A New Fossil Wood of Peltophoroxylon (Leguminosae: Caesalpinioideae) from the El Palmar Formation (Late Pleistocene), Entre Ríos, Argentina

Total Page:16

File Type:pdf, Size:1020Kb

A New Fossil Wood of Peltophoroxylon (Leguminosae: Caesalpinioideae) from the El Palmar Formation (Late Pleistocene), Entre Ríos, Argentina Soledad RamosIAWA et al. Journal– Pleistocene 35 (2), Peltophoroxylon 2014: 199–212 from Argentina 199 A NEW FOSSIL WOOD OF PELTOpHOROXYLON (LEGUMINOSaE: CaESaLPINIOIDEaE) FROM THE EL PaLMaR FORMaTION (LaTE PLEISTOcENE), ENTRE RÍOS, ARGENTINa R. Soledad Ramos1,2,*, Mariana Brea1,3 and Romina Pardo4 1Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICyTTP- CONICET), Dr. Matteri y España SN, E3105BWA, Diamante, Entre Ríos, Argentina 2FONCyT - Agencia Nacional de Promoción Científica y Tecnológica 3CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas 4Cátedra de Dasonomía, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avenida Bolivia 5150, 4400 Salta, Argentina *Corresponding author; e-mail: [email protected] abstract This paper describes the first record ofPeltophoroxylon (Ramanujam) Müller- Stoll et Mädel 1967 from the late Pleistocene of Argentina. The fossil specimens were recovered from the Colonia Ayuí and Punta Viracho fossil localities of the El Palmar Formation, located in the middle part of the Uruguay Basin, eastern Argentina. The diagnostic features are: growth ring boundaries demarcated by marginal parenchyma, medium-sized vestured intervessel pits, vessel-ray paren- chyma pits similar in size and shape to intervessel pits, vasicentric to lozenge type aliform axial parenchyma, biseriate (70%) and uniseriate (30%) homocel- lular rays, non-septate and septate fibers, and long chains (10+) of prismatic crystals in chambered axial parenchyma cells. These features suggest a relation- ship with Peltophorum (Vogel) Benth. (Leguminosae: Caesalpinioideae). The vessel diameter and vessel density of the El Palmar woods are consistent with the temperate-warm, humid-semiarid climate inferred for this region during the late Pleistocene. Keywords: Wood anatomy, Peltophoroxylon, Pleistocene, Uruguay Basin, Argentina. INTRODUCTION Today, the Fabaceae or Leguminosae includes approximately 730 genera and over 19,400 species worldwide (Lewis et al. 2005). The subfamily Caesalpinioideae, contain- ing approximately 2,250 species in 171 genera (Bruneau et al. 2008), is paraphyletic, and it includes the monophyletic tribes Cercideae and Detarieae and the paraphyletic tribes Cassieae and Caesalpinieae (Lewis et al. 2005). The South American extant flora includes 65 genera of Caesalpinioideae (Zuloaga & Morrone 1999; Ulibarri 2008) and inhabits tropical and subtropical areas, from rain forests, evergreen or deciduous for- ests, to savannas, semi-deserts and high mountains (Ulibarri 2008). In South America there are 31 genera in the tribe Caesalpinieae. Brazil has the highest concentration of endemics at the genus levels (Bruneau et al. 2008; Ulibarri 2008). © International Association of Wood Anatomists, 2014 DOI 10.1163/22941932-00000060 Published by Koninklijke Brill NV, Leiden Downloaded from Brill.com10/08/2021 05:25:38PM via free access 200 IAWA Journal 35 (2), 2014 Figure 1. Location map showing Colonia Ayuí and Punta Viracho fossil localities. South America has an extensive and diverse legume fossil record, and woods with affinities to all subfamilies are reported (see Pujana et al. 2011). Worldwide, the old- est putative fossil wood assigned to the subfamily Caesalpinioideae is from the late Cretaceous of Africa and resembles the modern tribe Cassieae (Wheeler & Baas 1992). South American fossil woods that seem reliably assigned to the Caesalpinioideae are reported from the Miocene onwards (Pons 1980; Martínez & Rodriguez Brizuela 2011; Brea et al. 2012; see Pujana et al. 2011). The El Palmar Formation is well known for its rich fossil wood and phytolith as- semblages. Taxa in these assemblages are interpreted to be trees, shrubs and herbs belonging to the Lauraceae, Fabaceae, Podostemaceae, Myrtaceae, Combretaceae, Anacardiaceae, Poaceae, Cyperaceae