<<

Georgia State University ScholarWorks @ Georgia State University

Chemistry Dissertations Department of Chemistry

12-4-2006

Insights into Sulfonated ; Insights into Anionic Tetraaryl ; Irradiation of Cationic Metalloporphyrins Bound to DNA

Anila Fiaz Gill

Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_diss

Part of the Chemistry Commons

Recommended Citation Gill, Anila Fiaz, "Insights into Sulfonated Phthalocyanines; Insights into Anionic Tetraaryl Porphyrins; Irradiation of Cationic Metalloporphyrins Bound to DNA." Dissertation, Georgia State University, 2006. https://scholarworks.gsu.edu/chemistry_diss/7

This Dissertation is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected].

Insights into Sulfonated Phthalocyanines; Insights into Anionic Tetraaryl Porphyrins; Irradiation of Cationic Metalloporphyrins Bound to DNA by

Anila Fiaz Gill

Under the Direction of Dr. Dabney White Dixon

ABSTRACT

Sulfonated porphyrins and phthalocyanines have been under consideration as microbicides, compounds which, when used in a topical formulation, can prevent transmission of the human immunodeficiency virus. Our studies have been directed toward the characterization of members of these classes. For the sulfonated phthalocyanines,matrixassistedlaserdesorption/ionization(MALDI)massspectrometry was helpful in determining the extent of sulfonation. We present the first report of spectroscopic characterization of a pentasulfonated . Capillary electrophoresisdataweresensitivetotheconcentrationofthecompounds(Chapter1).

Massspectrometrywasalsoveryusefulforestablishingtheextentofsulfonation inseriesofsulfonatedporphyrins.Capillaryelectrophoresiswasveryusefulinseparating mixtures of these species. A study on sulfonation of a series of tetra(difluorophenyl)porphyrins showed that species with redshifted Soret peaks were being formed. Data were consistent with an intramolecular sulfone bridge from the phenylsubstituenttothecore.Sulfonationofthetetranaphthylporphyrinsring readilygavemorethanonesulfonicacidgrouppernaphthylsidechain(Chapter2).

Incancerchemotherapyofsolidtumors,itisdesiredtokillthetumorcellswith

minimaldamagetothesurroundingtissue.Brachytherapyseedshavebeenaconsiderable

helpinthisregardforsometumors.Infurtherdevelopingapproachestoselectivetumor

damage, we have evaluated a technique, Auger ElectronTherapy(AET)inwhichone

introducesacompoundthatisexpectedtobindtoDNA,absorbtheradiation,andthen

catalyzeclusteredDNAdamageviareleaseofaseriesofAugerelectrons.Wechosea

seriesofmetals(silver,indium,molybdenum,palladium,platinum,ruthenium,silverand

zirconium) with appropriate energy levels to absorb an xray photon from the brachytherapy seed and used the tetracationic porphyrin 5,10,15,20tetrakis(1

methylpyridinium4yl) porphyrin (TMPyP4) as a scaffold. The amount of clustered

DNAdamagewasquantitatedbyaplasmidassay.Experimentsevaluatedtheeffectof buffer,concentrationofglycerol,irradiationtime,andconcentrationoftheporphyrin.No

metal studied gave significant double stranded (localized) DNA damage. Significant

single stranded DNA damage was observed, however, in the order zirconium >>

ruthenium>palladium>platinum>silver~indium(Chapter3).

INDEXWORDS:SulfonatedPhthalocyanines,AnionicPorphyrins,CationicPorphyrins, AugerElectronTherapy(AET),CapillaryElectrophoresis,MassSpectrometry.

Insights into Sulfonated Phthalocyanines; Insights into Anionic Tetraaryl Porphyrins; Irradiation of Cationic Metalloporphyrins Bound to DNA

by

Anila Fiaz Gill

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2006

Copyrightby AnilaFiazGill 2006

Insights into Sulfonated Phthalocyanines; Insights into Anionic Tetraaryl Porphyrins; Irradiation of Cationic Metalloporphyrins Bound to DNA by

Anila Fiaz Gill

MajorProfessor:Dr.DabneyW.Dixon CommitteeMembers:Dr.KathyB.Grant Dr.MarkusW.Germann ElectronicVersionApprovedby: OfficeofGraduateStudies CollegeofArtsandSciences GeorgiaStateUniversity December2006 iv

ACKNOWLEDGEMENTS

IamgratefultoGodforgivingmethestrengthandperseveranceforcompleting theresearch.

MysincerestgratitudetoDr.DabneyWhiteDixon,myPh.D.advisor,forher continuedguidanceandsupportduringthewholeprocessofcompletingthePh.D. program.

Specialthankstomyfamily,myfather,Mr.MunawarFiazGill,mymother,Mrs.

GulzarMunawarGillandmybrotherMr.ObaidFiazGill.Theyhavebeenaconstant sourceofsupportthroughtheirkindnessandprayers.

IamverythankfultoRev.Dr.andMrs.F.B.Davies,my“adoptedparents”,for theirlove,careandsupport.

IwouldalsoliketothankthecommunityofGeorgiaStateUniversity,especially, themembersoftheDepartmentofChemistryandofDr.Dixon’sresearchgroupfortheir support.

v

TABLE OF CONTENTS

Acknowledgment…………………………………………………………………………iii

ListofTables……………………………………………………………………………..vi

ListofFigures…………………………………………………………………………...vii

Chapter 1: Insights into Anionic Phthalocyanines.

SectionI.Introductiontophthalocyanines………………………………………………..1

SectionII.Review:Capillaryelectrophoresisseparationofsulfonated

phthalocyanines……………………………………………………………….4

SectionIII.Experiments:

i.Materialsandmethods………………………………………………………9

ii.Resultsanddiscussion…………………………………………………….10

SectionIV.Publishedwork:CharacterizationofSulfonatedPhthalocyanines

byMassSpectrometryandCapillaryElectrophoresis…………….………...18

Figures……………………………………………………………………………………40

References………………………………………………………………………………..63

Chapter 2: Insights into Anionic Tetraaryl Porphyrins.

SectionI .Introductiontoporphyrins…………………………………………………….69

SectionII.Review:Capillaryelectrophoresisseparationofporphyrins………………...73

SectionIII.Review:CyclodextrinsandTPPS4………………………………………….91

SectionIV.Experiments: vi

i.Materialsandmethods…………………………………………………….97

ii.Resultsanddiscussio n……………………………………………………98

SectionV.Publishedwork:SulfonatedNaphthylPorphyrinsasAgents

againstHIV1………………………………………………………………122

Tables………………………………………………………………………………...... 143

Figures…………………………………………………………………………………..148

References………………………………………………………………………………175

Chapter 3: Irradiation of Cationic Metalloporphyrins Bound to DNA.

