Pacbio-Based Mitochondrial Genome Assembly of Leucaena Trichandra (Leguminosae) and an Intrageneric Assessment of Mitochondrial RNA Editing

Total Page:16

File Type:pdf, Size:1020Kb

Pacbio-Based Mitochondrial Genome Assembly of Leucaena Trichandra (Leguminosae) and an Intrageneric Assessment of Mitochondrial RNA Editing Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 PacBio-based mitochondrial genome assembly of Leucaena trichandra (Leguminosae) and an intrageneric assessment of mitochondrial RNA editing Kovar, Lynsey ; Nageswara-Rao, Madhugiri ; Ortega-Rodriguez, Sealtiel ; Dugas, Diana V ; Straub, Shannon ; Cronn, Richard ; Strickler, Susan R ; Hughes, Colin E ; Hanley, Kathryn A ; Rodriguez, Deyra N ; Langhorst, Bradley W ; Dimalanta, Eileen T ; Bailey, C Donovan Abstract: Reconstructions of vascular plant mitochondrial genomes (mt-genomes) are notoriously compli- cated by rampant recombination that has resulted in comparatively few plant mt-genomes being available. The dearth of plant mitochondrial resources has limited our understanding of mt-genome structural di- versity, complex patterns of RNA editing, and the origins of novel mt-genome elements. Here, we use an efficient long read (PacBio) iterative assembly pipeline to generate mt-genome assemblies for Leucaena trichandra (Leguminosae: Caesalpinioideae: mimosoid clade), providing the first assessment of non- papilionoid legume mt-genome content and structure to date. The efficiency of the assembly approach facilitated the exploration of alternative structures that are common place among plant mitochondrial genomes. A compact version (729 kbp) of the recovered assemblies was used to investigate sources of mt-genome size variation among legumes and mt-genome sequence similarity to the legume associated root holoparasite Lophophytum. The genome and an associated suite of transcriptome data from select species of Leucaena permitted an in-depth exploration of RNA editing in a diverse clade of closely related species that includes hybrid lineages. RNA editing in the allotetraploid, Leucaena leucocephala, is con- sistent with co-option of nearly equal maternal and paternal C-to-U edit components, generating novel combinations of RNA edited sites. A preliminary investigation of L. leucocephala C-to-U edit frequencies identified the potential for a hybrid to generate unique pools of alleles from parental variation through edit frequencies shared with one parental lineage, those intermediate between parents, and transgressive patterns. DOI: https://doi.org/10.1093/gbe/evy179 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-156881 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. Originally published at: Kovar, Lynsey; Nageswara-Rao, Madhugiri; Ortega-Rodriguez, Sealtiel; Dugas, Diana V; Straub, Shan- non; Cronn, Richard; Strickler, Susan R; Hughes, Colin E; Hanley, Kathryn A; Rodriguez, Deyra N; Langhorst, Bradley W; Dimalanta, Eileen T; Bailey, C Donovan (2018). PacBio-based mitochondrial genome assembly of Leucaena trichandra (Leguminosae) and an intrageneric assessment of mitochondrial RNA editing. Genome Biology and Evolution, 10(9):2501-2517. DOI: https://doi.org/10.1093/gbe/evy179 2 GBE PacBio-Based Mitochondrial Genome Assembly of Leucaena trichandra (Leguminosae) and an Intrageneric Assessment of Mitochondrial RNA Editing Downloaded from https://academic.oup.com/gbe/article-abstract/10/9/2501/5076815 by University of Zurich user on 01 October 2018 Lynsey Kovar1, Madhugiri Nageswara-Rao1, Sealtiel Ortega-Rodriguez1,DianaV.Dugas1, Shannon Straub2, Richard Cronn3, Susan R. Strickler4, Colin E. Hughes5, Kathryn A. Hanley1, Deyra N. Rodriguez6,BradleyW. Langhorst6, Eileen T. Dimalanta6, and C. Donovan Bailey1,* 1Department of Biology, New Mexico State University 2Department of Biology, Hobart and William Smith Colleges, Geneva, New York 3Pacific Northwest Research Station, Corvallis, Oregon 4Boyce Thompson Institute, Ithaca, New York 5Department of Systematic & Evolutionary Botany, University of Zurich, Switzerland 6New England Biolabs, Ipswich, Massachusetts *Corresponding author: E-mail: [email protected]. Accepted: August 17, 2018 Data deposition: This project has been deposited at NCBI SRA under the accession PRJNA379675. Abstract Reconstructions of vascular plant mitochondrial genomes (mt-genomes) are notoriously complicated by rampant recombination that has resulted in comparatively few plant mt-genomes being available. The dearth of plant mitochondrial resources has limited our understanding of mt-genome structural diversity, complex patterns of RNA editing, and the origins of novel mt-genome elements. Here, we use an efficient long read (PacBio) iterative assembly