Growth, Optimization, and Characterization of Transition Metal

Growth, Optimization, and Characterization of Transition Metal

<p>GROWTH, OPTIMIZATION,AND CHARACTERIZATION OF TRANSITION METALNITRIDESAND TRANSITION METALOXIDES FOR ELECTRONIC <br>AND OPTICALAPPLICATIONS </p><p>Thesis <br>Submitted to <br>The School of Engineering of the UNIVERSITY OF DAYTON </p><p>In Partial Fulfillment of the Requirements for <br>The Degree of <br>Master of Science in Electro-Optics </p><p>By <br>Zachary Biegler </p><p>UNIVERSITY OF DAYTON <br>Dayton, Ohio December 2019 <br>GROWTH, OPTIMIZATION, AND CHARACTERIZATION OF TRANSITION <br>METAL NITRIDES AND TRANSITION METAL OXIDES FOR ELECTRONIC AND <br>OPTICAL APPLICATIONS </p><p>Name: Biegler, Zachary Jay APPROVED BY: </p><p>Andrew Sarangan, Ph.D., P.E. Advisory Committee Chairman Professor <br>Amber Reed, Ph.D. Committee Member Materials Engineer </p><ul style="display: flex;"><li style="flex:1">AFRL/RXAN </li><li style="flex:1">Department of Electro-Optics and Photonics </li></ul><p>Partha Banerjee, Ph.D. Committee Member Professor Department of Electro-Optics and Photonics </p><p>Robert J. Wilkens, Ph.D., P.E. Associate Dean for Research and Innovation Professor <br>Eddy M. Rojas, Ph.D., M.A., P.E. Dean, School of Engineering </p><p>School of Engineering </p><p>ii <br>ABSTRACT <br>GROWTH, OPTIMIZATION, AND CHARACTERIZATION OF TRANSITION <br>METAL NITRIDES AND TRANSITION METAL OXIDES FOR ELECTRONIC AND <br>OPTICAL APPLICATIONS </p><p>Name: Biegler,&nbsp;Zachary J. University of Dayton </p><p>Advisor: Dr.&nbsp;Andrew Sarangan <br>The next generation of electronic and optical devices require high quality, crystalline materials in order to obtain relevant properties for novel devices.&nbsp;Two classes of materials offer unique material properties that can satisfy the requirements for next generation devices.&nbsp;These two classes of materials are the transition metal nitrides (TMNs) and transition metal oxides (TMOs).&nbsp;These materials offer electronic properties that range from conductive, metallic, materials to semiconducting and insulating materials. However,&nbsp;for many optical and electronic applications, the band structure and crystalline symmetries must be preserved.&nbsp;This work examines the growth and characterization of the TMN materials AlN and ScN as well as the TMO materials VO<sub style="top: 0.08em;">2 </sub>and TiO<sub style="top: 0.08em;">2</sub>. In&nbsp;all these materials, the crystalline structure plays and extremely important role in the desired properties.&nbsp;In addition, incorporation of other impurities can detrimentally impact the functionality of these film materials.&nbsp;In order to minimize the impurity incorporation and maintain the crystalline structure, the growth of AlN, ScN, VO<sub style="top: 0.08em;">2</sub>, and TiO<sub style="top: 0.08em;">2 </sub>films by various deposition techniques were examined and optimized. This allowed growth of high quality TMN and TMO materials that resulted in </p><p>iii characterization and optimization of the relevant optical, electronic, and structural properties and, somewhat, the degree to which these properties could be tuned through growth conditions. </p><p>iv </p><p>DEDICATION </p><p>This work is dedicated to my parents and siblings. v<br>ACKNOWLEDGMENTS <br>This work would not have been possible without the help and guidance from so many different people.&nbsp;My advisors Dr. Andrew Sarangan and Dr. Amber Reed both spent many hours helping me get into a field of study of which I was not familiar.&nbsp;Words cannot express how much their guidance and patience means to me.&nbsp;I also would like to thank Dr. Kurt Eyink, Dr. Tyson Back, Dr. John Centar, and Dr. David Look for all of their help taking data and discussing results obtained through the characterization of these films. Dr.&nbsp;Dean Brown provided COMSOL simulations of the magnetic fields in the unbalanced magnetron system.