SectionI.Introduction………………………………………………………………….186

SectionII.Experiments:

i.Materialsandmethods………………………………………………...... 189

ii.Resultsanddiscussion…………………………………………………..193

Tables………………………………………………………………………………...... 206

Figures………………………………………………………………………………….209

References……………………………………………………………………………...217

vii

LIST OF TABLES

Chapter 2:

Table2.1.BiologicaldataforthedifluoroderivativesofTPPS4.Datafromthe laboratoryofDr.Compans.…...…………………………………………………….…143 Table.2.2.Summaryofthecapillaryelectrophoresisandmassspectrometrydataof difluoroderivativesofTPPS4.Theasterisksindicatetheplacementofsulfonicacid groups,asdirectedbythefluorogroups.………………………………………………144 Table2.3.Summaryofthecapillaryelectrophoresisdataforthebromoderivativesof TPPS4…………………………………………………………………………………..145 Table2.4.SummaryofthenegativeionMALDIdataforthebromoderivativesof TPPS4.…………………………………………………………………………………147 Table2.5.EC 50 andCC 50 forselectedsulfonatedmetalloporphyrins.Datafromthe laboratoryofDr.Compans..…………………………………………………………...148

Chapter 3:

Table3.1.Theinnershellenergies(keV)ofthemetalschosenforirradiation.AllhaveL orKedgeenergiessuitableforirradiationbyclinicallyusedbrachytherapyseeds.…..206 Table3.2.RelationshipbetweenXlogPandcapillaryelectrophoresismigration times.…………………………………………………………………………………...207 Table3.3.Summaryoftheresultsofplasmid(pUC19)DNAcleavagewhenirradiatedin thepresenceofthemetalloderivativesofTMPyP4.…………………………………...208

viii

LIST OF FIGURES

Chapter 1:

Figure1.1.Structureofphthalocyanine…………………………………………………40 Figure1.2.WeberBuschmethodforthesynthesisofsulfonatedphthalocyanines…….41 Figure.1.3.Possibleisomerswhenthestartingmaterial,phthalicacid,hasthesubstituent, sulfonicacid,atthe4ortheequivalent5position……………………………………...42 Figure1.4.Examplesofthepossibleisomerswhenthestartingmaterial,phthalicacid, hasthesubstituent,sulfonicacid,atmorethanoneposition,i.e.,3and4position……43 Figure1.5.CapillaryelectropherogramsofCuPcS(3444)………………………………44 Figure1.6.CapillaryelectropherogramsofCuPcS(4444)………………………………45 Figure1.7.CapillaryelectropherogramsofZnPcS4……………………………………46 Figure1.8.CapillaryelectropherogramsofNiPcS4…………………………………….47 Figure1.9.UVvisspectraofNiPcS4…………………………………………………..48 Figure1.10.CapillaryelectropherogramsofPcS4SandPcS4WB.Theseparation bufferis10mMKH 2PO 4buffer,pH9.0………………………………………………...49 Figure1.11.CapillaryelectropherogramsofPcS4SandPcS4WB.Theseparation bufferis50mMNa 2HPO 4buffer,pH2.5……………………………………………….50 Figure1.12.UVvisspectraofPcS4S.………………………………………………...51 Figure1.13.CapillaryelectrophoresisseparationofTPPS2a(4min),TPPS3(5min),and TPPS4(6.4min),pH9.0(≈10Mporphyrin,10mMphosphatebuffer,30kV)………52 Figure1.14.NegativeionMALDIspectrum(CHCA)ofT2NapS.PanelAshowsthe regioncorrespondingtothemonomer.Peaksforthetetrasulfonic(♦)andthe pentasulfonicacid(▲)aswellastheirsodiumsaltsareseen.PanelBshowstheregion correspondingtothedimer.Peaksforthehomodimersofthetetrasulfonic(♦)and pentasulfonicacid(▲)aswellastheheterodimerofthetetrasulfonic/pentasulfonicacid (■)andtheirsodiumsaltsareseen.DatainterpretedbyBrianR.Sook…………………53 Figure1.15.NegativeionMALDIspectrumofPcS4.PanelA:PcS4WB (THAP/EDTA).Theparentionisseen(834),asarethemono,di,tri,and ix

tetrasodiumsaltsatintervalsof+22andapeakconsistentwithlossofSO 3(754). PanelB:PcS4S(CHCA).Theparentionisseen(834),asarethemonoand disodiumsalts.Thepeaksat911914and933936areappropriateforthe pentasulfonicacidanditsmonosodiumsalt,respectively.DatainterpretedbyBrian R.Sook…………………………………………………………………………………..54 Figure1.16.NegativeionmodeMALDIspectrumofCoPcS4(CHCA).Theparentionis seen(891),asarethedimer(1782)andpeaksconsistentwithlossofSO 2 (827)and SO 3 (811).DatainterpretedbyBrianR.Sook……..………………………………………...55 Figure1.17.CapillaryelectrophoresisseparationofZnPcS3.PanelA:pH9.0(10mM phosphatebuffer,30kV).PanelB:pH2.5(50mMphosphate,20kV)……………….56 Figure1.18.NegativeionMALDIspectrum(CHCA/EDTA)ofZnPcS4WB.Theparent isseen(896)asisthelossofSO 3 (816).DatainterpretedbyBrianR.Sook…..……….57 Figure1.19.NegativeionMALDIspectrum(CHCA)ofZnPcS4I.Theregion correspondingtothemonomerisshown.Themonoanddisodiumsalts,aswellaslosses ofSO 2andSO 3 fromtheparention,areseen.Peaksat976and998Daareconsistent withthepentasulfonicacidanditsmonosodiumsalt,respectively.Datainterpretedby BrianR.Sook…………………………………………………….……………………...58 Figure1.20.NegativeionMALDIspectrum(CHCA/EDTA)ofZnPcS4I.Theregion correspondingtothedimerisshown.Peaksforthehomodimersofthetetrasulfonic(♦) andpentasulfonicacid(▲)aswellastheheterodimerofthetetrasulfonic/pentasulfonic acid(■)andtheirsodiumsaltsareseen.DatainterpretedbyBrianR.Sook…..……….59 Figure1.21.CapillaryelectrophoresisofsulfonatedcopperphthalocyaninesatpH9.0 (10mMphosphate,30kV).PanelA:CuPcS(3444)(~2.5x10 5M).PanelB: CuPcS(4444)(~2.5x10 4M)…………………………………………………………...60 Figure1.22.UVvisspectroscopyofsulfonatedcopperphthalocyanines.PanelA: CuPcS(3444),inDMSO.PanelB:CuPcS(4444)inDMSO.PanelC:CuPcS(3444)in pH9.0buffer.PanelD:CuPcS(4444)inpH9.0buffer………………………………….61 Figure1.23.PositiveionmodeMALDIofCuPcS(3444)(CHCA/EDTA).Themonomer anditssodiumsaltsareseen(895),asarethedimersalts(peaksarecenteredat1902;this isthe5sodiumsalt)andtrimersalts(peakscenteredat2866;thisistheoctasodium salt).DatainterpretedbyBrianR.Sook…..…………………………………………….62

x

Chapter 2:

Figure2.1.(a)Structureofporphin(left),tetraphenylporphyrin(TPyP4)(center),and tetrasulfonatedtetraphenylporphyrin(TPPS4)(right).(b)Structureofnaphthylporphyrin (TNapPS)(left)andanthracylporphyrin(TAnthPS)(right).………………………….148 Figure2.2.UVvisspectraofTPPS4.Intheorderofdecreasingconcentration,the dilutionfactorsare301,1001and3001ofthestocksolution(~10 3Mbyweight).….149 Figure2.3.UVvisspectraofCuTPPS4inwater.Intheorderofdecreasing concentration,thedilutionfactorsare26,39,51,101and752ofthestocksolution (~10 4Mbyweight).…………………………………………………………………..150 Figure2.4.UVvisspectraofTPPS3(a)H 2O:Intheorderofdecreasingconcentration, thedilutionfactorsare17,25,33,50,100,200and1000ofthestocksolution(10 4Mby weight).(b)pH2.5buffer:Intheorderofdecreasingconcentration,thedilutionfactors are17,20,25,33,50,100,200and500ofthestocksolution(10 4Mbyweight).…...151 Figure2.5.CapillaryelectrophoresisseparationofmetalloderivativesofTPPS4. Separationconditions:10mMKH 2PO 4buffer,pH9.0,30kV,412nm.……………...152 Figure2.6.CapillaryelectropherogramsofTNapPS.…………………………………153 Figure2.7.UVvisspectraofTNapPS.Intheorderofdecreasingconcentration,the dilutionfactorswere101,151,216,301and752ofthestocksolution(~10 3M).…..153 Figure2.8.CapillaryelectropherogramsofTAnthPS.………………………………..154 Figure2.9.UVvisspectraofTAnthPSinpH2.5buffer.Intheorderofdecreasing concentration,thedilutionfactorswere101,151,216,301and752ofthestocksolution (~10 3M).……………………………………………………………………………..154 Figure2.10.StructuresofthedifluoroderivativesofTPPS4.………………………..155 Figure2.11.UVvisspectraoftheCuchelatesofdifluoroderivativesofTPPS4in varioussolvents.H 2O:______;1mMEDTA:……….;bufferpH7.1:;bufferpH 9.0:______…………………………………………………………………………..156 Figure2.12.(a)UVvisspectraofTPP(2,5F2)S,Cu(DD713)invarioussolventsto checkforaggregation.(b)UVvisspectraofvariousdilutionsofTPP(2,5F2)S,Cu (DD713)inwatertocheckforaggregation.…………………………………………..157 xi

Figure2.13.Formationofcyclicstructuresintetraphenylporphyrins.(a)theproposed cyclicsulfonering,(b)cyclicketoneandamineringsintetrapyrrolesreportedin literature.……………………………………………………………………………….158 Figure2.14.(a)Lossofwatercouldresultintheformationofsulfonering,shownhere inthecaseofTPPS(2,5F)S,Cu(DD713).The ortho and para positionsindicatewhere thesulfonicacidgroup(s)willbeplaced,directedbythefluorogroups.(b)Theasterisks indicatetheplacementofsulfonicacidgroups,asdirectedbythefluorogroups.…….159 Figure2.15.CapillaryelectrophoresisseparationoffluoroderivativesofTPPS4. Separationconditions:10mMKH 2PO 4buffer+1mM βCD,pH9.0,30kV.………..160 Figure2.16.(a)NegativeionMALDImassspectrumofTPP(3,5F2)S,Cu(DD746). Peakscorrespondingtomono(,899),di(,979),tri(,1059)andtetrasulfonic acid( ,1139)andtheirsodiumadductsareseen.Thepeakat1040( )isduetoloss of18Dafromtrisulfonicacid.Thepeakat1120( )isduetolossofwaterfrom tetrasulfonicacid.(b)NegativeionMALDImassspectrumofTPP(2,3F2)S,Cu (DD755).Peakscorrespondingtotri(,1059),tetra(,1139)andpentasulfonic acid( ,1219)andtheirsodiumadductsareseen.Thepeakat1120( )isduetoloss of18Dafromtetrasulfonicacid.Thepeakat1201( )isduetolossofwaterfrom pentasulfonicacid.……………………………………………………………………..161 Figure2.17.(a)NegativeionMALDImassspectrumofTPP(2,5F2)S,Cu(DD713). Peakscorrespondingtodi(,979),tri(,1059)andtetrasulfonicacid( ,1139)and theirsodiumadductsareseen.Thepeakat960( )isduetolossofwaterfrom disulfonicacid.Thepeakat1040( )isduetolossof18Dafromtrisulfonicacid.The peakat1120( )isduetolossofwaterfromtetrasulfonicacid.(b)NegativeionMALDI massspectrumofTPP(2,4F2)S,Cu(DD720).Peakscorrespondingtomono(,899), di(,979),tri(,1059)andtetrasulfonicacid( ,1139)andtheirsodiumadductsare seen.Thepeaksat960( )isduetolossofwaterfromdisulfonicacid.Thepeakat1040 ()isduetolossofwaterfromtrisulfonicacid.Thepeakat1120( )isduetolossoff waterfromtetrasulfonicacid.Thepeakat1201( )isduetolossof18Dafrom pentasulfonicacid.……………………………………………………………………..162 Figure2.18.(a)NegativeionMALDImassspectrumofTPP(2,4F2)S,Cu(DD720). Peakscorrespondingtomono(,899),di(,979),tri(,1059)andtetrasulfonicacid (,1139)areseen.Thepeaksat1017and1039( )areduetolossofSO 2fromsodium adductsoftrisulfonicacid.Thepeaksat1097,1119and1141( )areduetolossofSO 2 fromsodiumadductsoftetrasulfonicacid.Thepeaksat1177,1199and1221( )aredue tolossofSO 2 fromsodiumadductsofpentasulfonicacid.(b)NegativeionMALDImass spectrumofTPP(2,3F2)S,Cu(DD755).Peakscorrespondingtotri(,1059),tetra(, 1139)andpentasulfonicacid( ,1219)areseen.Thepeaksat1075,1097,1119and 1141( )areduetolossofSO 2fromtetrasulfonicacidanditssodiumadducts.The xii

