev,§ Stephan Lany,§ and Gerbrand Ceder*,†,‡,∥ † Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States ‡ Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States § National Renewable Energy Laboratory, Golden, Colorado 80401, United States ∥ Department of Materials Science and Engineering, Univeristy of California, Berkeley, California 94720, United States ⊥ Department of Chemical and Biological Engineering, Univeristy of Colorado, Boulder, Colorado 80309, United States *S Supporting Information ABSTRACT: Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined
    [Show full text]
  • Metastable Scaln and Yaln Thin Films Grown by Reactive Magnetron Sputter Epitaxy
    Linköping Studies in Science and Technology Dissertation No. 1566 Metastable ScAlN and YAlN Thin Films Grown by Reactive Magnetron Sputter Epitaxy Agnė Žukauskaitė Thin Film Physics Division Department of Physics, Chemistry, and Biologylogy (IFM)(IFM) Linköping University, Sweden 2014 The cover image The image on the cover is based on an elemental energy dispersive x-ray spectroscopy map of Sc0.2Al0.8N deposited at 400°C obtained in a transmission electron microscope. Each individual square represents an area of ~1x1 nm. Here, scandium was assigned the green color, and aluminum is mapped using purple. No tendencies to cluster into Sc-rich or Al-rich regions can be seen, indicating a solid solution. A special Thank You for recording this data goes to Dr. Justinas Pališaitis! © Agnė Žukauskaitė ISBN: 978-91-7519-434-9 ISSN: 0345-7524 Printed by LiU-Tryck Linköping, Sweden, 2014 Abstract Metastable ScxAl1-xN and YxAl1-xN thin films were deposited in an ultra high vacuum system using reactive magnetron sputter epitaxy from elemental Al, Sc, and Y targets in Ar/N2 gas mixture. Their structural, electrical, optical, mechanical, and piezoelectrical properties were investigated by using the transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, I-V and C-V measurements, nanoindentation, and two different techniques for piezoelectric characterization: piezoresponse force microscopy and double beam interferometry. Compared to AlN, improved electromechanical coupling and increase in piezoelectric response was found in ScxAl1-xN/TiN/Al2O3 structures with Sc content up to x=0.2. Decreasing the growth temperature down to 400 °C improved the microstructure and crystalline quality of the material.
    [Show full text]
  • Solutions to Exercises
    Solutions to Exercises Note: There may be more than one correct path to a correct answer. Chapter 1. Problem Solving 1. If your answer doesn’tagree with the published answer,possibilities include a) your answer may be incorrect, b) the published answer may be incorrect, c) both may be incorrect, d) both may be correct (i.e. there may be more than one correct answer), e) typographical error (answer out of place). 2. Terminology: chemistry is a noun (object), but could refer to an object of study or prac- tice, etc. As an object of study,chemistry could refer to what is expected to be known by a novice, all that is known, all that may be known, etc; as a practice, chemistry could refer to practical applications, theoretical principles, processes where substances change called chemical reactions, etc. The word reasonable might connote logic, understand- ing, ethical practice, demand, etc. One might logically conclude that the subject of chemistry should be understandable, or that the field of chemistry should be non-productive (if it is reasonable to assume that chemistry is harmful to the environment, say), etc. This example is not meant to be totally trivial. Communication involves common under- standing of terminology,construction (syntax) and meaning (semantics). Forexample, the word "add" may mean different things depending on the context; e.g. calculators (add twointegers), travelagents (add the mileage, add a flight, total the cost). Clear definitions and logical thinking are essential to science. 3. There seems to be an implicit assumption that Alice wants to go somewhere. If she doesn’tspecify anydestination, the Cat may give anarbitrary route.