pipeline to generate mt-genome assemblies for Leucaena trichandra (Leguminosae: Caesalpinioideae: mimosoid clade), providing the first assessment of non-papilionoid legume mt-genome content and structure to date. The efficiency of the assembly approach facilitated the exploration of alternative structures that are common place among plant mitochondrial genomes. A compact version (729 kbp) of the recovered assemblies was used to investigate sources of mt-genome size variation among legumes and mt-genome sequence similarity to the legume associated root holoparasite Lophophytum. The genome and an associated suite of transcriptome data from select species of Leucaena permitted an in-depth exploration of RNA editing in a diverse clade of closely related species that includes hybrid lineages. RNA editing in the allotetraploid, Leucaena leucocephala, is consistent with co-option of nearly equal maternal and paternal C-to-U edit components, generating novel combinations of RNA edited sites. A preliminary investigation of L. leucoce- phala C-to-U edit frequencies identified the potential for a hybrid to generate unique pools of alleles from parental variation through edit frequencies shared with one parental lineage, those intermediate between parents, and transgressive patterns. Key words: Caesalpinoideae, mimosoid clade, iterative assembler, PacBio, transgressive, hybrid. Introduction the sizes of mt-genomes have been shown to vary over Mitochondrial genomes (mt-genomes) are known to be 100-fold across eukaryotes (Wu, Cuthbert, et al. 2015), highly reduced in terms of genic content when compared wherein the land plants display some of the largest and with their alphaproteobacterial ancestors. The transfer of mi- most variable assemblies (Gualberto and Newton 2017). tochondrial genes to the nucleus is well-known across eukar- Major differences in mt-genome size are attributed to non- yotes, where gene content can vary slightly even among coding sequences, as variation in the total number of genes closely related taxa (KuboandNewton2008). In addition, and their combined lengths account for a limited amount of ß The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionNon-CommercialLicense(http://creativecommons.org/licenses/by-nc/4.0/),whichpermitsnon- commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] Genome Biol. Evol. 10(9):2501–2517. doi:10.1093/gbe/evy179 Advance Access publication August 20, 2018 2501 Kovar et al. GBE the observed inter genomic variation. Acquisition of noncod- species of angiosperms are needed to better understand the ing sequences is due in part to horizontal DNA transfer be- degree of variation in RNA editing between recently diverged tween other organelles and exogenous sources (Plitmann lineages as well as the impact of interspecific hybridization on 1993; Bergthorsson et al. 2003; Moweretal.2010; Warren patterns of editing. Such variation has been posited to provide et al. 2016), but a large portion of noncoding sequences are potentially important variation contributing to adaptation and not conserved between closely related species. Thus, their population-level divergence (Gommans et al. 2009). origins often remain unclear. The combination of land plant mt-genome structural var- Downloaded from https://academic.oup.com/gbe/article-abstract/10/9/2501/5076815 by University of Zurich user on 01 October 2018 Variation in plant mt-genome structure is also widespread, iation and their RNA-editing features illustrate several impor- even among members of the same species. This is mostly due tant features associated with the complex nature of these to the presence of dispersed repeats that contribute to exten- genomes and their transcriptomes. However, these dynamic sive homologous recombination (Stern and Palmer 1984; genomes remain among the least well surveyed eukaryotic Alverson et al. 2010; Gualberto and Newton 2017). During organellar genomic systems (e.g., Richardson et al. 2013). the early days of mt-genome analysis, plants were believed to Within the economically and ecologically important legume have circular mt-genomes like their metazoan counterparts. plant family there are currently seven mt-genomes available Continued work involving microscopy and related techniques for comparative studies (table 1), but these are all repre- in plant mt-DNAs recovered mostly linear molecules of varying sentatives of subfamily Papilionoideae. Even within this size, with most all much larger than the standard 16 kbp phylogenetically restricted set of representatives, there is metazoan mitochondrial genomes that had been character- considerable mt-genome variation, including a lack of ized at the time (Ward et al. 1981).
