GROWTH, OPTIMIZATION,AND CHARACTERIZATION OF TRANSITION METALNITRIDESAND TRANSITION METALOXIDES FOR ELECTRONIC
AND OPTICALAPPLICATIONS
Thesis
Submitted to
The School of Engineering of the UNIVERSITY OF DAYTON
In Partial Fulfillment of the Requirements for
The Degree of
Master of Science in Electro-Optics
By
Zachary Biegler
UNIVERSITY OF DAYTON
Dayton, Ohio December 2019
GROWTH, OPTIMIZATION, AND CHARACTERIZATION OF TRANSITION
METAL NITRIDES AND TRANSITION METAL OXIDES FOR ELECTRONIC AND
OPTICAL APPLICATIONS
Name: Biegler, Zachary Jay APPROVED BY:
Andrew Sarangan, Ph.D., P.E. Advisory Committee Chairman Professor
Amber Reed, Ph.D. Committee Member Materials Engineer
- AFRL/RXAN
- Department of Electro-Optics and Photonics
Partha Banerjee, Ph.D. Committee Member Professor Department of Electro-Optics and Photonics
Robert J. Wilkens, Ph.D., P.E. Associate Dean for Research and Innovation Professor
Eddy M. Rojas, Ph.D., M.A., P.E. Dean, School of Engineering
School of Engineering
ii
ABSTRACT
GROWTH, OPTIMIZATION, AND CHARACTERIZATION OF TRANSITION
METAL NITRIDES AND TRANSITION METAL OXIDES FOR ELECTRONIC AND
OPTICAL APPLICATIONS
Name: Biegler, Zachary J. University of Dayton
Advisor: Dr. Andrew Sarangan
The next generation of electronic and optical devices require high quality, crystalline materials in order to obtain relevant properties for novel devices. Two classes of materials offer unique material properties that can satisfy the requirements for next generation devices. These two classes of materials are the transition metal nitrides (TMNs) and transition metal oxides (TMOs). These materials offer electronic properties that range from conductive, metallic, materials to semiconducting and insulating materials. However, for many optical and electronic applications, the band structure and crystalline symmetries must be preserved. This work examines the growth and characterization of the TMN materials AlN and ScN as well as the TMO materials VO2 and TiO2. In all these materials, the crystalline structure plays and extremely important role in the desired properties. In addition, incorporation of other impurities can detrimentally impact the functionality of these film materials. In order to minimize the impurity incorporation and maintain the crystalline structure, the growth of AlN, ScN, VO2, and TiO2 films by various deposition techniques were examined and optimized. This allowed growth of high quality TMN and TMO materials that resulted in
iii characterization and optimization of the relevant optical, electronic, and structural properties and, somewhat, the degree to which these properties could be tuned through growth conditions.
iv
DEDICATION
This work is dedicated to my parents and siblings. v
ACKNOWLEDGMENTS
This work would not have been possible without the help and guidance from so many different people. My advisors Dr. Andrew Sarangan and Dr. Amber Reed both spent many hours helping me get into a field of study of which I was not familiar. Words cannot express how much their guidance and patience means to me. I also would like to thank Dr. Kurt Eyink, Dr. Tyson Back, Dr. John Centar, and Dr. David Look for all of their help taking data and discussing results obtained through the characterization of these films. Dr. Dean Brown provided COMSOL simulations of the magnetic fields in the unbalanced magnetron system. In addition, none of this work could have been possible without the help of Hadley Smith and Rachel Adams who helped with sample growth and XRD characterization of some of the TMN materials. Dr. Pengfei Guo was instrumental in the growth of VO2 by thermal oxidation. Last, but certainly not least, I want to thank Madelyn Hill for all of the AFM surface analysis that was performed in this work as well as Dr. Albert Hilton for the piezoelectric force microscopy measurements.