peaksat1155,1177,1199and1221( )areduetolossofSO 2frompentasulfonicacid anditssodiumadducts.………………………………………………………………...163 Figure2.19.StructuresofbromoderivativesofTPPS4.……………………………...164 Figure2.20.CapillaryelectropherogramsofbromoderivativesofTPPS4.Separation conditions:10mMKH 2PO 4,pH9.0bufferwith1mM βCD.………………………...165 Figure2.21.UVvisspectraofbromoderivativesofTPPS4inwater.……………….166 Figure2.22.Structuresofsulfonated1naphthyl(T1NapS,left)and2naphthylT2NapS, right)porphyrins.Tetrasulfonatedporphyrinswithonesulfonicacidoneachsidechain areshown.MisCu,Feor2H.………………………………………………………...167 Figure2.23.CEseparationofT2Nap5S,CuinpH9.0,10mMKH 2PO 4buffer.A:with1 mMβcyclodextrin;B:with1mMγcyclodextrin.……………………………………168 Figure2.24.CEofT2NapSmadebysulfonationfor5h(A,T2Nap5S)and20h(B, T2Nap20S)(pH9.0,10mMKH 2PO 4buffer,1mMγcyclodextrin).…………………169 Figure2.25.CEofT2NapS,Cu(pH9.0,10mMKH 2PO 4buffer,1mMγcyclodextrin). Sulfonationfor5h(..),10h()and20h(_____).………………………..170 Figure2.26.NegativeionMALDImassspectrumofT2Nap5S,Cu.Peakscorresponding tothetetrasulfonicacid(▼,1195)andpentasulfonicacid(▲,1275)areseen.Thepeaks at1257and1337areattributedtothesulfones(lossofwater)frompentasulfonicacid (▲)andhexasulfonicacid(■),respectively.…………………………………………..171 Figure2.27.NegativeionMALDImassspectrumofT2Nap20S,Cushowedpeaks appropriateforthepentasulfonicacid(▲);thehexa(■)andheptasulfonicacids(♦)and theirMH 2Opeaks;andtheMH 2Opeakcorrespondingtotheoctasulfonicacid(●). Sodiumsaltsofsomeofthesulfonicacidspeciesarealsoseen.……………………...172 Figure2.28.NegativeionESIMS/MSofthepentasulfonicacidpeak(▲)at1274of T2Nap5S,Cu.Thepeakat1210isattributedtolossofSO 2(◊).Successivelossesofxii nSO3(□)and[SO 2+(n1)SO3](○)canbeseen(n=24).Peaksarealsoseenfor lossesoftwoSO 2andeitheroneortwoSO 3.………………………………………….173 Figure2.29.ActivityofsulfonatednaphthylporphyrinsagainstHIV1IIIB.Compounds ataconcentrationof50 g/mlwereincubatedwithHIV1IIIBinthedarkfor1h;the compound/virusmixturewasdiluted10foldandusedtoinoculateMAGICCR5cells. HIVinfectivitywasmeasuredafterthreedaysbyremovalofthemedia,fixationand stainingwithXgal.TheactivityagainstHIVwasmeasuredbydividingthenumberof infected,βgalexpressingcellsinwellsinfectedwithcompoundtreatedvirusbythe xiii

numberinwellsinfectedwithuntreatedvirus.Dataareplottedasthemeanofoneortwo experiments,eachwiththreeorfourreplications.Errorbarsrepresentstandard deviations.Thenaphthylporphyrinsweresulfonatedfor5and10hours(T1Nap)and5, 10and20hours(T2Nap).……………………………………………………………...174 Chapter 3: Figure3.1.Thermalmeltingprofilesof10merduplexDNA(5 ′GCGAATTCGC3′) alone(46.9 oC)andaftercomplexationwiththealkylderivativesofInTRPyP4 (59.0±1 oC).…………………………………………………………………………...209 Figure3.2.CapillaryelectrophoresisseparationoftheindiumderivativesofInTPyP4. Separationconditionsarediscussedintheexperimentalsection.……………………...210 Figure3.3.UVvisspectraof(a)Zrand(b)ModerivativesofTMPyP4.Theporphyrin solutionsareinwater(___)andinpH3.2(____)and8.1()buffers....... 211 Figure3.4.EnhancementofpUC19cleavagewasobservedduetolongerirradiation times.Experimentalconditions:20 MpUC19in10mMphosphatebuffer(pH7.0)+2 mMglycerol;Rhtargettube,50kV,20mA,40Gy/min.……………………………..212 Figure3.5.IncreasingporphyrinconcentrationenhancedpUC19cleavage.“Dimming” ofthebandswasalsoobserved.Experimentalconditions:10 MpUC19in10mM phosphatebuffer(pH7.0)+2mMglycerol;4sirradiation;Rhtargettube,50kV,20 mA,40Gy/min.………………………………………………………………………..213 Figure3.6.AnincreasedfractionofOCwasobservedbytheadditionof3,3’diaminoN methyldipropylaminetoamixtureofplasmid(pUC19)DNAandInTBzPyP4thatwas incubatedfor30days.ThisindicatedtheformationofabasicsitesontheDNAduetothe prolongedincubationwiththeporphyrin,eveninafrozensolution(20 oC).Experimental conditions:10 MpUC19and1 MInTBzPyP4in10mMphosphatebuffer(pH7.0)+ 2mMglycerol.…………………………………………………………………………214 Figure3.7.ExtentsofSC,OCandLformsofpUC19asafunctionofirradiationtime, noporphyrinadded.Reactionswererunin10mMphosphatebufferatpH7.0with2mM glycerol.LinesareglobalfitsofthedatatotheFreifelderTrumboequationsusing Mathematica.(a)noporphyrin,(b)1 MRu(CO)TMPyP4.…………………………..215 Figure3.8.Theextentofsinglestrandcutting(ssb)anddoublestrandcutting(dsb)and thenss/ndsratioasafunctionofthemetalchelatedintheporphyrin.Unlessotherwise noted,allporphyrinsareTMPyP4.Experimentalconditionsanddataanalysisare describedinthetext.…………………………………………………………………...216 1

Chapter 1

Insights into Anionic Phthalocyanines

Incollaborativestudies,weobservedthatanumberofsulfonatedphthalocyanines hadexcellentantiviralactivityagainstthehumanimmunodeficiencyvirus(Vzorovetal.,

2003), pox virus (ChenCollins et al., 2003) and herpes simplex virus (Dixon, Gill,

Marailli, Hodge and Sears, unpublished data). Because these compounds had low toxicity, they were, for a time, under consideration as new vaginal microbicides, compounds which are used topically to protect against viral infection. In the end, a compoundthatwasnotaphthalocyaninewaschosenforclinicaltrials. However,we performedanumberofstudiestolookindetailatthestructuresandspectraofpossible metallophthalocyanine therapeutic candidates. The majority of this work has been published(Dixonetal.,2004),andisgivenasSectionIVofthischapter.Belowarea briefoverviewofphthalocyanines(Section I),areview of capillary electrophoresis of sulfonatedphthalocyanines(SectionII)andexperimentsthatwerenotpublished(Section

III).