and Arecaceae (Zucol et al. 2005; Brea et al. 2010; Brea & Zucol 2011; Patterer & Brea 2011; Patterer 2012; Ramos et al. 2012). The Leguminosae from the El Palmar Formation include five Mimosoideae:Menen - doxylon areniensis, M. mesopotamiensis, M. piptadiensis, Mimosoxylon caccavariae, Prosopisinoxylon castroae, and two Papilionoideae: Holocalyxylon cozzoi and Am- buranoxylon tortorellii (Lutz 1979; Brea 1999; Zucol et al. 2005; Brea et al. 2010). The new fossil wood described herein represents the first report of fossil wood with affinities to Caesalpinioideae from the Uruguay Basin. Downloaded from Brill.com10/08/2021 05:25:38PM via free access Soledad Ramos et al. – Pleistocene Peltophoroxylon from Argentina 201 STUDY AREA AND GEOLOGICAL SETTING Fossil woods were collected in the Colonia Ayuí and Punta Viracho localities of the El Palmar Formation. This fluvial unit is located in the southernmost part of the Uruguay Basin, in eastern Argentina (Fig. 1). The El Palmar Formation consists of medium, reddish and yellowish ochre sands, medium-to-thick sandstone layers with planar stratification and lenses of gravel and pebbles. Sand strata and gravel lenses represent channel facies, while fine sediments represent floodplain facies. This formation, which is 3 to 12 m thick, is found at the modern surface and has not been buried since its deposition (Iriondo 1980; Iriondo & Kröhling 2008; Kröhling 2009). At Federación city in Argentina, this formation was dated to 80,670 ± 13,420 years BP by TL (thermoluminescense dating) (Iriondo & Kröhling 2001), while near to the city of Salto in Uruguay, it was dated to 88,370± 35,680 years BP (Iriondo & Kröhling 2008). MATERIALS AND METHODS Two fragments of wood were found in sediments of the El Palmar Formation (Iriondo 1980; Iriondo & Kröhling 2008; Kröhling 2009). One specimen (CIDPALBO-MEG 111) was collected by Cristina Vassallo de Cettour from the Colonia Ayuí locality. The other specimen (CIDPALBO-MEG 148) was collected by one of the authors (MB) from the Punta Viracho locality, both from Entre Ríos Province, Argentina (Fig. 1). Both specimens are silicified. The CIDPALBO-MEG 111 wood is 27 cm long and 12 cm in diameter and CIDPALBO-MEG 148 wood is 7.6 cm long and 4.2 cm in diameter. Thin sections were made using standard petrographic techniques. Anatomical terms used in this paper generally follow the recommendations of the IAWA List of Microscopic Features for Hardwood Identification (IAWA Committee 1989), with some terms also taken from Chattaway (1932), Kribs (1935) and Carlquist (2001). The bibliographic lists by Gregory (1994) and Gregory et al. (2009) were used. To compare the samples to extant and fossil species, we used the InsideWood website (InsideWood 2004-onwards; Wheeler 2011) and descriptions by Metcalfe and Chalk (1950), Cozzo (1951), Tortorelli (1956), Gasson et al. (2003, 2009) and Evans et al. (2006). Pardo (2012) studied the wood anatomy of extant Peltophorum dubium. The samples she studied are deposited in the Laboratorio de Anatomía Vegetal, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Argentina (LANAVE). Systematic assignment follows APG (2009). Names used are as found in The Interna- tional Plant Names Index (The Plant List 2010) and the Index Nominum Genericorum (ING) (Farr & Zijlstra 1996). The quantitative values in the anatomical description are averages of 25 measure- ments, in all cases the average is cited first, followed by the minimum and maximum values, which are given in parentheses. The material was studied with a Nikon Eclipse E 200 light microscope, and photomicrographs were taken with a Nikon Coolpix S4 digital camera. The fossil specimen and microscope slides are deposited in the Labo- ratorio de Paleobotánica (CICyTTP-CONICET), Diamante, Argentina, under the acro- nym CIDPALBO-MEG for wood specimens and CIDPALBO-MIC for slides. Downloaded from Brill.com10/08/2021 05:25:38PM via free access 202 IAWA Journal 35 (2), 2014 Downloaded from Brill.com10/08/2021 05:25:38PM via free access Soledad Ramos et al. – Pleistocene Peltophoroxylon from Argentina 203 RESULTS