Recommended publications
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Floristic, Diversity and Spatial Distribution of Tree Species in a Dry Forest in Southern Brazil
    Freitas et al.: Floristic diversity and spatial distribution of tree species - 511 - FLORISTIC, DIVERSITY AND SPATIAL DISTRIBUTION OF TREE SPECIES IN A DRY FOREST IN SOUTHERN BRAZIL FREITAS, W. K.1* ‒ MAGALHÃES, L. M. S.2 ‒ VIVÈS, L. R.1 1Postgraduate Program in Environmental Technology - PGTA – Fluminense Federal University – UFF. Av. dos Trabalhadores, 420, 27.255-125, Vila Santa Cecília, Volta Redonda, RJ, Brasil (e-mail: [email protected]) 2Department of Environmental Sciences and the Postgraduate Program in Sustainable Development Practices - PPGPDS – Rural Federal University of Rio de Janeiro – UFRRJ, Rod. BR-465, km 7,23851-970, Seropédica, RJ, Brasil (e-mail: [email protected]) *Corresponding author e-mail: [email protected]; tel: +55-24-2107-3434 (Received 2nd Jul 2016; accepted 11th Oct 2016) Abstract. This study was conducted in a fragment of deciduous seasonal forest (DSF), located between the municipalities of Piratuba and Ipira, Santa Catarina. The objective was to evaluate the floristic composition and the successional stage through the ecological groups, the Shannon diversity index (H') and the dispersal syndromes of species, also using the H' and the McGinnies index (IGA) to determine the pattern of spatial distribution of species. 14 transects were installed, each with 1,000 m2, considering all trees with Diameter at Breast Hight (DBH) ≤ 4.0 cm. In total, 2,125 individuals were sampled, belonging to 113 species and 34 families. Myrtaceae and Fabaceae were the families with the highest species richness, with 14.2% and 11.5%, respectively. Euphorbiaceae and Lauraceae added approximately 25% of the individuals. The most abundant species were Actiniostemon concolor (Spreng.) Müll.