&nbsp;In addition, none of this work could have been possible without the help of Hadley Smith and Rachel Adams who helped with sample growth and XRD characterization of some of the TMN materials.&nbsp;Dr. Pengfei Guo was instrumental in the growth of VO<sub style="top: 0.08em;">2 </sub>by thermal oxidation.&nbsp;Last, but certainly not least, I want to thank Madelyn Hill for all of the AFM surface analysis that was performed in this work as well as Dr. Albert Hilton for the piezoelectric force microscopy measurements. <br>Additionally, none of the transition metal nitride work could have commenced without the support of AFOSR under the award number FA9550-17RYCOR490. </p><p>vi <br>TABLE OF CONTENTS <br>ABSTRACT....................................................................................................................... iii DEDICATION.................................................................................................................... v ACKNOWLEDGMENTS ................................................................................................. vi <a href="#10_0">LIST OF FIGURES ............................................................................................................ x </a><a href="#15_0">LIST OF ABBREVIATIONS AND NOTATION</a><a href="#15_0">S</a><a href="#15_0">.</a><a href="#15_0">........................................................ xv </a><a href="#17_0">CHAPTER 1 INTRODUCTION TO MATERIAL SYSTEM</a><a href="#17_0">S</a><a href="#17_0">.</a><a href="#17_0">........................................ 1 </a><br><a href="#18_0">1.1 Transition</a><a href="#18_0">&nbsp;</a><a href="#18_0">Metal Nitrides ..................................................................................... 2 </a><br><a href="#19_0">1.1.1 </a><a href="#20_0">1.1.2 </a><a href="#0_0">1.1.3 </a><br><a href="#19_0">Titanium Nitride............................................................................................ 3 </a><a href="#20_0">Scandium Nitride .......................................................................................... 4 </a><a href="#0_0">Aluminum Nitride......................................................................................... 5 </a><br><a href="#0_1">1.2 Transition</a><a href="#0_1">&nbsp;</a><a href="#0_1">Metal Oxides....................................................................................... 9 </a><br><a href="#0_2">1.2.1 </a><a href="#0_1">1.2.2 </a><br><a href="#0_2">Vanadium Oxid</a><a href="#0_2">e</a><a href="#0_2">.</a><a href="#0_2">.......................................................................................... 9 </a><a href="#0_1">Titanium Oxid</a><a href="#0_1">e</a><a href="#0_1">.</a><a href="#0_1">.......................................................................................... 12 </a><br><a href="#0_1">CHAPTER 2 GROWTH SYSTEMS................................................................................ 15 </a><br><a href="#0_3">2.1 DC</a><a href="#0_3">&nbsp;</a><a href="#0_3">Sputtering System........................................................................................ 15 </a><br><a href="#0_4">2.1.1 </a><a href="#0_5">2.1.2 </a><a href="#0_1">2.1.3 </a><a href="#0_6">2.1.4 </a><br><a href="#0_4">Sputter Deposition ...................................................................................... 15 </a><a href="#0_5">Reactive Sputterin</a><a href="#0_5">g</a><a href="#0_5">.</a><a href="#0_5">.................................................................................... 17 </a><a href="#0_1">Magnetron Sputtering ................................................................................. 18 </a><a href="#0_6">Sputtering Syste</a><a href="#0_6">m</a><a href="#0_6">.</a><a href="#0_6">...................................................................................... 21 </a><br><a href="#0_7">2.2 Controllably-Unbalanced</a><a href="#0_7">&nbsp;</a><a href="#0_7">DC Reactive Magnetron Sputtering ......................... 