FabaLES Bromhead 1838 Leguminosae Jussieu 1789 Caesalpinioideae de Candolle1825 Genus: Peltophoroxylon (Ramanujam) Müller-Stoll et Mädel 1967 Type species: Peltophoroxylon variegatum (Ramanujam) Müller-Stoll et Mädel 1967 Species: Peltophoroxylon uruguayensis Ramos, Brea et Pardo, sp. nov. (Fig. 2 & 3) Specific diagnosis – Growth rings distinct, demarcated by narrow (less than 3 cells wide) marginal parenchyma bands of only a few cells wide; diffuse porous; vessels solitary and in radial multiples of 2–4, rarely in clusters, circular to oval in outline, medium to small in diameter with thin walls; perforation plates simple; intervessel pits alternate, vestured and small to medium; vessel-ray pits similar in size and shape to intervessel pits; gums or other deposits present; axial parenchyma scanty paratracheal, vasicentric, and aliform, diffuse parenchyma scarce; fibers mostly non-septate, rarely septate; rays mostly biseriate and occasionally uniseriate, homocellular composed exclusively by procumbent cells; prismatic crystals in long chains in chambered axial parenchyma cells. Holotype – CIDPALBO-MEG 111 specimen, CIDPALBO-MIC 1368 (three micro- scope slides). Type locality – Colonia Ayuí, Entre Ríos, Argentina. Paratype – CIDPALBO-MEG 148 specimen, CIDPALBO-MIC 1571 (three micro- scope slides). Locality – Punta Viracho, Entre Ríos, Argentina. Horizon – upper part of the El Palmar Formation. Age – late Pleistocene. Etymology – Specific epithet, uruguayensis, refers to the region where the fossil specimens were found. Botanical affinity– Leguminosae-Caesalpinioideae,
Recommended publications
  • Pakaraimaea Dipterocarpacea
    The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea Matthew E. Smith1*, Terry W. Henkel2, Jessie K. Uehling2, Alexander K. Fremier3, H. David Clarke4, Rytas Vilgalys5 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America, 2 Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America, 3 Department of Fish and Wildlife Resources, University of Idaho, Moscow, Idaho, United States of America, 4 Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, United States of America, 5 Department of Biology, Duke University, Durham, North Carolina, United States of America Abstract Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P.
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • A Synopsis of the Genus Hoffmannseggia (Leguminosae)
    NUMBER 9 SIMPSON AND ULIBARRI: SYNOPSIS OF HOFFMANNSEGGIA 7 A SYNOPSIS OF THE GENUS HOFFMANNSEGGIA (LEGUMINOSAE) Beryl B. Simpson and Emilio A. Ulibarri Integrative Biology and Plant Resources Center, The University of Texas, Austin, Texas 78712 USA Instituto de Botanica Darwinion, IBODA-CONICET, C.C. 22 (Labarden 200), Bl642HYD San Isidro, Argentina Abstract: The genus Hoffmannseggia Cav., now recognized as a monophyletic group distinct from Caesalpinia and Pomaria, consists of 22 species and is amphitropically distributed between North and South America, with 11 species in arid and semi-arid areas of the southwestern USA and adjacent Mexico, and 12 species in southern South America. Recent publications have provided a revision of Hoffmannseggia for North America, a resolved phylogeny, and an analysis of the biogeography of the genus, but there is to date no treatment of all of the taxa. Here we present a key to the genus and its closest relatives, a key to all of the recognized taxa, typification, distributional data for each species, selected specimens examined for the South American taxa, and notes where appropriate. Keywords: Caesalpinia, Caesalpinieae, Hoffmannseggia, Fabaceae, Leguminosae. Resumen: El genero Hoffmannseggia, actualmente reconocido como un grupo mo­ nofiletico distinto de Caesalpinia y Pomaria dentro de Caesalpinieae, consiste en 22 especies con distribuci6n anfitropical en zonas semi-aridas y aridas de Norte y Su­ damerica. De ellas, 11 especies se encuentran en el sudoeste de U. S. A. y norte de Mexico; las otras 12 en America del Sur, creciendo en las zonas andinas y semide­ serticas del Peru, Bolivia, Chile y Argentina. Recientes publicaciones por uno de los autores (B.