    [Show full text]
  • Chec List Flowering Plants of the Grota Do Angico Natural Monument
    Check List 9(4): 733–739, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Flowering plants of the Grota do Angico Natural PECIES S Monument, Caatinga of Sergipe, Brazil OF Ana Cecília da Cruz Silva 1*, Ana Paula do Nascimento Prata 2 and Anabel Aparecida de Mello 3 ISTS L 1 Universidade Federal de Sergipe, Programa de Pós-graduação em Ecologia e Conservação – PPEC, CEP 49100-000, São Cristóvão, SE, Brasil. 2 Universidade Federal de Sergipe, Programa de Pós-graduação em Ecologia e Conservação – PPEC, CEP 49100-000, São Cristóvão, SE, Brasil. 3 Universidade Federal de Sergipe, Departamento de Ciências Florestais, CEP 49100-000, São Cristóvão, SE, Brasil. * Corresponding author. E-mail: [email protected] Abstract: The purpose of this study was to survey the Angiosperms from an area of Caatinga, in the Grota do Angico Natural Monument, state of Sergipe, Brazil. A total of 174 species and 51 families were registered. Fabaceae (29 species) is the family with the highest number of species, followed by Asteraceae (11), Euphorbiaceae (10), Malvaceae and Poaceae (9 each) and Rubiaceae (8), Bromeliaceae, Cactaceae and Convolvulaceae (7 each). Most species are herbaceous (55.2%), followed by trees (20.7%), shrubs and vines (7.5% each), subshrubs (6.3%), epiphytes (1.7%) and hemiparasites (1.2%). results reinforce the importance of conserving the remaining forest vegetation against the anthropic pressure. Approximately 17% (30 species) of the flora are endemic to the Caatinga, one species is rare and two are vulnerable.
    [Show full text]
  • NEOTROPICAL Primates VOLUME 9 NUMBER 3 DECEMBER 2001
    ISSN 1413-4703 NEOTROPICAL primates VOLUME 9 NUMBER 3 DECEMBER 2001 A Journal and Newsletter of the Neotropical Section of the IUCN/SSC Primate Specialist Group Editors: Anthony B. Rylands and Ernesto Rodríguez-Luna PSG Chairman: Russell A. Mittermeier PSG Deputy Chairmen: Anthony B. Rylands and William R. Konstant Neotropical Primates A Journal and Newsletter of the Neotropical Section of the IUCN/SSC Primate Specialist Group Center for Applied Biodiversity Science S Conservation International T 1919 M. St. NW, Suite 600, Washington, DC 20036, USA t ISSN 1413-4703 w Abbreviation: Neotrop. Primates a Editors t Anthony B. Rylands, Center for Applied Biodiversity Science, Conservation International, Washington, DC Ernesto RodrÌguez-Luna, Universidad Veracruzana, Xalapa, Mexico S Assistant Editor Jennifer Pervola, Center for Applied Biodiversity Science, Conservation International, Washington, DC P P Editorial Board Hannah M. Buchanan-Smith, University of Stirling, Stirling, Scotland, UK B Adelmar F. Coimbra-Filho, Academia Brasileira de CiÍncias, Rio de Janeiro, Brazil D Liliana CortÈs-Ortiz, Universidad Veracruzana, Xalapa, Mexico < Carolyn M. Crockett, Regional Primate Research Center, University of Washington, Seattle, WA, USA t Stephen F. Ferrari, Universidade Federal do Par·, BelÈm, Brazil Eckhard W. Heymann, Deutsches Primatenzentrum, Gˆttingen, Germany U William R. Konstant, Conservation International, Washington, DC V Russell A. Mittermeier, Conservation International, Washington, DC e Marta D. Mudry, Universidad de Buenos Aires, Argentina Hor·cio Schneider, Universidade Federal do Par·, BelÈm, Brazil Karen B. Strier, University of Wisconsin, Madison, Wisconsin, USA C Maria EmÌlia Yamamoto, Universidade Federal do Rio Grande do Norte, Natal, Brazil M Primate Specialist Group a Chairman Russell A. Mittermeier Deputy Chairs Anthony B.
