Spiny plants, mammal browsers, and the origin of African savannas Tristan Charles-Dominiquea,b,*, T. Jonathan Daviesc,d, Gareth P. Hempsone, Bezeng S. Bezengc, Barnabas H. Daruf,g, Ronny M. Kabongoc, Olivier Maurinc, A. Muthama Muasyaa, Michelle van der Bankc and William J. Bonda,h aDepartment of Biological Sciences, University of Cape Town, Private Bag X1, Rondebosch, 7701, South Africa; bDepartment of Botany and Zoology, Stellenbosch University, P/Bag X1, Matieland 7602, South Africa; cAfrican Centre for DNA Barcoding, Department of Botany & Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, Gauteng, South Africa; dDepartment of Biology, McGill University, 1205 Ave Docteur Penfield, Montreal, QC H3A 0G4, Canada; eSchool of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, South Africa; fDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; gDepartment of Plant Sciences, University of Pretoria, P/Bag X20, Pretoria 0028, South Africa; hSouth African Environmental Observation Network, National Research Foundation, P/Bag X7, Claremont, 7735, South Africa *To whom correspondence may be addressed. Email:
[email protected] or
[email protected]. Significance Africa hosts contrasting communities of mammal browsers and is, thus, the ideal background for testing their effect on plant communities and evolution. In this study at the continental scale, we reveal which mammal browsers are most closely associated with spiny communities of trees. We then show a remarkable convergence between the evolutionary histories of these browsers (the bovids) and spiny plants. Over the last 16 My, plants from unrelated lineages developed spines 55 times. These convergent patterns of evolution suggest that the arrival and diversification of bovids in Africa changed the rules for persisting in woody communities.