    [Show full text]
  • Effect of Nitrogen Pressure on the Structure of Cr-N, Ta-N, Mo-N, and WN Nanocrystals Synthesized by Arc Discharge
    Hindawi Publishing Corporation Journal of Nanomaterials Volume 2011, Article ID 781935, 5 pages doi:10.1155/2011/781935 Research Article Effect of Nitrogen Pressure on the Structure of Cr-N, Ta-N, Mo-N, and W-N Nanocrystals Synthesized by Arc Discharge Longhai Shen and Nan Wang School of Science, Shenyang Ligong University, Shenyang 110159, China Correspondence should be addressed to Longhai Shen, [email protected] Received 28 March 2011; Revised 10 June 2011; Accepted 5 July 2011 Academic Editor: Theodorian Borca-Tasciuc Copyright © 2011 L. Shen and N. Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The effect of nitrogen pressure on the structure of Ta-N, Cr-N, Mo-N, and W-N nanocrystals formed in arc discharge process was investigated. At the nitrogen pressure of 5 ∼ 20 kPa, the pure cubic-phase TaN and CrN nanocrystals were formed, whereas pure cubic phase of Mo2N and W2N cannot be obtained. A little of metal Mo and a mass of metal W were mixed with the products of Mo2N and W2N, respectively. At the nitrogen pressure of 30 ∼ 50 kPa, subnitride Ta2NandCr2N and metal Cr were gradually formed in the product; furthermore, the proportion of metal Mo and W increased in the product of Mo2N and W2N, respectively. It indicated that the low nitrogen pressure makes cubic mononitride formation favorable. We explain this experimental observation in terms of the evaporation rate of anode metal and the ionization of nitrogen.
    [Show full text]
  • Amount of Substance
    www.CHEMSHEETS.co.uk AMOUNT OF SUBSTANCE © www.CHEMSHEETS.co.uk 28-July-2020 Chemsheets AS 1027 1 1 - FORMULAE If you are serious about doing A level Chemistry, you MUST be able to write a formula without a second thought. It is the single most essential skill for an A level chemist. You have to know and be able to use the information on this page – you should not be looking it up. There is no data sheet with ion charges at A level. If you can’t write a formula in an instant, DROP CHEMISTRY NOW and choose something else. Elements Monatomic Simple molecular Ionic Metallic Giant covalent helium hydrogen There are no ionic The formula is just the The formula is just the elements!! symbol, e.g. symbol neon nitrogen magnesium diamond argon oxygen iron graphite krypton fluorine sodium silicon xenon chlorine nickel radon bromine iodine phosphorus sulfur Compounds Monatomic Simple molecular Ionic Metallic Giant covalent There are no monatomic Some common These have to be There are no metallic silicon dioxide compounds!! molecular compounds: worked out using ion compounds!! charges – you have to carbon dioxide know these at AS/A carbon monoxide level! nitrogen monoxide LEARN them ASAP. nitrogen dioxide sulfur dioxide Note these acids: sulfur trioxide hydrochloric acid ammonia sulfuric acid methane nitric acid hydrogen sulfide phosphoric acid Positive ions Negative ions Group 1 ions: Group 3 ions: Group 7 ions: Other common ions lithium aluminium fluoride nitrate sodium chloride sulfate Other common ions potassium bromide carbonate silver iodide hydrogencarbonate Group 2 ions: zinc hydroxide magnesium Group 6 ions: ammonium hydride calcium oxide hydrogen phosphate barium sulfide © www.CHEMSHEETS.co.uk 28-July-2020 Chemsheets AS 1027 2 TASK 1 – WRITING FORMULAS OF IONIC COMPOUNDS 1) silver bromide ………………………….
    [Show full text]
  • 1 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Wi
    © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Williams,1 and Karthish Manthiram1* 1Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge, MA 02139, USA *Corresponding Author: [email protected] 1 © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Summary Ammonia is a large-scale commodity chemical that is crucial for producing nitrogen- containing fertilizers. Electrochemical methods have been proposed as renewable and distributed alternatives to the incumbent Haber-Bosch process, which utilizes fossils for ammonia production. Herein, we report a mechanistic study of lithium-mediated electrochemical nitrogen reduction to ammonia in a non-aqueous system. The rate laws of the main reactions in the system were determined. At high current densities, nitrogen transport limitations begin to affect the nitrogen reduction process. Based on these observations, we developed a coupled kinetic-transport model of the process, which we used to optimize operating conditions for ammonia production. The highest Faradaic efficiency observed was 18.5 ± 2.9%, while the highest production rate obtained was (7.9 ± 1.6) × 10-9 mol cm-2 s-1. Our understanding of the reaction network and the influence of transport provides foundational knowledge for future improvements in continuous lithium- mediated ammonia synthesis.