    [Show full text]
  • <I>Mimosa</I> (Leguminosae): Toward a Phylogeny of the Sensitive
    American Journal of Botany 98(7): 1201–1221. 2011. T HE EVOLUTIONARY HISTORY OF M IMOSA (LEGUMINOSAE): T OWARD A PHYLOGENY OF THE SENSITIVE PLANTS 1 Marcelo F. Simon2,3,9 , Rosaura Grether 4 , Luciano P. de Queiroz5 , Tiina E. S ä rkinen 2 , Valqu í ria F. Dutra 6,7 , and Colin E. Hughes 2,8 2 Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3RB, U.K.; 3 Embrapa Recursos Gen é ticos e Biotecnologia, PqEB, Caixa Postal 02372 Bras í lia, DF 70770-917, Brazil; 4 Departamento de Biolog í a, Universidad Aut ó noma Metropolitana-Iztapalapa, Apdo. Postal 55-535 09340 M é xico, D.F. M é xico; 5 Departamento de Ci ê ncias Biol ó gicas, Universidade Estadual de Feira de Santana, km 03, BR 116, Campus, Feira de Santana, BA 44031-460, Brazil; 6 P ó s-gradua ç ã o em Bot â nica, Universidade Federal de Vi ç osa, Rua Dr. Milton Bandeira 336/34, Vi ç osa, MG 36570-000, Brazil; 7 Departamento de Ci ê ncias Biol ó gicas, Universidade Federal do Esp í rito Santo, Av. Marechal Campos 1468, Vit ó ria, ES 29043-900, Brazil; and 8 Institute for Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland • Premise of the study: Large genera provide remarkable opportunities to investigate patterns of morphological evolution and historical biogeography in plants. A molecular phylogeny of the species-rich and morphologically and ecologically diverse genus Mimosa was generated to evaluate its infrageneric classifi cation, reconstruct the evolution of a set of morphological characters, and establish the relationships of Old World species to the rest of the genus.
    [Show full text]
  • A New Fossil Wood of Peltophoroxylon (Leguminosae: Caesalpinioideae) from the El Palmar Formation (Late Pleistocene), Entre Ríos, Argentina
    Soledad RamosIAWA et al. Journal– Pleistocene 35 (2), Peltophoroxylon 2014: 199–212 from Argentina 199 A NEW FOSSIL WOOD OF PELTOpHOROXYLON (LEGUMINOSaE: CaESaLPINIOIDEaE) FROM THE EL PaLMaR FORMaTION (LaTE PLEISTOcENE), ENTRE RÍOS, ARGENTINa R. Soledad Ramos1,2,*, Mariana Brea1,3 and Romina Pardo4 1Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICyTTP- CONICET), Dr. Matteri y España SN, E3105BWA, Diamante, Entre Ríos, Argentina 2FONCyT - Agencia Nacional de Promoción Científica y Tecnológica 3CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas 4Cátedra de Dasonomía, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avenida Bolivia 5150, 4400 Salta, Argentina *Corresponding author; e-mail: [email protected] abstract This paper describes the first record ofPeltophoroxylon (Ramanujam) Müller- Stoll et Mädel 1967 from the late Pleistocene of Argentina. The fossil specimens were recovered from the Colonia Ayuí and Punta Viracho fossil localities of the El Palmar Formation, located in the middle part of the Uruguay Basin, eastern Argentina. The diagnostic features are: growth ring boundaries demarcated by marginal parenchyma, medium-sized vestured intervessel pits, vessel-ray paren- chyma pits similar in size and shape to intervessel pits, vasicentric to lozenge type aliform axial parenchyma, biseriate (70%) and uniseriate (30%) homocel- lular rays, non-septate and septate fibers, and long chains (10+) of prismatic crystals in chambered axial parenchyma cells. These features suggest a relation- ship with Peltophorum (Vogel) Benth. (Leguminosae: Caesalpinioideae). The vessel diameter and vessel density of the El Palmar woods are consistent with the temperate-warm, humid-semiarid climate inferred for this region during the late Pleistocene. Keywords: Wood anatomy, Peltophoroxylon, Pleistocene, Uruguay Basin, Argentina.