Section I.

Introduction to phthalocyanines. i. Structure.

A phthalocyanineisaplanar,18electronheterocyclic aromatic system (Figure

1.1) .Ithasfourisoindoleunitslinkedbyazanitrogenatoms(Leznoff&Lever,1989). 2

Many watersoluble derivatives can be synthesized by adding groups to the isoindole

units,e.g.,amino,carboxylicandsulfonicacidgroups(Barbosaetal.,1997).Similarly,

many metalloderivatives of phthalocyanines can be synthesized; more than 60 metals

havebeenreportedasinsertedinthephthalocyaninering(Leznoff&Lever,1989).

ii. Spectral properties.

Phthalocyaninesabsorbinthe670680nmregion, knownastheQband,the

result of a π π* ring transition (Leznoff & Lever, 1989; Leznoff & Lever, 1993).

Phthalocyanines have high extinction coefficients, in the range of 10 5 M1cm 1, and

appearblueincolor.Aweakerabsorption,duetovibroniccoupling,isobservedat610

620nm.Anotherlowintensityband,duetoelectronictransitions,theBorSoretband,

appearsat350nm.

Phthalocyaninesareknowntoaggregateinbothaqueous and organic solvents.

Foraggregatedphthalocyanines,thereisastrongpeakat~620630nm(Barbosaetal.,

1997). This is facetoface aggregation, which is the result of extensive interaction betweenthe πsystemsofadjacentrings(Zelinaetal.,1999).Thenatureofmetalinthe

ring affects the aggregation properties of the phthalocyanine (Barbosa et al., 1997).

Aggregationisalsoaffectedbythesolvent,pH,ionic strength and temperature of the

solutions,aswellastheconcentrationofthephthalocyanine.

iii. Applications.

Phthalocyaninesareusedascatalysts,pigments,electrodes, and even as drugs,

e.g., as sensitizers in photodynamic therapy (PDT) (Leznoff & Lever, 1989). The

importance of phthalocyanines and their derivatives lies in their variety, structural 3

flexibility, stability and resistivity to chemical and photochemical degradation. Some phthalocyaninesareknowntobenontoxic;theLD 50 ofcertainphthalocyaninesis>10

g/kgbodyweight(Leznoff&Lever,1989).Ourinteresthasbeenintheuseofsulfonated phthalocyaninesasantiviralagents. iv. Synthesis of phthalocyanines and derivatives.

There are two main methods for the synthesis of sulfonated phthalocyanines

(Leznoff&Lever,1989).Thefirstmethodinvolvesthesulfonationofthephthalocyanine ring.Sulfonationhashistoricallybeenthoughttoleadtoamixtureofmono,di,tri,and tetrasulfonatedproducts.Thesecondmethodinvolvesthecondensationofthesulfonated precursorsinthepresenceofurea,theselectedmetalsaltandacatalyst.Thisiscalledthe

WeberBuschmethod,afteranearlyreportinwhichsodiumsaltof4sulfophthalicacid was used to synthesize tetrasodium (2,9,16,23tetrasulfophthalocyaninato) cobalt(II) in thepresenceofurea,nitrobenzene,cobaltchloridesaltandammoniummolybdateasa catalystat170190 oC(Weber&Busch,1965)(Figure 1.2) .Thecondensationmethod

usingthe4sulfonicacidasstartingmaterialleadstoisomericmixtures,thoughallthe

molecules are presumably tetrasulfonated (Leznoff & Lever, 1989). Sulfonated

metallophthalocyanines are synthesized either by inserting metal into the free base

tetrasulfonatedphthalocyanineorbythesulfonationoftheappropriatemetalloderivative.

v. Mixtures/isomers of phthalocyanines.

Dependingonthepositionofthesubstituentgroupsontheouterisoindolerings, phthalocyanines can have various isomers. Even if one starts with the precursor,

sulfonated phthalic acid, with the sulfonic acid uniquely at the 4position of the ring, 4

phthalocyanineisomersareformedbecausethesulfonicacidcanbefoundateitherthe4

or5positiononeachofthefourisoindoleringsofthephthalocyanine,givingatotalof

four isomers (Figure 1.3) . If, however, the sulfonated phthalic acid is a mixture of

compoundswithsulfonicacidatthe3positionand4positiononthering,therecanbe

multipleisomers (Figure 1.4) .

Section II. Review. Capillary electrophoresis separation of sulfonated phthalocyanines. Capillary

electrophoresis(CE)hasbeenusedfortheanalysisofphthalocyaninesanditsderivatives

inavarietyofcontexts.

i. CE for monitoring the progress of reactions.

Barbosaetal.monitoredthevariouspurificationstepsinvolvedinsynthesisof

sulfonated Co(II) phthalocyanine [Co(II)PcS] by CE (Barbosa et al., 1997). Co(II)PcS

wassynthesizedbytheWeberBuschcondensationmethod.

CE analysis was performed under reversed polarity at constant voltage, with

spectroscopic detection at 260 nm and 630 nm for crude and purified products,

respectively.Thedifferenceinthespectraofcrudeandpurifiedproductwasobservedat

260nm.A20mMcitratebuffer(pH2.5)wasusedfortheanalysisofcrudeandpurified products. Cetyltrimethylammonium bromide (CTAB) was used to enhance the

separation.

Conneelyetal.utilizedCEtofollowthebiodegradationofcopperphthalocyanine

dyesandtheappearanceofneworganicentities(Conneelyetal.,2002). Phanerochaete 5

chrysosporium (whiterot fungi) PC 671 was used for the degradation. The copper phthalocyanine dyes studied were Remazol Turquoise Blue G133, Everzol Turquoise

BlueandHeligonBlueS4.

As copper is strongly bound to the phthalocyanine structure, free copper ions

would be indicative of the degradation of the phthalocyanine ring. The dyes were

metabolized to give free copper ions, and presumably also noncopper and copper

containingmetabolites.BythefifthdayCEelectropherogramsdidnothavetheparent

dyepeak,butonlyalargefreecopperionpeak,whichreachedmaximumheightbythe

seventhday,presumablyindicatingfulldegradationofthedyes.

The background electrolyte contained 0.025 M CTAB and 0.0385 M sodium

tetraborate(Borax).Separationswerecarriedoutunderreversepolarity,withthedetector

setat254and666nm.ThepresenceofCTABresultedinlongermigrationtimesforthe

dyes; Remazol TB, 25.79 min, Everzol TB, 25.65 min and Heligon TB, 24.53 min.