22 </a></p><ul style="display: flex;"><li style="flex:1"><a href="#0_1">2.2.1 </a></li><li style="flex:1"><a href="#0_1">Unbalanced Magnetron Sputtering ............................................................. 23 </a></li></ul><p>vii </p><ul style="display: flex;"><li style="flex:1">2.2.2 </li><li style="flex:1">Controllably-Unbalanced Sputtering System ............................................. 26 </li></ul><p>2.3 Ion&nbsp;Assisted Evaporation System....................................................................... 30 <br>2.3.1 2.3.2 2.3.3 <br>Thermal Evaporation .................................................................................. 31 Ion Assisted Evaporation ............................................................................ 33 IAD System................................................................................................. 34 <br><a href="#0_1">CHAPTER 3 CHARACTERIZATION TECHNIQUES.................................................. 37 </a><br><a href="#0_6">3.1 X-Ray</a><a href="#0_6">&nbsp;</a><a href="#0_6">Diffractometry ........................................................................................ 37 </a><br><a href="#0_12">3.1.1 </a><a href="#0_1">3.1.2 </a><a href="#0_1">3.1.3 </a><br><a href="#0_12">Introduction to XRD ................................................................................... 38 </a><a href="#0_1">Grazing Incident X-Ray Diffraction ........................................................... 44 </a><a href="#0_1">Coupled Scans............................................................................................. 46 </a></p><ul style="display: flex;"><li style="flex:1"><a href="#0_13">3.1.3.1 </a></li><li style="flex:1"><a href="#0_13">Symmetric Coupled Scans................................................................... 46 </a></li></ul><p><a href="#0_14">Asymmetric Coupled Scans................................................................. 52 </a><br><a href="#0_2">Rocking Curves........................................................................................... 54 </a><a href="#0_10">Pole Figures ................................................................................................ 56 </a><br><a href="#0_14">3.1.3.2 </a><br><a href="#0_2">3.1.4 </a><a href="#0_10">3.1.5 </a><br><a href="#0_1">3.2 X-Ray</a><a href="#0_1">&nbsp;</a><a href="#0_1">Photoelectron Spectroscopy ................................................................... 59 </a><a href="#0_15">3.3 Secondary</a><a href="#0_15">&nbsp;</a><a href="#0_15">Ion Mass Spectrometry..................................................................... 62 </a><a href="#0_6">3.4 Spectroscopic</a><a href="#0_6">&nbsp;</a><a href="#0_6">Ellipsometry................................................................................ 63 </a><a href="#0_16">3.5 Hall</a><a href="#0_16">&nbsp;</a><a href="#0_16">Effect and Transport................................................................................... 68 </a><br><a href="#0_1">CHAPTER 4 SCANDIUM NITRIDE GROWTH AND CHARACTERIZATION ........ 72 </a><br><a href="#0_17">4.1 Nitrogen</a><a href="#0_17">&nbsp;</a><a href="#0_17">Fraction ............................................................................................... 76 </a><a href="#0_18">4.2 Magnetron</a><a href="#0_18">&nbsp;</a><a href="#0_18">Power ............................................................................................... 79 </a><a href="#0_19">4.3 Substrate</a><a href="#0_19">&nbsp;</a><a href="#0_19">Temperature........................................................................................ 81 </a><a href="#0_1">4.4 Final</a><a href="#0_1">&nbsp;</a><a href="#0_1">Optimization.............................................................................................. 84 </a></p><p>viii <br>4.5 ScN&nbsp;Optical and Electronic Properties............................................................... 91 <br>CHAPTER 5 ALUMINUM NITRIDE GROWTH AND CHARACTERIZATION ....... 