    [Show full text]
  • A New Subfamily Classification of The
    LPWG Phylogeny and classification of the Leguminosae TAXON 66 (1) • February 2017: 44–77 A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny The Legume Phylogeny Working Group (LPWG) Recommended citation: LPWG (2017) This paper is a product of the Legume Phylogeny Working Group, who discussed, debated and agreed on the classification of the Leguminosae presented here, and are listed in alphabetical order. The text, keys and descriptions were written and compiled by a subset of authors indicated by §. Newly generated matK sequences were provided by a subset of authors indicated by *. All listed authors commented on and approved the final manuscript. Nasim Azani,1 Marielle Babineau,2* C. Donovan Bailey,3* Hannah Banks,4 Ariane R. Barbosa,5* Rafael Barbosa Pinto,6* James S. Boatwright,7* Leonardo M. Borges,8* Gillian K. Brown,9* Anne Bruneau,2§* Elisa Candido,6* Domingos Cardoso,10§* Kuo-Fang Chung,11* Ruth P. Clark,4 Adilva de S. Conceição,12* Michael Crisp,13* Paloma Cubas,14* Alfonso Delgado-Salinas,15 Kyle G. Dexter,16* Jeff J. Doyle,17 Jérôme Duminil,18* Ashley N. Egan,19* Manuel de la Estrella,4§* Marcus J. Falcão,20 Dmitry A. Filatov,21* Ana Paula Fortuna-Perez,22* Renée H. Fortunato,23 Edeline Gagnon,2* Peter Gasson,4 Juliana Gastaldello Rando,24* Ana Maria Goulart de Azevedo Tozzi,6 Bee Gunn,13* David Harris,25 Elspeth Haston,25 Julie A. Hawkins,26* Patrick S. Herendeen,27§ Colin E. Hughes,28§* João R.V. Iganci,29* Firouzeh Javadi,30* Sheku Alfred Kanu,31 Shahrokh Kazempour-Osaloo,32* Geoffrey C.
    [Show full text]
  • Planta Medica
    www.thieme-connect.de/ejournals | www.thieme.de/fz/plantamedica Planta Medica August 2010 · Page 1163 – 1374 · Volume 76 12 · 2010 1163 Editorial 1177 Special Session: Opportunities and challenges in the exploitation of biodiversity – Complying with the principles of the convention on biological diversity th 7 Tannin Conference 1178 Short Lectures 1164 Lectures 1193 Posters 1165 Short Lectures 1193 Aphrodisiaca from plants 1193 Authentication of plants and drugs/DNA-Barcoding/ th 58 International Congress and Annual Meeting of PCR profiling the Society for Medicinal Plant and Natural Product Research 1197 Biodiversity 1167 Lectures 1208 Biopiracy and bioprospecting 1169 WS I: Workshops for Young Researchers 1169 Cellular and molecular mechanisms of action of natural 1208 Enzyme inhibitors from plants products and medicinal plants 1214 Fertility management by natural products 1171 WS II: Workshops for Young Researchers 1214 Indigenous knowledge of traditional medicine and 1171 Lead finding from Nature – Pitfalls and challenges of evidence based herbal medicine classical, computational and hyphenated approaches 1230 Miscellaneous 1173 WS III: Permanent Committee on Regulatory Affairs of Herbal Medicinal Products 1292 Natural products for the treatment of infectious diseases 1173 The importance of a risk-benefit analysis for the marketing authorization and/or registration of (tradi- 1323 New analytical methods tional) herbal medicinal products (HMPs) 1337 New Targets for herbal medicines 1174 WS IV: Permanent Committee on Biological and
    [Show full text]
  • (Leguminosae, Caesalpinioideae, Clado Mimosoide) E Taxonomia Do Gênero Piptadenia Benth