Conneelyetal.suggestedthatlongermigrationtimesinthepresenceofCTABindicated

thatthedyesinteractedelectrostaticallyatthesurfaceofthepositivelychargedmicelles

ofCTAB,whiletherestofthedyes’essentiallyhydrophobicstructurewasembeddedin

thehydrocarboncenter ofthemicelles. Generally shortermigrationtimesobserved for

themetabolitessuggestedlessinteractionwiththechargedsurfaceofthemicellesand/or

lessaffinityforthehydrophobiccenterofthemicelles.

6

ii. CE for analyzing the counter ions.

Barbosaetal.analyzedthepresenceofcounterionsduringthepurificationsteps ofthesynthesisofCo(II)PcSbyCE(Barbosaetal.,1997).Theanionic(chloride,sulfate, carbonate and 4sulphothalate, prepared at 100 mg/L concentration) and cationic

(ammonium,potassium,barium,calcium,sodium,manganeseandcobalt(II),aschloride salts,preparedat100mMconcentration)standardswereusedtocomparetheinorganic anionsandcationsofthepurifiedfractions.Indirectdetectionwasdoneat254nmand

214nm.Foranionanalysis,5mMchromatebuffer(pH9.0)containing0.1mMCTAB was used. For the cation analysis, 5 mM (pH 5.0) containing 5 mM hydroxyisobutyricacid(HIBA)wasused. iii. CE for analyzing the components of phthalocyanines.

Schofield and Asaf used capillary electrophoresis for the analysis of various components of zinc, copper and cobalt derivatives of sulfonated phthalocyanines

(Schofield & Asaf, 1997). They synthesized tetrasulfonated phthalocyanines by a modificationoftheWeberBuschmethod.

TheCEseparationofthevariouscomponentsofeachsulfonatedphthalocyanine was based on the difference in the degree of sulfonation, i.e., on the basis of its net charge.Themigrationtimesweresimilarforthezinc,copperandcobaltderivativesof tetrasulfonatedphthalocyanines.

Schofield and Asaf also compared the separation of two samples of chloroaluminum sulfonated phthalocyanine, synthesized by two different methods

(Schofield & Asaf, 1997). The first sample was obtained by converting the sulfonyl 7

chloridegroupsofchloroaluminumphthalocyaninetosulfonicacidgroups.Thesecond

sample was prepared as chloroaluminum phthalocyanine. It was then chlorosulfonated

andfinallyhydrolyzedtogivethechloroaluminumsulfonatedphthalocyanine.

Separations were performed under high pH conditions (9.0, 10 mM KH 2PO 4).

Boththesamplesgavethesamenumberofpeaks,withsimilarmigrationtimes,buthad different intensities/proportions of the peaks. Enhancement of CE separation by using ammoniumacetatebufferwithacetonitrilewasnotobserved.

Tapleyreportedtheseparationofmorethan12coloredcomponentsofProcion

TurquoiseHA,areactivephthalocyaninebasedchlorotriazinyldye(Tapley,1995).Itis acommercialcopperphthalocyaninederivativewithtwodifferentfunctionalgroups,and occurs as a mixture of related compounds. Various buffer compositions were investigated. Tapley used 6 mM KH 2PO 4 buffer with 10 mM sodium borate, 10 mM sodium dodecylsulfate (SDS) and acetonitrilewater (1:9) for best separation. The electropherograms for the dye solution were the sameatpH7andpH11.At20mM

SDS,thepeakswerenotbaselineseparated,appearingbetween13and26min.Aratioof

1:9 of acetonitrilewater at pH 9.0 generally improved the resolution of the various componentsofthesample.ThehydrolysisofthedyewasstudiedbyheatingapH11dye solutionto80 oCfor1h;theelectropherogramsobtainedweredifferentfromtheinitial

electropherogramsduetothelossoradditionofpeaksasaresultofhydrolysis.

Peng et al. reported the separation of nine photosensitizer isomers of

tetrasulfonatedphthalocyaninebyCE(Penget al., 2005b).Theisomershavedifferent

positionsofsulfonategroupsonthearomaticringsandoccurtodifferentextentsinthe 8

mixture.Pengetal.studiedtheeffectontheseparationofisomersbytheuseofvarious buffers,organicsolvents,andadditives.Thebest separationwasachievedwithahigh

concentrationboratebuffer(120mM)athighpH(9.2)withSDS(10mM)andatahigh

% of acetonitrile (50%). Separation was not enhancedbythepresenceofBrij35and

cholate.

Pokric et al. reported the separation of Tinolux BBS, a sulfonated mixture of

aluminum phthalocyanines, AlPcS n(Pokricetal.,1999).Theywereinterestedinreal timeprocessingofsnapshotdatafromaCEinstrument.Separationwasperformedusing a20mM3cyclohexylamino1propanesulfonicacidbuffer(CAPS),pH10.5.Thepeaks formono,di,tri,andtetrasulfonatedspecieswereseparatedwithin50s.

Dixonetal.havereportedtheseparationofsulfonatedphthalocyanines(Dixonet al.,2004).ThedetailsarediscussedinSectionIVofthischapter. iv. Detection of phthalocyanines.

Theoverallspectralfeaturesofmetallophthalocyaninesaresimilarirrespectiveof

themetalinthemacrocycle(Barbosaetal.,1997).Thedimerabsorbsat630nm(Qband)

andthemonomerabsorbsat680nm.

UVvisdetectorsandfastscanningdetectorshavebeen regularly employed for

the detection of peaks (Tapley, 1995; Barbosa et al., 1997; Schofield & Asaf, 1997;

Conneely et al., 2002). Laserinduce fluorescence detection (LIF) has also been used.

SeparationofninephotosensitizerisomersofphthalocyaninetetrasulfonatebyCEwas

reportedusingaUVdetectorsetat214nm,aswellasaLIFdetectorwithexcitationat

442/488nmandemissionat690nm(Pengetal.,2005a).TheseparationofAlPcS n,was 9

monitoredbyachargecoupleddeviceLIFsystemtoachievehighsensitivity(Pokricet

al.,1999).

Section III.

Experiments.

i. Material and methods.

Copper phthalocyanine3,4',4'',4'''tetrasulfonic acid tetrasodium salt

[CuPcS(3444)] was from Aldrich (St. Louis, MO). Copper phthalocyanine4,4',4'',4'''

tetrasulfonicacid[CuPcS(4444)]wasobtainedfromFluka(St.Louis,MO).Sulfonated

zincphthalocyanine,(ZnPcS4)andsulfonatednickelphthalocyanine(NiPcS4)werefrom

FrontierScientific(Logan,UT).Sulfonatedphthalocyaninewasavailablemadeviathe

WeberBuschsynthesismethod(PcS4WB)andviasulfonationofphthalocyanine(PcS4

S)(MidcenturyChemicals,Chicago,IL).