Additionally, none of the transition metal nitride work could have commenced without the support of AFOSR under the award number FA9550-17RYCOR490.
vi
TABLE OF CONTENTS
ABSTRACT....................................................................................................................... iii DEDICATION.................................................................................................................... v ACKNOWLEDGMENTS ................................................................................................. vi LIST OF FIGURES ............................................................................................................ x LIST OF ABBREVIATIONS AND NOTATIONS......................................................... xv CHAPTER 1 INTRODUCTION TO MATERIAL SYSTEMS......................................... 1
1.1 Transition Metal Nitrides ..................................................................................... 2
1.1.1 1.1.2 1.1.3
Titanium Nitride............................................................................................ 3 Scandium Nitride .......................................................................................... 4 Aluminum Nitride......................................................................................... 5
1.2 Transition Metal Oxides....................................................................................... 9
1.2.1 1.2.2
Vanadium Oxide........................................................................................... 9 Titanium Oxide........................................................................................... 12
CHAPTER 2 GROWTH SYSTEMS................................................................................ 15
2.1 DC Sputtering System........................................................................................ 15
2.1.1 2.1.2 2.1.3 2.1.4
Sputter Deposition ...................................................................................... 15 Reactive Sputtering..................................................................................... 17 Magnetron Sputtering ................................................................................. 18 Sputtering System....................................................................................... 21
2.2 Controllably-Unbalanced DC Reactive Magnetron Sputtering ......................... 22
- 2.2.1
- Unbalanced Magnetron Sputtering ............................................................. 23
vii
- 2.2.2
- Controllably-Unbalanced Sputtering System ............................................. 26
2.3 Ion Assisted Evaporation System....................................................................... 30
2.3.1 2.3.2 2.3.3
Thermal Evaporation .................................................................................. 31 Ion Assisted Evaporation ............................................................................ 33 IAD System................................................................................................. 34
CHAPTER 3 CHARACTERIZATION TECHNIQUES.................................................. 37
3.1 X-Ray Diffractometry ........................................................................................ 37
3.1.1 3.1.2 3.1.3
Introduction to XRD ................................................................................... 38 Grazing Incident X-Ray Diffraction ........................................................... 44 Coupled Scans............................................................................................. 46
- 3.1.3.1
- Symmetric Coupled Scans................................................................... 46
Asymmetric Coupled Scans................................................................. 52
Rocking Curves........................................................................................... 54 Pole Figures ................................................................................................ 56
3.1.3.2
3.1.4 3.1.5
3.2 X-Ray Photoelectron Spectroscopy ................................................................... 59 3.3 Secondary Ion Mass Spectrometry..................................................................... 62 3.4 Spectroscopic Ellipsometry................................................................................ 63 3.5 Hall Effect and Transport................................................................................... 68
CHAPTER 4 SCANDIUM NITRIDE GROWTH AND CHARACTERIZATION ........ 72
4.1 Nitrogen Fraction ............................................................................................... 76 4.2 Magnetron Power ............................................................................................... 79 4.3 Substrate Temperature........................................................................................ 81 4.4 Final Optimization.............................................................................................. 84
viii
4.5 ScN Optical and Electronic Properties............................................................... 91
CHAPTER 5 ALUMINUM NITRIDE GROWTH AND CHARACTERIZATION ....... 99
5.1 Nitrogen Fraction ............................................................................................... 99 5.2 Substrate Temperature...................................................................................... 104 5.3 Coil Current...................................................................................................... 108 5.4 Magnetron Power............................................................................................. 112 5.5 Final Optimization............................................................................................ 116 5.6 Piezoelectric Properties.................................................................................... 119
5.6.1 5.6.2
TiN on Al2O3............................................................................................. 119 AlN on TiN on Al2O3................................................................................ 121
CHAPTER 6 TITANIUM OXIDE GROWTH AND CHARACTERIZATION ........... 128 CHAPTER 7 VANADIUM OXIDE GROWTH AND CHARACTERIZATION......... 131
7.1 Deposition of VO2 on Al2O3 ............................................................................ 131 7.2 Deposition of VO2on TiO2 ............................................................................... 134 7.3 VO2 Films by Thermal Oxidation.................................................................... 137
CONCLUSIONS AND FUTURE WORK..................................................................... 151 REFERENCES ............................................................................................................... 152
ix
LIST OF FIGURES
