Specificity in Legume-Rhizobia Symbioses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of UDP-Glucose Dehydrogenase Isoforms in the Medicinal Legume Glycyrrhiza Uralensis
Plant Biotechnology 38, 205–218 (2021) DOI: 10.5511/plantbiotechnology.21.0222a Original Paper Characterization of UDP-glucose dehydrogenase isoforms in the medicinal legume Glycyrrhiza uralensis Ayumi Kawasaki, Ayaka Chikugo, Keita Tamura, Hikaru Seki, Toshiya Muranaka* Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan * E-mail: [email protected] Tel: +81-6-6879-7423 Fax: +81-6-6879-7426 Received June 15, 2020; accepted February 22, 2021 (Edited by S. Takahashi) Abstract Uridine 5′-diphosphate (UDP)-glucose dehydrogenase (UGD) produces UDP-glucuronic acid from UDP- glucose as a precursor of plant cell wall polysaccharides. UDP-glucuronic acid is also a sugar donor for the glycosylation of various plant specialized metabolites. Nevertheless, the roles of UGDs in plant specialized metabolism remain poorly understood. Glycyrrhiza species (licorice), which are medicinal legumes, biosynthesize triterpenoid saponins, soyasaponins and glycyrrhizin, commonly glucuronosylated at the C-3 position of the triterpenoid scaffold. Often, several different UGD isoforms are present in plants. To gain insight into potential functional differences among UGD isoforms in triterpenoid saponin biosynthesis in relation to cell wall component biosynthesis, we identified and characterized Glycyrrhiza uralensis UGDs (GuUGDs), which were discovered to comprise five isoforms, four of which (GuUGD1–4) showed UGD activity in vitro. GuUGD1–4 had different biochemical properties, including their affinity for UDP-glucose, catalytic constant, and sensitivity to feedback inhibitors. GuUGD2 had the highest catalytic constant and highest gene expression level among the GuUGDs, suggesting that it is the major isoform contributing to the transition from UDP-glucose to UDP-glucuronic acid in planta. -
Phylogenetic Analysis Reveals an Ancient Gene Duplication As The
1 Phylogenetic analysis reveals an ancient gene duplication as 2 the origin of the MdtABC efflux pump. 3 4 Kamil Górecki1, Megan M. McEvoy1,2,3 5 1Institute for Society & Genetics, 2Department of MicroBiology, Immunology & Molecular 6 Genetics, and 3Molecular Biology Institute, University of California, Los Angeles, CA 90095, 7 United States of America 8 Corresponding author: [email protected] (M.M.M.) 9 1 10 Abstract 11 The efflux pumps from the Resistance-Nodulation-Division family, RND, are main 12 contributors to intrinsic antibiotic resistance in Gram-negative bacteria. Among this family, the 13 MdtABC pump is unusual by having two inner membrane components. The two components, 14 MdtB and MdtC are homologs, therefore it is evident that the two components arose by gene 15 duplication. In this paper, we describe the results obtained from a phylogenetic analysis of the 16 MdtBC pumps in the context of other RNDs. We show that the individual inner membrane 17 components (MdtB and MdtC) are conserved throughout the Proteobacterial species and that their 18 existence is a result of a single gene duplication. We argue that this gene duplication was an ancient 19 event which occurred before the split of Proteobacteria into Alpha-, Beta- and Gamma- classes. 20 Moreover, we find that the MdtABC pumps and the MexMN pump from Pseudomonas aeruginosa 21 share a close common ancestor, suggesting the MexMN pump arose by another gene duplication 22 event of the original Mdt ancestor. Taken together, these results shed light on the evolution of the 23 RND efflux pumps and demonstrate the ancient origin of the Mdt pumps and suggest that the core 24 bacterial efflux pump repertoires have been generally stable throughout the course of evolution. -
Final Report