    [Show full text]
  • Floristic, Diversity and Spatial Distribution of Tree Species in a Dry Forest in Southern Brazil
    Freitas et al.: Floristic diversity and spatial distribution of tree species - 511 - FLORISTIC, DIVERSITY AND SPATIAL DISTRIBUTION OF TREE SPECIES IN A DRY FOREST IN SOUTHERN BRAZIL FREITAS, W. K.1* ‒ MAGALHÃES, L. M. S.2 ‒ VIVÈS, L. R.1 1Postgraduate Program in Environmental Technology - PGTA – Fluminense Federal University – UFF. Av. dos Trabalhadores, 420, 27.255-125, Vila Santa Cecília, Volta Redonda, RJ, Brasil (e-mail: [email protected]) 2Department of Environmental Sciences and the Postgraduate Program in Sustainable Development Practices - PPGPDS – Rural Federal University of Rio de Janeiro – UFRRJ, Rod. BR-465, km 7,23851-970, Seropédica, RJ, Brasil (e-mail: [email protected]) *Corresponding author e-mail: [email protected]; tel: +55-24-2107-3434 (Received 2nd Jul 2016; accepted 11th Oct 2016) Abstract. This study was conducted in a fragment of deciduous seasonal forest (DSF), located between the municipalities of Piratuba and Ipira, Santa Catarina. The objective was to evaluate the floristic composition and the successional stage through the ecological groups, the Shannon diversity index (H') and the dispersal syndromes of species, also using the H' and the McGinnies index (IGA) to determine the pattern of spatial distribution of species. 14 transects were installed, each with 1,000 m2, considering all trees with Diameter at Breast Hight (DBH) ≤ 4.0 cm. In total, 2,125 individuals were sampled, belonging to 113 species and 34 families. Myrtaceae and Fabaceae were the families with the highest species richness, with 14.2% and 11.5%, respectively. Euphorbiaceae and Lauraceae added approximately 25% of the individuals. The most abundant species were Actiniostemon concolor (Spreng.) Müll.
    [Show full text]
  • (Leguminosae: Caesalpinioideae), a New Host Plant
    de Moraes Manica et al., Forest Res 2012, 1:3 Forest Research http://dx.doi.org/10.4172/2168-9776.1000109 Open Access Rapid Communication Open Access Sclerolobium paniculatum Vogel (Leguminosae: Caesalpinioideae), A New Host Plant for Poekilloptera phalaenoides (Linnaeus, 1758) (Hemiptera: Auchenorrhyncha: Flatidae) Clovis Luiz de Moraes Manica1, Ana Claudia Ruschel Mochko1, Marcus Alvarenga Soares2 and Evaldo Martins Pires1* 1Federal University of Mato Grosso, 78557-000 Sinop, Mato Grosso, Brazil 2Federal University of Vale do Jequitinhonha and Mucuri, 39100-000, Diamantina, Minas Gerais, Brazil Abstract Sclerolobium paniculatum Vogel (Leguminosae: Caesalpinioideae) is a plant common in the forests of the Amazon, can still be found in forest fragments and also near to urban area. Adults and nymphs of Poekilloptera phalaenoides (Linnaeus, 1758) (Hemiptera: Auchenorrhyncha: Flatidae) were found colonizing S. paniculatum in Sinop, Mato Grosso State, Brazil, during the months of June and July 2012. This is the first record of this insect in the municipality of Sinop and on plants of S. paniculatum which can be considered a new host plant for this specie, which can be considered as a new host plant for this insect due to the fact been observed all stages of the life cycle of P. phalaenoides. Keywords: Host plant; Adults; Immatures; Gregarious habit production of firewood and charcoal, can be compared to eucalyptus [3]. Sclerolobium paniculatum Vogel (Leguminosae: Caesalpinioideae) is a native plant of the Brazilian Amazon, can still be found in Guyana, Poekilloptera phalaenoides (Linnaeus, 1758) (Hemiptera: Peru, Suriname and Venezuela [1]. In Brazil, there is reports to the Auchenorrhyncha: Flatidae) is recorded from Mexico through and states of Bahia, Goiás, Mato Grosso and Minas Gerais [2].