    [Show full text]
  • Chapter 2, Section
    Naming Simple Compounds Ionic Compounds Ionic compounds • consist of positive and negative ions. • have attractions called ionic bonds between positively and negatively charged ions. • have high melting and boiling points. • are solid at room temperature. Copyright © Houghton Mifflin Company. All rights reserved. 2–2 Salt is An Ionic Compound Sodium chloride or “table salt” is an example of an ionic compound. Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–3 Naming Ionic Compounds with Two Elements To name a compound that contains two elements, • identify the cation and anion. • name the cation first followed by the name of the anion. Copyright © Houghton Mifflin Company. All rights reserved. 2–4 Binary Ionic Compounds Type (I) An ionic formula • consists of positively and negatively charged ions. • is neutral. • has charge balance. total positive charge = total negative charge The symbol of the metal is written first followed by the symbol of the nonmetal. Copyright © Houghton Mifflin Company. All rights reserved. 2–5 Charge Balance In MgCl2 In MgCl2, • a Mg atom loses two valence electrons. • two Cl atoms each gain one electron. • subscripts indicate the number of ions needed to give charge balance. Copyright © 2005 by Pearson Education, Inc. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company. All rights reserved. 2–6 Charge Balance in Na2S In Na2S. • two Na atoms lose one valence electron each. • one S atom gains two electrons. • subscripts show the number of ions needed to give Copyright © 2005 by Pearson Education, Inc. charge balance. Publishing as Benjamin Cummings Copyright © Houghton Mifflin Company.
    [Show full text]
  • Enhancement of the Corrosion Resistance of 304 Stainless Steel by Cr–N and Cr(N,O) Coatings
    Article Enhancement of the Corrosion Resistance of 304 Stainless Steel by Cr–N and Cr(N,O) Coatings Mihaela Dinu 1, Emile S. Massima Mouele 2, Anca C. Parau 1, Alina Vladescu 1,3, Leslie F. Petrik 2 and Mariana Braic 1,* 1 National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele, Romania; [email protected] (M.D.); [email protected] (A.C.P.); [email protected] (A.V.) 2 Department of Chemistry, Environmental and Nano Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; [email protected] (E.S.M.M.); [email protected] (L.F.P.) 3 National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk 634050, Russia * Correspondence: [email protected]; Tel.: +4-21-457-57-59 Received: 27 February 2018; Accepted: 2 April 2018; Published: 5 April 2018 Abstract: Chromium nitride and oxynitride coatings were deposited as monolayers ((Cr–N), Cr(N,O)) and bilayers (Cr–N/Cr(N,O), Cr(N,O)/Cr–N) on 304 steel substrates by reactive cathodic arc method. The coatings were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), surface profilometry, and scratch tester. The anticorrosive properties of the coatings were assessed by electrochemical tests in 0.10 M NaCl + 1.96 M H2O2, carried out at 24 °C. Cr2N, CrN, and Cr(N,O) phases were identified in the coatings by grazing incidence X-ray diffraction (GI-XRD) measurements. The measured adhesion values ranged from 19 N to 35 N, the highest value being obtained for the bilayer with Cr(N,O) on top.