Final Report Final pre-release investigations of the gorse thrips (Sericothrips staphylinus) as a biocontrol agent for gorse (Ulex europaeus) in North America Date: August 31, 2012 Award Number: 10-CA-11420004-184 Report Period: June 1, 2010– May 31, 2012 Project Period: June 1, 2010– May 31, 2012 Recipient: Oregon State University Recipient Contact Person: Fritzi Grevstad Principal Investigator/ Project Director: Fritzi Grevstad Introduction Gorse (Ulex europaeus) is an environmental weed classified as noxious in the states of Washington, Oregon, California, and Hawaii. A classical biological control program has been applied in Hawaii with the introduction of 4 gorse-feeding arthropods, but only two of these (a mite and a seed weevil) have been introduced to the mainland U.S. The two insects that have not yet been introduced include the gorse thrips, Sericothips staphylinus (Thysanoptera: Thripidae), and the moth Agonopterix umbellana (Lepidoptera: Oecophoridae). With prior support from the U.S. Forest Service (joint venture agreement # 07-JV-281), we were able to complete host specificity testing of S. staphylinus on 44 North American plant species that were on the original test plant list. However, following review of the proposed Test Plant List, the Technical Advisory Group on Biocontrol of Weeds (TAG) recommended that we include an additional 18 plant species for testing. In this report, we present host specificity testing and related objectives necessary to bring the program to the implementation stage. Objectives (1) Acquire and grow the additional 18 species of plants recommended by the TAG. (2) Complete host specificity trials for the gorse thrips on the 18 plant species. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
1. Galegine and Antidiabetic Plants
1. Galegine and antidiabetic plants Editors: H C S Howlett and C J Bailey The modern pharmacopoeia contains many examples of folk remedies which have led to the discovery of important therapies for a range of conditions. Early experiments with extracts of the herb, Galega offi cinalis, led to the characterization of the blood glucose lowering effects of galegine. The discovery of metformin, today’s foundation therapy for type 2 diabetes, can be traced back to this early pioneering work. Pharmacognosy of diabetes mellitus The principal clinical features of diabetes mellitus were recognized as long ago as about 1500 BC, when Hindu scholars described a condition featuring polydipsia, polyuria, wasting away of the body and the production of urine sweet enough to attract fl ies and ants [1]. The Ebers Papyrus, held in the University Library, Leipzig, Germany, shows that diabetes was also recognized in ancient Egypt, and recommends a diet of fruits, grains and honey for those affl icted. Pharmacognosy (the study of the medicinal properties of materials of natural origin) has played an important role in the management of diabetes mellitus since that time. Indeed, it has been estimated that more than 400 herbal or plant-derived products have been used for the management of type 2 diabetes across geographically and culturally diverse populations worldwide [2]. These preparations, often derived from ancient use of folk medicines, include garlic, onion, ginseng, bitter melon, fenugreek, Gymnema sylvestre, Pterocarpus marsupium and other plants containing the fl avonoid compound, epicatechin, bilberry, aloe vera, and holly [3]. A further plant- derived substance with antidiabetic properties, galegine, is discussed in detail, below. -
Dalbergia Proposal Guatemala (Rev.2)
CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of the genus Dalbergia in CITES Appendix II with exception to the species included in Appendix I. The UNEP-WCMC assessed the Dalbergia species of Latin America and concluded: “… all populations of Dalbergia spp. from South and Central America appear to meet the criteria for listing in CITES Appendix II” (UNEP-WCMC, 2015). Including the whole genus in Appendix II will be essential for the control of international trade by eliminating the arduous task of enforcement and customs officers of differentiating between the hundreds of Dalbergia species listed and not listed in CITES. The inclusion will help ensure that legal trade does not become a direct cause of the extinction of these highly threatened species and will help curb illegal trade. Considering that CITES Appendix II must include all species, which although not necessarily now threatened with extinction may become so unless trade in specimens of such species is subject to strict regulation in order to avoid utilization incompatible with their survival, it is important to include the genus Dalbergia in CITES Appendix II. a) Resolution Conf. 9.24, Annex 2 a, Criterion A - ”It is known, or can be inferred or projected, that the regulation of trade in the species is necessary to avoid it becoming eligible for inclusion in Appendix I in the near future”. b) Resolution Conf. 9.24, Annex 2 a, Criterion B - ”It is known, or can be inferred or projected, that regulation of trade in the species is required to ensure that the harvest of specimens from the wild is not reducing the wild population to a level at which its survival might be threatened by continued harvesting or other influences”. -