99 <br>5.1 Nitrogen&nbsp;Fraction ............................................................................................... 99 5.2 Substrate&nbsp;Temperature...................................................................................... 104 5.3 Coil&nbsp;Current...................................................................................................... 108 <a href="#0_2">5.4 Magnetron</a><a href="#0_2">&nbsp;</a><a href="#0_2">Powe</a><a href="#0_2">r</a><a href="#0_2">.</a><a href="#0_2">............................................................................................ 112 </a><a href="#0_21">5.5 Final</a><a href="#0_21">&nbsp;</a><a href="#0_21">Optimization............................................................................................ 116 </a><a href="#0_20">5.6 Piezoelectric</a><a href="#0_20">&nbsp;</a><a href="#0_20">Propertie</a><a href="#0_20">s</a><a href="#0_20">.</a><a href="#0_20">................................................................................... 119 </a><br><a href="#0_6">5.6.1 </a><a href="#0_19">5.6.2 </a><br><a href="#0_6">TiN on Al</a><sub style="top: 0.08em;"><a href="#0_6">2</a></sub>O<sub style="top: 0.08em;"><a href="#0_6">3</a></sub>............................................................................................. 119 <a href="#0_19">AlN on TiN on Al</a><sub style="top: 0.08em;"><a href="#0_19">2</a></sub>O<sub style="top: 0.08em;"><a href="#0_19">3</a></sub>................................................................................ 121 <br><a href="#0_1">CHAPTER 6 TITANIUM OXIDE GROWTH AND CHARACTERIZATION ........... 128 </a><a href="#0_1">CHAPTER 7 VANADIUM OXIDE GROWTH AND CHARACTERIZATIO</a><a href="#0_1">N</a><a href="#0_1">.</a><a href="#0_1">........ 131 </a><br><a href="#0_9">7.1 Deposition</a><a href="#0_9">&nbsp;</a><a href="#0_9">of VO</a><sub style="top: 0.08em;"><a href="#0_9">2 </a></sub>on Al<sub style="top: 0.08em;"><a href="#0_9">2</a></sub>O<sub style="top: 0.08em;"><a href="#0_9">3 </a></sub>............................................................................ 131 <a href="#0_16">7.2 Deposition</a><a href="#0_16">&nbsp;</a><a href="#0_16">of VO</a><sub style="top: 0.08em;"><a href="#0_16">2</a></sub>on TiO<sub style="top: 0.08em;"><a href="#0_16">2 </a></sub>............................................................................... 134 <a href="#0_1">7.3 VO</a><sub style="top: 0.08em;"><a href="#0_1">2 </a></sub>Films by Thermal Oxidatio<a href="#0_1">n</a><a href="#0_1">.</a><a href="#0_1">................................................................... 137 </a><br><a href="#0_1">CONCLUSIONS AND FUTURE WOR</a><a href="#0_1">K</a><a href="#0_1">.</a><a href="#0_1">.................................................................... 151 </a><a href="#0_1">REFERENCES ............................................................................................................... 152 </a></p><p>ix <br>LIST OF FIGURES <br>Figure 1.1:&nbsp;Rock-salt crystal structure............................................................................... 3 Figure 1.2:&nbsp;Wurtzite crystal structure ................................................................................ 6 Figure 1.3:&nbsp;Comparison of piezoelectric material maximum use temperatures ................ 7 <a href="#0_24">Figure 1.4:</a><a href="#0_24">&nbsp;</a><a href="#0_24">Al</a><sub style="top: 0.08em;"><a href="#0_24">1-x</a></sub>Sc<sub style="top: 0.08em;"><a href="#0_24">x</a></sub>N piezoelectric coefficients with varying Sc conten<a href="#0_24">t</a><a href="#0_24">.</a><a href="#0_24">........................ 8 </a><a href="#0_25">Figure 1.5:</a><a href="#0_25">&nbsp;</a><a href="#0_25">VO</a><sub style="top: 0.08em;"><a href="#0_25">2 </a></sub>high temperature rutile phase ................................................................ 