Astocksolutionofeachcompoundwaspreparedindeionizedwater.Thestock solutionswerediluted10and100fold for capillary electrophoresis (CE) separations.

TheCEseparationswereconductedundertwopHconditions,pH9.0(10mMKH 2PO 4 buffer) and pH 2.5 (50 mM Na 2HPO 4 buffer). The details of the CE experiments are discussedinSectionIVofthischapter.

The concentration of each stock solution was determined via UVvis spectroscopy. The extinction coefficients ( ε) used for determining the concentrations were:9.98x10 4M 1cm 1in50%ethanolwatermixtureforPcSat697nm(Reynolds&

Kolstad, 1976), 1.47 x 10 5 M 1cm 1 at 677 nmin DMSO for CuPcS(3444) (Zelina & 10

Rusling,1995),1.77x10 5 M 1cm 1 at 673 nm in 20% THFwater mixture for ZnPcS4

(Rajendiran & Santhanalakshmi, 2002), and 1.03 x 105 M 1cm 1 at 658 nm in 50%

ethanolwater mixture for NiPcS4 (Amaral & Politi,1997).Fromthestocksolutionin

water,dilutionsweremadeinthespecifiedsolventsandinwater.Fromtheabsorbances

insolvents,concentrationswerecalculatedinwater.

ii. Results and discussion.

CEelectropherogramswererecordedoveraconcentrationrangeof10 310 5M

toobserveanydifferencesinCEpeakpatternduetoaggregationofthephthalocyanineat

higher concentrations. Herein, is discussed the CE data at the highest and lowest

concentrations of the phthalocyanines, unless stated otherwise. The migration time

increasedwithanincreaseinthebufferconcentrationanddecreasedwithanincreasein

thepHofthebuffer(datanotshown).Thedatawascollectedat~350nm,theBbandor

Soretregion.ThepeaksintensitiesareweakerinthisregioncomparedtothoseintheQ bandregion(~670680nm).Theaggregatedphthalocyaninesabsorbinthe620630

nmregion.Inthepresenceofaggregates,theintensitiesofthepeaksintheBbandregion

(~350nm)arecomparabletotheintensitiesofthepeaksintheaggregateregion(620

630nm)(Zelina&Rusling,1995).The260nmregioncanbemonitoredforthepresence

ofimpurities(Barbosaetal.,1997).Formostofthephthalocyaninesasignificantnumber

ofpeakswereobservedinthisregion. 11

TheUVvisspectraofthecompoundswererecordedunderthesameconditionsas usedfortheCEseparations,i.e.,atthesameconcentrationofthephthalocyanine,andin the same buffers. The UVvis spectra indicated that the compounds were in the aggregated form under the CE separation conditions. Various solvents (reported in literature)wereusedtostudythemonomericforms. a. Analysis of CuPcS4(3444) and CuPcS4(4444).

ThesetwocommerciallyavailablecompoundsweretestedforHIVactivity(inthe labortory of Dr. Compans). The name CuPcS(3444) indicates that three of the four sulfonicacidsareatthe4positionofthephenylringsandoneisatthe3position.The name CuPcS(4444) indicates that all four sulfonic acids are at the 4position of the phenylrings.The“3444”isomerwasmuchmoreactivethanthe“4444”isomer.Because the “3444” compound also had very low toxicity, it was, for a time, considered as a possibletherapeuticcandidate. Inviewofthepossible therapeutic use of one of these compounds, it was important to have a detailed understanding of the structural differences. Given the names, these two structures should have differed only in the positionofasulfonicacidgroupononeofthephthalocyaninerings.

1. CuPcS4(3444).

3 Under pH 9.0 (10 mM KH 2PO 4 buffer) separation conditions, a 3.58 x 10 M solution of CuPcS(3444) gave four major peaks appearing between 11 and 14 min

(Figure 1.5a) .A4.25x10 5Msolutionshowedasinglesharppeakat~13minanda 12

fewsmallandbroadpeaks (Figure 1.5b) .Theelectropherogramat260nmshowedmany peaksbetween2.5and5min(datanotshown).

3 UnderpH2.5(50mMNa 2HPO 4buffer)separationconditions,a3.58x10 M solutionofCuPcS(3444)showedabroadunresolvedpeakat6minandaveryshortpeak at~7min (Figure 1.5c) .A4.25x10 5Msolutionshowedasinglesharppeakat~6min, inabroadplateauregionfrom5to9min (Figure 1.5d) .

ThefourCEpeaksatthehighconcentrationof3.58x10 3MCuPcS(3444),under pH 9.0 (10 mM KH 2PO 4 buffer) separation conditions, could be due to aggregation, isomers,and/orduetothepresenceofothercomponentsinthecompound.Becausethe electropherograms change significantly as the concentration of the compound changes underhighpHseparationconditions,the3.58x10 3MsolutionofCuPcS(3444)mightbe

aggregatedunderhighpHconditions.

InDMSO,theUVvisspectraofboththesolutions,3.58x10 3 Mand4.25x10 5

M,ofCuPcS(3444)hadamonomer/dimerpeakratioof6,indicatingthateitherthereis nooronlyslightaggregationinthepresenceofDMSO(datashowninSectionIVofthis chapter). UVvisspectraweretakenovertheconcentrationrangeof4.7x10 71.45x

10 5 M, to see the change in spectra with concentration (data not shown). In DMSO,

Beer’slawwasfollowedovertheentireconcentrationrangestudied.

13

2. CuPcS4(4444).

A stock solution of CuPcS(4444) was prepared in deionized water to give a

3 theoretical concentration of ~ 2.5 x 10 M. Under pH 9.0 (10 mM KH 2PO 4 buffer)

separationconditions,thestocksolutiongaveasinglepeakcenteredat~8min (Figure

1.6a) .A2folddilutedsolutionofCuPcS(4444)(theoreticalconcentrationof~1.3x10 3

M)gaveapeakat~7min (Figure 1.6b) .The10folddilutedsolutionwastoodiluteto give an appreciable signal (data not shown). The profiles at 260 nm showed peaks between2.5and5min,indicatingpresenceofimpurities(datanotshown).

UnderpH2.5(50mMNa 2HPO 4buffer)separationconditions,thestocksolution

(~2.5x10 3 M)gaveasharpandtallpeakandaveryshortshoulderpeakat~7min

(Figure 1.6c) .The4folddilutedsolution(theoreticalconcentrationof~6.3x10 4M) alsogaveasharppeakat~7min (Figure 1.6d) .The10folddilutedsolutionwastoo dilutetogiveanappreciablesignal(datanotshown).Theprofilesat260nmshowed additionalpeaksbetween5and10min(datanotshown).