    [Show full text]
  • Theoretical Study of Phase Stability, Crystal and Electronic Structure of Memgn2 (Me 5 Ti, Zr, Hf) Compounds
    J Mater Sci (2018) 53:4294–4305 ElectronicELECTRONIC MATERIALS materials Theoretical study of phase stability, crystal and electronic structure of MeMgN2 (Me 5 Ti, Zr, Hf) compounds M. A. Gharavi1,* , R. Armiento2 , B. Alling2,3 , and P. Eklund1 1 Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden 2 Theory and Modelling Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden 3 Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany Received: 6 July 2017 ABSTRACT Accepted: 21 November 2017 Scandium nitride has recently gained interest as a prospective compound for Published online: thermoelectric applications due to its high Seebeck coefficient. However, ScN 30 November 2017 also has a relatively high thermal conductivity, which limits its thermoelectric efficiency and figure of merit (zT). These properties motivate a search for other Ó The Author(s) 2017. This semiconductor materials that share the electronic structure features of ScN, but article is an open access which have a lower thermal conductivity. Thus, the focus of our study is to publication predict the existence and stability of such materials among inherently layered equivalent ternaries that incorporate heavier atoms for enhanced phonon scat- tering and to calculate their thermoelectric properties. Using density functional theory calculations, the phase stability of TiMgN2, ZrMgN2 and HfMgN2 compounds has been calculated. From the computationally predicted phase diagrams for these materials, we conclude that all three compounds are stable in these stoichiometries. The stable compounds may have one of two competing crystal structures: a monoclinic structure (LiUN2 prototype) or a trigonal superstructure (NaCrS2 prototype; R3mH).
    [Show full text]
  • Compound - Physical Properties Density Melting Point G Cm-3 C
    Goodfellow Corporation 125 Hookstown Grade Road, Coraopolis, PA 15108-9302. USA Tel: 1-800-821-2870 : Fax 1-800-283-2020 Compound - Physical Properties Density Melting point g cm-3 C Aluminum Carbide 2.36 - Al C 4 3 Aluminum Nitride 3.26 - AlN Antimony Telluride 6.50 - Sb Te 2 3 Barium Titanate 5.8-6.0 - BaTiO3 Bismuth Telluride 7.7 - Bi Te 2 3 Boron Nitride 2.25 - BN Calcium Boride 2.3 - CaB6 Calcium Fluoride 3.18 1360-1400 CaF2 Calcium Titanate 4.10 1975 CaTiO3 Chromium Carbide 6.68 - Cr C 3 2 Chromium Diboride 4.36 - CrB2 Chromium Nitride 5.9 - Cr2N Chromium Silicide 5.5 - CrSi2 Cobalt (II) Oxide 6.45 1795 CoO Cobalt (III) Oxide 5.18 - Co O 3 4 Copper Selenide 5.99 - CuSe Cupric Oxide 6.39 - CuO Hafnium Carbide 12.2 approx. 3890 HfC Hafnium Diboride 10.5 3100 HfB2 Indium Oxide/Tin Oxide 7.16 - In O 90 /SnO2 10 2 3 All information and technical data are given as a guide only. Although every effort has been made to ensure that the information 1 is correct, no warranty is given as to its completeness or accuracy. September 17 2021 Goodfellow Corporation 125 Hookstown Grade Road, Coraopolis, PA 15108-9302. USA Tel: 1-800-821-2870 : Fax 1-800-283-2020 Compound - Physical Properties Density Melting point g cm-3 C Iron Silicide 6.1 - FeSi Lanthanum Hexaboride 2.61 - LaB6 Lead Selenide 8.10 - PbSe Magnesium Fluoride - 1396 MgF2 Magnesium Oxide 3.58 - MgO Molybdenum Carbide 8.9 - Mo2C Molybdenum Diboride 7.12 - MoB2 Molybdenum Disilicide 6.31 - MoSi2 Nickel Oxide 6.67 1984 NiO Niobium Boride 6.97 - NbB2 Niobium Carbide 7.6 - NbC Niobium Nitride 8.4 - NbN Niobium Pentoxide 4.47 - Nb O 2 5 Niobium Silicide 5.37 - NbSi2 Silicon Carbide 3.217 - SiC Silicon Monoxide 2.13 - SiO Silicon Nitride 3.44 - Si N 3 4 Silver Chloride 5.56 455 AgCl Sodium Chloride 2.16 - NaCl Tantalum Boride 11.15 approx.
    [Show full text]