Figure 1.1: Rock-salt crystal structure............................................................................... 3 Figure 1.2: Wurtzite crystal structure ................................................................................ 6 Figure 1.3: Comparison of piezoelectric material maximum use temperatures ................ 7 Figure 1.4: Al1-xScxN piezoelectric coefficients with varying Sc content......................... 8 Figure 1.5: VO2 high temperature rutile phase ................................................................ 10 Figure 1.6: VO2 room temperature monoclinic phase ..................................................... 11 Figure 1.7: TiO2 rutile and anatase structures.................................................................. 13 Figure 2.1: Sputter deposition.......................................................................................... 17 Figure 2.2: Magnetron sputtering field lines.................................................................... 18 Figure 2.3: Simulated electron trajectory in magnetron field.......................................... 19 Figure 2.4: Magnetron plasma at target ........................................................................... 20 Figure 2.5: Magnetron sputter target ............................................................................... 20 Figure 2.6: Denton Vacuum Explorer 14 sputter system................................................. 22 Figure 2.7: Balanced and unbalanced field lines ............................................................. 23 Figure 2.8: Unbalanced magnetron field lines................................................................. 24 Figure 2.9: Simulated electron trajectories in an unbalanced system.............................. 24 Figure 2.10: Plasma in an unbalanced system ................................................................. 25 Figure 2.11: Controllably-unbalanced reactive magnetron sputtering system ................ 26 Figure 2.12: Substrate heating calibration ....................................................................... 27 Figure 2.13: COMSOL 퐵 Simulation.............................................................................. 29 Figure 2.14: Plasma comparison of balanced and unbalanced configuration.................. 30
x
Figure 2.15: Thermal evaporation.................................................................................... 31 Figure 2.16: Electrom beam evaporation......................................................................... 32 Figure 2.17: Ion assisted evaporation .............................................................................. 34 Figure 2.18: Ion assisted evaporation system .................................................................. 35 Figure 3.1: Bragg diffraction ........................................................................................... 39 Figure 3.2: Powder XRD system diagram ....................................................................... 41 Figure 3.3: Powder diffraction scan................................................................................. 42 Figure 3.4: Powder diffraction – differing planes............................................................ 43 Figure 3.5: Example of a GIXRD scan............................................................................ 45 Figure 3.6: Reciprocal space map of Al2O3 ..................................................................... 47 Figure 3.7: Reciprocal space map of Al2O3 – symmetric axis......................................... 48 Figure 3.8: Thin TiN coupled scan .................................................................................. 49 Figure 3.9: Thick TiN coupled scan ................................................................................ 52 Figure 3.10: Reciprocal space map of Al2O3 – asymmetric axis..................................... 53 Figure 3.11: Rocking curve FWHM comparison ............................................................ 55 Figure 3.12: Purely polycrystalline pole figure ............................................................... 57 Figure 3.13: Single crystal pole figure............................................................................. 58 Figure 3.14: CasaXPS peak fitting................................................................................... 60 Figure 3.15: Optical propagation in a film....................................................................... 65 Figure 3.16: Hall Effect configuration............................................................................. 70 Figure 4.1: ScN hexagonal structure................................................................................ 73 Figure 4.2: In plane rotation............................................................................................. 74 Figure 4.3: ScN (111) pole figure.................................................................................... 75
xi
Figure 4.4: Al2O3 (1-12) pole figure................................................................................ 76 Figure 4.5: ScN nitrogen fraction surveys ....................................................................... 78 Figure 4.6: ScN nitrogen fractions – zoomed in.............................................................. 79 Figure 4.7: ScN original power series surveys ................................................................ 80 Figure 4.8: ScN power series – zoomed in ...................................................................... 81 Figure 4.9: ScN temperature series surveys..................................................................... 82 Figure 4.10: ScN temperature series detailed scans......................................................... 83 Figure 4.11: ScN nitrogen fraction at 860°C substrate temperature................................ 84 Figure 4.12: Power series optimization at high temp – original set................................. 85 Figure 4.13: ScN power series optimization at higher temperature................................. 86 Figure 4.14: Surface AFM measurements of ScN power series...................................... 88 Figure 4.15: Rocking curve of 75W ScN sample ............................................................ 89 Figure 4.16: ScN power series rocking curve FWHMs................................................... 90 Figure 4.17: ScN full range optical constants.................................................................. 92 Figure 4.18: ScN bandgap examination of power series ................................................. 93 Figure 4.19: ScN room temperature Hall Effect results .................................................. 94 Figure 4.20: ScN SIMS analysis...................................................................................... 95 Figure 4.21: ScN power series planar spacings ............................................................... 96 Figure 5.1: AlN nitrogen fraction coupled scans........................................................... 101 Figure 5.2: AlN overlaid nitrogen fraction coupled scans............................................. 102 Figure 5.3: AlN fN2 AFM analysis................................................................................. 103 Figure 5.4: AlN substrate temperature stacked coupled scans ...................................... 105 Figure 5.5: AlN overlaid substrate temperature optimization ....................................... 106