10 <a href="#0_26">Figure 1.6:</a><a href="#0_26">&nbsp;</a><a href="#0_26">VO</a><sub style="top: 0.08em;"><a href="#0_26">2 </a></sub>room temperature monoclinic phase ..................................................... 11 <a href="#0_27">Figure 1.7:</a><a href="#0_27">&nbsp;</a><a href="#0_27">TiO</a><sub style="top: 0.08em;"><a href="#0_27">2 </a></sub>rutile and anatase structure<a href="#0_27">s</a><a href="#0_27">.</a><a href="#0_27">................................................................. 13 </a><a href="#0_28">Figure 2.1:</a><a href="#0_28">&nbsp;</a><a href="#0_28">Sputter deposition.......................................................................................... 17 </a><a href="#0_29">Figure 2.2:</a><a href="#0_29">&nbsp;</a><a href="#0_29">Magnetron sputtering field lines.................................................................... 18 </a><a href="#0_30">Figure 2.3:</a><a href="#0_30">&nbsp;</a><a href="#0_30">Simulated electron trajectory in magnetron fiel</a><a href="#0_30">d</a><a href="#0_30">.</a><a href="#0_30">......................................... 19 </a><a href="#0_31">Figure 2.4:</a><a href="#0_31">&nbsp;</a><a href="#0_31">Magnetron plasma at target ........................................................................... 20 </a><a href="#0_32">Figure 2.5:</a><a href="#0_32">&nbsp;</a><a href="#0_32">Magnetron sputter target ............................................................................... 20 </a><a href="#0_33">Figure 2.6:</a><a href="#0_33">&nbsp;</a><a href="#0_33">Denton Vacuum Explorer 14 sputter system................................................. 22 </a><a href="#0_34">Figure 2.7:</a><a href="#0_34">&nbsp;</a><a href="#0_34">Balanced and unbalanced field lines ............................................................. 23 </a><a href="#0_35">Figure 2.8:</a><a href="#0_35">&nbsp;</a><a href="#0_35">Unbalanced magnetron field line</a><a href="#0_35">s</a><a href="#0_35">.</a><a href="#0_35">................................................................ 24 </a><a href="#0_36">Figure 2.9:</a><a href="#0_36">&nbsp;</a><a href="#0_36">Simulated electron trajectories in an unbalanced syste</a><a href="#0_36">m</a><a href="#0_36">.</a><a href="#0_36">............................. 24 </a><a href="#0_37">Figure 2.10:</a><a href="#0_37">&nbsp;</a><a href="#0_37">Plasma in an unbalanced system ................................................................. 25 </a><a href="#0_38">Figure 2.11:</a><a href="#0_38">&nbsp;</a><a href="#0_38">Controllably-unbalanced reactive magnetron sputtering system ................ 26 </a><a href="#0_39">Figure 2.12:</a><a href="#0_39">&nbsp;</a><a href="#0_39">Substrate heating calibration ....................................................................... 27 </a><a href="#0_40">Figure 2.13:</a><a href="#0_40">&nbsp;</a><a href="#0_40">COMSOL </a><a href="#0_40">퐵 </a><a href="#0_40">Simulatio</a><a href="#0_40">n</a><a href="#0_40">.</a><a href="#0_40">............................................................................. 29 </a><a href="#0_41">Figure 2.14:</a><a href="#0_41">&nbsp;</a><a href="#0_41">Plasma comparison of balanced and unbalanced configuration.................. 30 </a></p><p>x<br>Figure 2.15:&nbsp;Thermal evaporation.................................................................................... 31 Figure 2.16:&nbsp;Electrom beam evaporation......................................................................... 32 Figure 2.17:&nbsp;Ion assisted evaporation .............................................................................. 34 Figure 2.18:&nbsp;Ion assisted evaporation system .................................................................. 35 Figure 3.1:&nbsp;Bragg diffraction ........................................................................................... 39 <a href="#0_46">Figure 3.2:</a><a href="#0_46">&nbsp;</a><a href="#0_46">Powder XRD system diagram ....................................................................... 