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • A REVISION of Pomaria (FABACEAE) in NORTH AMERICA
    46 LUNDELLIA MAY1998 A REVISION OF Pomaria (FABACEAE) IN NORTH AMERICA Beryl B. Simpson Plant Resources Center and Department of Botany, The University of Texas, Austin, TX 78713 Abstract: The genus Pomaria, described by Cavanilles in 1799 but subsequently sub­ merged in either Caesalpinia or Hoffmannseggia, is treated here as a distinct genus and the North American species are revised. This revision provides a key, corrected nomenclature, new combinations, and descriptions for all North American species. One new species is described and distribution maps are provided for each of the nine species. Resumen: El genero Pomaria, descrito por Cavanilles en 1799 y subsecuentemente sinonimizado ya sea bajo Caesalpinia o Hoffmannseggia, es tratado como un genero distinto cuyas especies norteamericanas son revisadas aqui. Esta revisi6n provee claves, una nomenclatura corregida, nuevas combinaciones y descripciones para todas las especies de Norteamerica. Se describe una nueva especie y se proveen mapas de distribuci6n para las nueve especies del subcontinente. Keywords: Caesalpinia, Pomaria, Hoffmannseggia, Caesalpinieae, Caesalpinioideae For over 100 years, systematists have (1865) and Taubert (1894) also subsumed disagreed on the circumscriptions of Melanosticta in Hoffmannseggia but they Caesalpinia (Fabaceae) and its segregates in treated Pomaria as a section of Caesalpinia. North America. The main point of con­ The uncertainty of workers dealing with the tention has been whether there is one genus, group is exemplified by Fisher (1892) who Caesalpinia, or whether components recognized Hoffmannseggia ( sensu Torrey of it are more naturally treated as and Gray) as a distinct genus but a year later distinct genera. Of concern here are species transferred all of the species to Caesalpinia variously placed in Caesalpinia, Pomaria, (Fisher, 1893).
    [Show full text]
  • Historical Biogeography and Diversification of the Cosmopolitan Ectomycorrhizal Mushroom Family Inocybaceae
    Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae P. Brandon Matheny1*, M. Catherine Aime2, Neale L. Bougher3, Bart Buyck4, Dennis E. Desjardin5, Egon Horak6, Bradley R. Kropp7, D. Jean Lodge8, Kasem Soytong9, James M. Trappe10 and David S. Hibbett11 ABSTRACT Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa- Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae.
    [Show full text]
  • Karyomorphology of Caesalpinia Species (Caesalpinioideae: Fabaceae) from Caatinga and Mata Atlantica Biomes of Brazil
    Journal of Plant Studies; Vol. 1, No. 2; 2012 ISSN 1927-0461 E-ISSN 1927-047X Published by Canadian Center of Science and Education Karyomorphology of Caesalpinia Species (Caesalpinioideae: Fabaceae) from Caatinga and Mata Atlantica Biomes of Brazil Polliana Silva Rodrigues1, Margarete Magalhães Souza2 & Ronan Xavier Corrêa2 1 Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Brazil 2 Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Brazil Correspondence: Ronan Xavier Corrêa, Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Brazil. Tel: 55-733-680-5183. E-mail: [email protected] Received: November 29, 2011 Accepted: December 12, 2011 Online Published: August 10, 2012 doi:10.5539/jps.v1n2p82 URL: http://dx.doi.org/10.5539/jps.v1n2p82 This research was supported by Conselho Nacional de Desenvolvimento Científico (CNPq) (grants numbers CNPq 620147/2004-0 and 473393/2007-7). P.S.R. was awarded MSc. Fellowships from Fundação de Amparo à Pesquisa no Estado da Bahia (FAPESB) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Abstract Out of 140 Caesalpinia s.l. species, only 20 species have the chromosome numbers presently known, and nine species have the karyomorphological studies available. We determine the karyotype and the chromosome morphometry in five Caesalpinia s.l. spp., and we describe the heterochromatin pattern in four of them. The diploid chromosome number of 24 was reported for the first time in Caesalpinia calycina, Caesalpinia microphylla and Caesalpinia pluviosa var. peltophoroides, and confirmed in Caesalpinia ferrea var. leiostachya and Caesalpinia pulcherrima. Different karyotype formulae were obtained for each of these five species.