    Filogenia molecular do grupo Piptadenia (Leguminosae, Caesalpinioideae, Clado Mimosoide) e taxonomia do gênero Piptadenia Benth. UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS- GRADUAÇÃO EM BOTÂNICA Filogenia molecular do grupo Piptadenia (Leguminosae, Caesalpinioideae, Clado Mimosoide) e taxonomia do gênero Piptadenia Benth. PÉTALA GOMES RIBEIRO Tese apresentada ao Programa de Pós- Graduação em Botânica da Universidade Estadual de Feira de Santana como parte dos requisitos para a obtenção do título de Doutora em Botânica. ORIENTADOR: PROF. DR. LUCIANO PAGANUCCI DE QUEIROZ (UEFS) CO-ORIENTADORA: PROFª. DRA. MELISSA LUCKOW (CORNELL UNIVERSITY) FEIRA DE SANTANA – BA 2017 Ficha Catalográfica – Biblioteca Central Julieta Carteado Ribeiro, Pétala Gomes R371f Filogenia molecular do grupo Piptadenia (Leguminosae, Caesalpinioideae, Clado Mimosoide) e taxonomia do gênero PiptadeniaBenth. / Pétala Gomes Ribeiro.– 2017. 337 f.: il. Orientador: Luciano Paganucci de Queiroz Coorientadora: Melissa Luckow Tese (Doutorado) – Universidade Estadual de Feira de Santana, Programa de Pós-Graduação em Botânica, 2017. 1. Piptadenia - Filogenia molecular. 2. PiptadeniaBenth – Taxonomia. I. Queiroz, Luciano Paganucci de, orient. II. Melissa Luckow, coorient. III. Universidade Estadual de Feira de Santana. IV. Título. CDU: 575.86:57.06 DEFESA DE TESE BANCA EXAMINADORA Prof. Dr. André Márcio A. Amorim (Universidade Estadual de Santa Cruz -UESC) Dr(a). Cristiane Snak (Universidade Estadual de Feira de Santana-UEFS) Prof(a). Dr(a). Daniela Carneiro Torres (Universidade Estadual de Feira de Santana-UEFS) Prof(a). Dr(a). Juliana Gastaldello Rando (Universidade Federal do Oeste da Bahia -UFOB) Prof. Dr. Luciano Paganucci de Queiroz (Universidade Estadual de Feira de Santana-UEFS) Orientadora e Presidente da Banca 2017 Aos meus avós João Ribeiro de Jesus e Wilza Gomes Ribeiro (in memorian) por terem cultivado tão belas flores na minha infância e despertado em mim esse amor às plantas.
    [Show full text]
  • Legume Phylogeny and Classification in the 21St Century: Progress, Prospects and Lessons for Other Species-Rich Clades
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades Legume Phylogeny Working Group ; Bruneau, Anne ; Doyle, Jeff J ; Herendeen, Patrick ; Hughes, Colin E ; Kenicer, Greg ; Lewis, Gwilym ; Mackinder, Barbara ; Pennington, R Toby ; Sanderson, Michael J ; Wojciechowski, Martin F ; Koenen, Erik Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-78167 Journal Article Published Version Originally published at: Legume Phylogeny Working Group; Bruneau, Anne; Doyle, Jeff J; Herendeen, Patrick; Hughes, Colin E; Kenicer, Greg; Lewis, Gwilym; Mackinder, Barbara; Pennington, R Toby; Sanderson, Michael J; Wojciechowski, Martin F; Koenen, Erik (2013). Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon, 62(2):217-248. TAXON 62 (2) • April 2013: 217–248 LPWG • Legume phylogeny and classification REVIEWS Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades The Legume Phylogeny Working Group1 This paper was compiled by Anne Bruneau,2 Jeff J. Doyle,3 Patrick Herendeen,4 Colin Hughes,5 Greg Kenicer,6 Gwilym Lewis,7 Barbara Mackinder,6,7 R. Toby Pennington,6 Michael J. Sanderson8 and Martin F. Wojciechowski9 who were equally responsible and listed here in alphabetical order only, with contributions from Stephen Boatwright,10 Gillian Brown,11 Domingos Cardoso,12 Michael Crisp,13 Ashley Egan,14 Renée H. Fortunato,15 Julie Hawkins,16 Tadashi Kajita,17 Bente Klitgaard,7 Erik Koenen,5 Matt Lavin18, Melissa Luckow,3 Brigitte Marazzi,8 Michelle M.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Mimosoideae (Fabaceae)