41 </a><a href="#0_47">Figure 3.3:</a><a href="#0_47">&nbsp;</a><a href="#0_47">Powder diffraction scan................................................................................. 42 </a><a href="#0_48">Figure 3.4:</a><a href="#0_48">&nbsp;</a><a href="#0_48">Powder diffraction </a><a href="#0_48">– </a><a href="#0_48">differing planes............................................................ 43 </a><a href="#0_49">Figure 3.5:</a><a href="#0_49">&nbsp;</a><a href="#0_49">Example of a GIXRD sca</a><a href="#0_49">n</a><a href="#0_49">.</a><a href="#0_49">........................................................................... 45 </a><a href="#0_50">Figure 3.6:</a><a href="#0_50">&nbsp;</a><a href="#0_50">Reciprocal space map of Al</a><sub style="top: 0.08em;"><a href="#0_50">2</a></sub>O<sub style="top: 0.08em;"><a href="#0_50">3 </a></sub>..................................................................... 47 <a href="#0_51">Figure 3.7:</a><a href="#0_51">&nbsp;</a><a href="#0_51">Reciprocal space map of Al</a><sub style="top: 0.08em;"><a href="#0_51">2</a></sub>O<sub style="top: 0.08em;"><a href="#0_51">3 </a></sub>– <a href="#0_51">symmetric axis......................................... 48 </a><a href="#0_52">Figure 3.8:</a><a href="#0_52">&nbsp;</a><a href="#0_52">Thin TiN coupled scan .................................................................................. 49 </a><a href="#0_53">Figure 3.9:</a><a href="#0_53">&nbsp;</a><a href="#0_53">Thick TiN coupled scan ................................................................................ 52 </a><a href="#0_54">Figure 3.10:</a><a href="#0_54">&nbsp;</a><a href="#0_54">Reciprocal space map of Al</a><sub style="top: 0.08em;"><a href="#0_54">2</a></sub>O<sub style="top: 0.08em;"><a href="#0_54">3 </a></sub>– <a href="#0_54">asymmetric axi</a><a href="#0_54">s</a><a href="#0_54">.</a><a href="#0_54">.................................... 53 </a><a href="#0_55">Figure 3.11:</a><a href="#0_55">&nbsp;</a><a href="#0_55">Rocking curve FWHM comparison ............................................................ 55 </a><a href="#0_56">Figure 3.12:</a><a href="#0_56">&nbsp;</a><a href="#0_56">Purely polycrystalline pole figure ............................................................... 57 </a><a href="#0_57">Figure 3.13:</a><a href="#0_57">&nbsp;</a><a href="#0_57">Single crystal pole figure............................................................................. 58 </a><a href="#0_58">Figure 3.14:</a><a href="#0_58">&nbsp;</a><a href="#0_58">CasaXPS peak fitting................................................................................... 60 </a><a href="#0_59">Figure 3.15:</a><a href="#0_59">&nbsp;</a><a href="#0_59">Optical propagation in a film....................................................................... 65 </a><a href="#0_10">Figure 3.16:</a><a href="#0_10">&nbsp;</a><a href="#0_10">Hall Effect configuration............................................................................. 70 </a><a href="#0_46">Figure 4.1:</a><a href="#0_46">&nbsp;</a><a href="#0_46">ScN hexagonal structure................................................................................ 73 </a><a href="#0_60">Figure 4.2:</a><a href="#0_60">&nbsp;</a><a href="#0_60">In plane rotation............................................................................................. 74 </a><a href="#0_61">Figure 4.3:</a><a href="#0_61">&nbsp;</a><a href="#0_61">ScN (111) pole figur</a><a href="#0_61">e</a><a href="#0_61">.</a><a href="#0_61">................................................................................... 75 </a></p><p>xi <br>Figure 4.4:&nbsp;Al<sub style="top: 0.08em;"><a href="#0_62">2</a></sub>O<sub style="top: 0.08em;"><a href="#0_62">3 </a></sub>(1-12) pole figure................................................................................ 76 Figure 4.5:&nbsp;ScN nitrogen fraction surveys ....................................................................... 