    [Show full text]
  • Antibacterial Enhancement of Antibiotic Activity by Enterolobium Contortisiliquum (Vell.) Morong
    Asian Pac J Trop Biomed 2017; 7(10): 945–949 945 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Short communication http://dx.doi.org/10.1016/j.apjtb.2017.09.006 Antibacterial enhancement of antibiotic activity by Enterolobium contortisiliquum (Vell.) Morong Zildene de Sousa Silveira1, Nair Silva Macedoˆ 1, Thiago Sampaio de Freitas2, Ana Raquel Pereira da Silva2, Joycy Francely Sampaio dos Santos1,5, Maria Flaviana Bezerra Morais-Braga2, Jose Galberto Martins da Costa3, Raimundo Nonato Pereira Teixeira3, Jean Paul Kamdem4, Henrique Douglas Melo Coutinho2*, Francisco Assis Bezerra da Cunha1,5 1Laboratorio´ de Bioprospecção do Semiarido,´ Universidade Regional do Cariri, Crato, Brazil 2Laborat´orio de Microbiologia e Biologia Molecular, Universidade Regional do Cariri, Crato, Brazil 3Laboratorio´ de Pesquisas de Produtos Naturais, Universidade Regional do Cariri, Crato, Brazil 4Departamento de Cienciasˆ biol´ogicas, Universidade Regional do Cariri-URCA, Crato, CEP: 63105-000, Brazil 5Programa de Pos-graduação´ em Bioprospecção Molecular, Universidade Regional do Cariri – URCA, Crato, Brazil ARTICLE INFO ABSTRACT Article history: Objective: To identify the main chemical classes of compounds from aqueous extract of Received 5 Aug 2017 Enterolobium contortisiliquum (E. contortisiliquum) seed bark and to evaluate its anti- Received in revised form 26 Aug bacterial activity, as well as its potential to increase the activity of antibiotics against 2017 strains of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Accepted 8 Sep 2017 Methods: Different classes of compounds in the aqueous extract of E. contortisiliquum Available online 11 Sep 2017 were evaluated based on the visual changes in the coloration and the formation of pre- cipitate after the addition of specific reagents.
    [Show full text]
  • Biodiversity in Forests of the Ancient Maya Lowlands and Genetic
    Biodiversity in Forests of the Ancient Maya Lowlands and Genetic Variation in a Dominant Tree, Manilkara zapota (Sapotaceae): Ecological and Anthropogenic Implications by Kim M. Thompson B.A. Thomas More College M.Ed. University of Cincinnati A Dissertation submitted to the University of Cincinnati, Department of Biological Sciences McMicken College of Arts and Sciences for the degree of Doctor of Philosophy October 25, 2013 Committee Chair: David L. Lentz ABSTRACT The overall goal of this study was to determine if there are associations between silviculture practices of the ancient Maya and the biodiversity of the modern forest. This was accomplished by conducting paleoethnobotanical, ecological and genetic investigations at reforested but historically urbanized ancient Maya ceremonial centers. The first part of our investigation was conducted at Tikal National Park, where we surveyed the tree community of the modern forest and recovered preserved plant remains from ancient Maya archaeological contexts. The second set of investigations focused on genetic variation and structure in Manilkara zapota (L.) P. Royen, one of the dominant trees in both the modern forest and the paleoethnobotanical remains at Tikal. We hypothesized that the dominant trees at Tikal would be positively correlated with the most abundant ancient plant remains recovered from the site and that these trees would have higher economic value for contemporary Maya cultures than trees that were not dominant. We identified 124 species of trees and vines in 43 families. Moderate levels of evenness (J=0.69-0.80) were observed among tree species with shared levels of dominance (1-D=0.94). From the paleoethnobotanical remains, we identified a total of 77 morphospecies of woods representing at least 31 plant families with 38 identified to the species level.
    [Show full text]