C10 Beano2.Gen-Wis
LEGUMINOSAE PART DEUX Papilionoideae, Genista to Wisteria Revised May the 4th 2015 BEAN FAMILY 2 Pediomelum PAPILIONACEAE cont. Genista Petalostemum Glycine Pisum Glycyrrhiza Psoralea Hylodesmum Psoralidium Lathyrus Robinia Lespedeza Securigera Lotus Strophostyles Lupinus Tephrosia Medicago Thermopsis Melilotus Trifolium Onobrychis Vicia Orbexilum Wisteria Oxytropis Copyrighted Draft GENISTA Linnaeus DYER’S GREENWEED Fabaceae Genista Genis'ta (jen-IS-ta or gen-IS-ta) from a Latin name, the Plantagenet kings & queens of England took their name, planta genesta, from story of William the Conqueror, as setting sail for England, plucked a plant holding tenaciously to a rock on the shore, stuck it in his helmet as symbol to hold fast in risky undertaking; from Latin genista (genesta) -ae f, the plant broom. Alternately from Celtic gen, or French genet, a small shrub (w73). A genus of 80-90 spp of small trees, shrubs, & herbs native of Eurasia. Genista tinctoria Linnaeus 1753 DYER’S GREENWEED, aka DYER’S BROOM, WOADWAXEN, WOODWAXEN, (tinctorius -a -um tinctor'ius (tink-TORE-ee-us or tink-TO-ree-us) New Latin, of or pertaining to dyes or able to dye, used in dyes or in dyeing, from Latin tingo, tingere, tinxi, tinctus, to wet, to soak in color; to dye, & -orius, capability, functionality, or resulting action, as in tincture; alternately Latin tinctōrius used by Pliny, from tinctōrem, dyer; at times, referring to a plant that exudes some kind of stain when broken.) An escaped shrub introduced from Europe. Shrubby, from long, woody roots. The whole plant dyes yellow, & when mixed with Woad, green. Blooms August. Now, where did I put that woad? Sow at 18-22ºC (64-71ºF) for 2-4 wks, move to -4 to +4ºC (34-39ºF) for 4-6 wks, move to 5-12ºC (41- 53ºF) for germination (tchn). -
1 Introduction
National Strategy for the Conservation of Crop Wild Relatives of Spain María Luisa Rubio Teso, José M. Iriondo, Mauricio Parra & Elena Torres PGR Secure: Novel characterization of crop wild relative and landrace resources as a basis for improved crop breeding The research reported here was made possible with funding from the EU Seventh Framework Programme. PGR Secure is a collaborative project funded under the EU Seventh Framework Programme, THEME KBBE.2010.1.1-03, ‘Characterization of biodiversity resources for wild crop relatives to improve crops by breeding’, Grant Agreement no. 266394. The information published in this report reflects the views of PGR Secure partner, URJC. The European Union is not liable for any use that may be made of the information contained herein. Acknowledgements: We are grateful to Cristina Ronquillo Ferrero and Aarón Nebreda Trejo who collaborated in the process of data gathering and data analysis for the generation of this strategy. We are also grateful to Lori De Hond for her help with proof reading and linguistic assistance. Front Cover Picture: Lupinus angustifolius L., by Rubén Milla 2 Contents 1 Introduction ................................................................................................................... 5 2 Prioritization of Crop Wild Relatives in Spain ................................................................ 6 2.1 Introduction ............................................................................................................ 6 2.2 Methods ................................................................................................................. -
Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive G C A T T A C G G C A T genes Review Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae Tomasz St˛epkowski 1,*, Joanna Banasiewicz 1, Camille E. Granada 2, Mitchell Andrews 3 and Luciane M. P. Passaglia 4 1 Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland; [email protected] 2 Universidade do Vale do Taquari—UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil; [email protected] 3 Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand; [email protected] 4 Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +48-509-453-708 Received: 31 January 2018; Accepted: 5 March 2018; Published: 14 March 2018 Abstract: The legume tribe Genisteae comprises 618, predominantly temperate species, showing an amphi-Atlantic distribution that was caused by several long-distance dispersal events. Seven out of the 16 authenticated rhizobial genera can nodulate particular Genisteae species. Bradyrhizobium predominates among rhizobia nodulating Genisteae legumes. Bradyrhizobium strains that infect Genisteae species belong to both the Bradyrhizobium japonicum and Bradyrhizobium elkanii superclades. In symbiotic gene phylogenies, Genisteae bradyrhizobia are scattered among several distinct clades, comprising strains that originate from phylogenetically distant legumes. -
Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits. -
DALBERGIA Linnaeus F., Suppl
Flora of China 10: 121–130. 2010. 54. DALBERGIA Linnaeus f., Suppl. Pl. 52, 316. 1782, nom. cons. 黄檀属 huang tan shu Trees, shrubs, or woody climbers. Leaves alternate, imparipinnate; stipules often small and early caducous; leaflets alternate, rarely opposite, estipellate. Inflorescences terminal or axillary, racemes or panicles, usually numerous flowered; bracts and bracteoles usually small, caducous, rarely persistent. Flowers small. Calyx campanulate, 5-toothed; teeth unequal, rarely subequal, lowest tooth usually largest, upper pair usually wider than others and partially connate. Corolla white, pale green, or rarely purple; petals clawed; standard ovate, oblong, or orbicular; wings with base cuneate, truncate, or sagittate; keel often boat-shaped, ± united above. Stamens 9 or 10, monadelphous, usually united in an open sheath, or diadelphous and then in 2 bundles of 5 each (5+5), or 9 united and 1 free (9+1); anthers erect, small, dehiscent by short apical slits. Ovary stipitate, few ovuled; style usually incurved, long or short; stigma terminal, small. Fruit an indehiscent legume, of 4 types: (a) strongly flattened, translucent, raised over seeds (“samaroid”); (b) thick- er, ± leathery, often with lenticels; (c) thick, ± woody; (b+c) when more than 1 seed develops, legume lomentaceous. Seeds reniform, compressed, those of legume types b, c, and b+c usually not visible from outside; radicle inflexed. Between 100 and 120 species: tropical and subtropical regions of North and South America, Africa, and Asia; 29 species (14 endemic, one intro- duced) in China. Due to insufficient data, Dalbergia tonkinensis (species no. 29) could not be included in the key. Dalbergia esquirolii H. -
Adaptation of Cupriavidus Metallidurans CH34 to Toxic Zinc Concentrations Involves an Uncharacterized ABC-Type Transporter
microorganisms Article Adaptation of Cupriavidus metallidurans CH34 to Toxic Zinc Concentrations Involves an Uncharacterized ABC-Type Transporter Rob Van Houdt 1,* , Joachim Vandecraen 1,2, Natalie Leys 1, Pieter Monsieurs 1,† and Abram Aertsen 2 1 Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium; [email protected] (J.V.); [email protected] (N.L.); [email protected] (P.M.) 2 Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; [email protected] * Correspondence: [email protected] † Current address: Institute of Tropical Medicine, 2000 Antwerp, Belgium. Abstract: Cupriavidus metallidurans CH34 is a well-studied metal-resistant β-proteobacterium and contains a battery of genes participating in metal metabolism and resistance. Here, we generated a mutant (CH34ZnR) adapted to high zinc concentrations in order to study how CH34 could adap- tively further increase its resistance against this metal. Characterization of CH34ZnR revealed that it was also more resistant to cadmium, and that it incurred seven insertion sequence-mediated mutations. Among these, an IS1088 disruption of the glpR gene (encoding a DeoR-type transcrip- tional repressor) resulted in the constitutive expression of the neighboring ATP-binding cassette (ABC)-type transporter. GlpR and the adjacent ABC transporter are highly similar to the glycerol Citation: Van Houdt, R.; Vandecraen, operon regulator and ATP-driven glycerol importer of Rhizobium leguminosarum bv. viciae VF39, J.; Leys, N.; Monsieurs, P.; Aertsen, A. respectively. Deletion of glpR or the ABC transporter and complementation of CH34ZnR with the Adaptation of Cupriavidus parental glpR gene further demonstrated that loss of GlpR function and concomitant derepression of metallidurans CH34 to Toxic Zinc the adjacent ABC transporter is pivotal for the observed resistance phenotype.