78 Figure 4.6:&nbsp;ScN nitrogen fractions – zoomed in.............................................................. 79 Figure 4.7:&nbsp;ScN original power series surveys ................................................................ 80 Figure 4.8:&nbsp;ScN power series – zoomed in ...................................................................... 81 <a href="#0_66">Figure 4.9:</a><a href="#0_66">&nbsp;</a><a href="#0_66">ScN temperature series surveys..................................................................... 82 </a><a href="#0_67">Figure 4.10:</a><a href="#0_67">&nbsp;</a><a href="#0_67">ScN temperature series detailed scans......................................................... 83 </a><a href="#0_16">Figure 4.11:</a><a href="#0_16">&nbsp;</a><a href="#0_16">ScN nitrogen fraction at 860°C substrate temperatur</a><a href="#0_16">e</a><a href="#0_16">.</a><a href="#0_16">............................... 84 </a><a href="#0_68">Figure 4.12:</a><a href="#0_68">&nbsp;</a><a href="#0_68">Power series optimization at high temp </a><a href="#0_68">– </a><a href="#0_68">original set................................. 85 </a><a href="#0_69">Figure 4.13:</a><a href="#0_69">&nbsp;</a><a href="#0_69">ScN power series optimization at higher temperature................................. 86 </a><a href="#0_70">Figure 4.14:</a><a href="#0_70">&nbsp;</a><a href="#0_70">Surface AFM measurements of ScN power serie</a><a href="#0_70">s</a><a href="#0_70">.</a><a href="#0_70">..................................... 88 </a><a href="#0_71">Figure 4.15:</a><a href="#0_71">&nbsp;</a><a href="#0_71">Rocking curve of 75W ScN sample ............................................................ 89 </a><a href="#0_72">Figure 4.16:</a><a href="#0_72">&nbsp;</a><a href="#0_72">ScN power series rocking curve FWHM</a><a href="#0_72">s</a><a href="#0_72">.</a><a href="#0_72">.................................................. 90 </a><a href="#0_73">Figure 4.17:</a><a href="#0_73">&nbsp;</a><a href="#0_73">ScN full range optical constant</a><a href="#0_73">s</a><a href="#0_73">.</a><a href="#0_73">................................................................. 92 </a><a href="#0_73">Figure 4.18:</a><a href="#0_73">&nbsp;</a><a href="#0_73">ScN bandgap examination of power series ................................................. 93 </a><a href="#0_74">Figure 4.19:</a><a href="#0_74">&nbsp;</a><a href="#0_74">ScN room temperature Hall Effect results .................................................. 94 </a><a href="#0_75">Figure 4.20:</a><a href="#0_75">&nbsp;</a><a href="#0_75">ScN SIMS analysis...................................................................................... 95 </a><a href="#0_76">Figure 4.21:</a><a href="#0_76">&nbsp;</a><a href="#0_76">ScN power series planar spacings ............................................................... 96 </a><a href="#0_77">Figure 5.1:</a><a href="#0_77">&nbsp;</a><a href="#0_77">AlN nitrogen fraction coupled scan</a><a href="#0_77">s</a><a href="#0_77">.</a><a href="#0_77">.......................................................... 101 </a><a href="#0_78">Figure 5.2:</a><a href="#0_78">&nbsp;</a><a href="#0_78">AlN overlaid nitrogen fraction coupled scan</a><a href="#0_78">s</a><a href="#0_78">.</a><a href="#0_78">............................................ 102 </a><a href="#0_79">Figure 5.3:</a><a href="#0_79">&nbsp;</a><a href="#0_79">AlN f</a><sub style="top: 0.08em;"><a href="#0_79">N2 </a></sub>AFM analysi<a href="#0_79">s</a><a href="#0_79">.</a><a href="#0_79">................................................................................ 103 </a><a href="#0_80">Figure 5.4:</a><a href="#0_80">&nbsp;</a><a href="#0_80">AlN substrate temperature stacked coupled scans ...................................... 105 </a><a href="#0_81">Figure 5.5:</a><a href="#0_81">&nbsp;</a><a href="#0_81">AlN overlaid substrate temperature optimization ....................................... 106 </a></p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    173 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us