    2 8 1:4 1 . n'~ll I• 0 I~ ~ ~ = -- m I~ 2.2 I~ 113.6 I~ lIo:'1J1 :E I~ 1.1 .........::~ -- 111111.8 111111.25 111111.4 111111.6 United States :.:e;'. ~ ~ .Department of \ Agriculture , Fruits and Seeds " Agricultural Research Service of G,enerain the Technical Bulletin Number 1681 Subfamily Mimosoideae (Fabaceae) ,,;,: ';. ~.. , .;.~;' ," .. ~. , ... .} ~ - l' I'<~'.: . ~ •-iT t .. , Abstract Gunn, Charles R. 1984. Fruits and seeds of genera in An updated explanation and discussion of fruit and the subfamily Mimosoideae (Fabaceae). U.S. Depart­ seed characters precede the generic descriptions. The in­ ment of Agriculture, Technical Bulletin No. 1681, 194 pp. formation on fruit characters extends and corrects that presently in the literature. Nearly all descriptive data on Technical identification of fruits and seds of the eco­ seeds are new. nomically important legume plant family (Fabaceae or , Leguminosae) is often required of U.S. Department of The lens, a seed topographic feature adjacent to the hi­ Agriculture personnel and other agricultural scienti.sts. lum, previously thought to be diagnostic of the faboid This bulletin provides relevant information on the legumes, occurs also among the mimosoids. The pres­ mimosoid legumes. New data presented also increase ence or absence of endosperm; previously misunder­ our knowledge of relationships of concern in germplasm stood, is documented; numerous r•• imosoid legumes search. have endosperm. An unrecorded character relating to the positional relationship of the cotyledons and the Data are derived from extensive sampling of the species embryonic axis has been found useful in the generic of all 64 genera of mimosoid leg!lmes. Three keys pro­ identification ·of seeds.
    [Show full text]
  • Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants
    Mycorrhiza (2006) 16: 299–363 DOI 10.1007/s00572-005-0033-6 REVIEW B. Wang . Y.-L. Qiu Phylogenetic distribution and evolution of mycorrhizas in land plants Received: 22 June 2005 / Accepted: 15 December 2005 / Published online: 6 May 2006 # Springer-Verlag 2006 Abstract A survey of 659 papers mostly published since plants (Pirozynski and Malloch 1975; Malloch et al. 1980; 1987 was conducted to compile a checklist of mycorrhizal Harley and Harley 1987; Trappe 1987; Selosse and Le Tacon occurrence among 3,617 species (263 families) of land 1998;Readetal.2000; Brundrett 2002). Since Nägeli first plants. A plant phylogeny was then used to map the my- described them in 1842 (see Koide and Mosse 2004), only a corrhizal information to examine evolutionary patterns. Sev- few major surveys have been conducted on their phyloge- eral findings from this survey enhance our understanding of netic distribution in various groups of land plants either by the roles of mycorrhizas in the origin and subsequent diver- retrieving information from literature or through direct ob- sification of land plants. First, 80 and 92% of surveyed land servation (Trappe 1987; Harley and Harley 1987;Newman plant species and families are mycorrhizal. Second, arbus- and Reddell 1987). Trappe (1987) gathered information on cular mycorrhiza (AM) is the predominant and ancestral type the presence and absence of mycorrhizas in 6,507 species of of mycorrhiza in land plants. Its occurrence in a vast majority angiosperms investigated in previous studies and mapped the of land plants and early-diverging lineages of liverworts phylogenetic distribution of mycorrhizas using the classifi- suggests that the origin of AM probably coincided with the cation system by Cronquist (1981).
    [Show full text]