TheUVvisspectraofamicromolarsolutionofCuPcS(4444)inDMSOshoweda

significant amount of a dimer band over the region of 550 650 nm (data shown in

SectionIVofthischapter).Themonomer/dimerpeakratioincreasedastheconcentration

ofthecompoundwaslowered,indicatinglessaggregationatlowerconcentrations.

ComparingthecapillaryelectropherogramsofCuPcS(3444)andCuPcS(4444),it canbeobservedthattheywereverydifferent,withtheformerhavingsignificantlylonger 14

migration time, consistent with a higher net negative charge. Later work on the mass spectrometryofthesesystemsshowedthattheputativetetrasulfonatedCuPcS(4444)had, in fact, significantly fewer than four sulfonic acid groups on each phthalocyanine macrocycle(datashownanddiscussedinSectionIVofthischapter). b. Analysis of ZnPcS4.

UnderpH9.0(10mMKH 2PO 4 buffer)separationconditions,asolutionof1.05x

10 4MZnPcS4gaveabroad,shortpeakcenteredat~8minandtwoshortpeaksbetween

11and13min (Figure 1.7a) .Asolutionof9.01x10 5MZnPcS4wastoodilutetogive

anappreciablesignal(datanotshown).Theelectropherogramsat260nmshowedmany

additionalpeaksbetween2.5and5min(datanotshown).

4 UnderpH2.5(50mMNa 2HPO 4buffer)separationconditions,a4.26x10 M

ZnPcS4solutiongaveunresolvedpeaksbetween5and9min (Figure 1.7b) .A9.01x10

5Msolutiongaveashortandbroadpeakat6.5min(datanotshown).Theprofilesat260 nmshowedafewadditionalpeaksappropriateforimpurities(datanotshown).

The capillary electropherograms of ZnPcS4 showed that the resolution was somewhatbetteratpH9.0thanatpH2.5,thatis,thebandsappearedover8minatpH

9.0 but only over ~ 3 min at pH 2.5. The breadth of the peaks indicated that the compoundwasaggregatedundertheCEconditionsused.

TostudythemonomericformofZnPcS4,spectraweretakenin20%THF/H 2O, as reported in literature (Rajendiran & Santhanalakshmi, 2002) (data not shown). The 15

UVvisspectraofZnPcS4in20%THF/H 2Oshowedasharpmonomericbandat~675

nm,withahintofashoulderat~610nmforboththeabovementionedconcentrations,

1.05x10 4Mand9.01x10 5M.UVvisspectraweretakenovertheconcentrationrange

of9.8x10 7 1.45x10 5Mtoseethechangeinspectrawithconcentration(datanot

shown).Beer’slawwasfollowedonlyintheconcentrationrangeof10 710 6Mofthe totalconcentrationrangestudied. c. Analysis of NiPcS4.

3 Under pH 9.0 (10 mM KH 2PO 4 buffer) separation conditions, a 2.82 x 10 M solutionofNiPcS4showedaverybroadpeakbetween7and12min,centeredat~10 min (Figure 1.8a) . A 7.05 x 10 4 M solution of NiPcS4 (4fold dilution of the first solution) showed a broad peak between 7 and 11 min (data not shown). The electropherogramat260nmshowedveryfewadditionalpeaks(datanotshown).

Under pH 2.5 (50 mM Na 2HPO 4 buffer) separation conditions, a solution of

2.82x10 3MNiPcS4gaveasharptallpeakbetween5and8min,centeredat~7min

(Figure 1.8b) .Asolutionof3.08x10 5Malsogaveasinglebroadpeakbetween4and

8.0min,centeredat~7min(datanotshown).Theprofilesat260nmshowedveryfew peaks(datanotshown).Thesinglebandobservedin the CE electropherograms, under boththeseparationconditions,mightindicatethatNiPcS4wasaggregated.

TheUVvisspectraofNiPcS4areshownin Figure 1.9 .Thespectrainwaterand in pH 9.0 buffer were almost identical, with a peak at 654 nm, the monomer peak 16

(Amaral & Politi, 1997) and a shoulder peak at 620 nm, the dimer peak (Zelina &

Rusling,1995) (Figure 1.9a and 1.9c) .Theratioofthemonomer(654nm)anddimer

(620nm)peakswas1.22and1.33,inwaterandinthepH9.0buffer,respectively.InpH

2.5buffer,themainpeakwasseenat620nmandashoulderpeakat650nm (Figure

1.9d) .Theratiooftheabsorbancesat650and620nmwas0.85.AtlowpH(2.5)and high salt concentration (50 mM Na 2HPO 4) more aggregation was seen, as the peaks appearingintheregion 620to640nmareduetoaggregates. In a 50% ethanol/H 2O mixtureapeakwasseenat~663nmandashoulderpeakat597nm,indicatingthatthe compound was largely monomeric in this solvent (Figure 1.9b) . UVvis spectra were takenovertheconcentrationrangeof3.7x10 71.2x10 5Mtoseethechangeinspectra

withconcentrationforNiPcS4solutionsin50%ethanol/H 2O (data not shown). Beer’s

lawwasfollowedoverthetotalconcentrationrangestudied.

d. Analysis of PcS [synthesized via sulfonation method (PcS4-S) and via

condensation method or the Weber-Busch (PcS4-WB) method]

UnderpH9.0(10mMKH 2PO 4 buffer)separationconditions,asolutionof1.46x

10 2 MPcS4S,madeviathesulfonationmethod,showedasmallbroadpeakat~9min andalargerbroadpeakat~12min (Figure 1.10a) .Asolutionof1.73x10 3Mshowed sharperpeaksatapproximatelythesamemigrationtime (Figure 1.10b) .

2 UnderpH2.5(50mMNa 2HPO 4buffer)separationconditions,a1.46x10 M solution of PcS4S gave a single, relatively sharp peak at ~ 7 min, with a hint of a shoulder (Figure 1.11a) .A1.73x10 3Msolutionshowedasinglesharppeakat6min 17

(datanotshown).Theprofilesat260nmshowedno additional peaks appropriate for impurities(datanotshown).

PcS4WB,madeviaWBmethod,hadsimilarelectropherogramstothatofPcS4

3 S.UnderpH9.0(10mMKH 2PO 4 buffer)separationconditions,asolutionof3.78x10

MofPcS4WBshowedasinglebroadpeakat~10min (Figure 1.10c) .Asolutionof

1.58 x 10 3 M PcS4WB showed a narrower peak at ~ 11 min (Figure 1.10d) . The profilesat260nmshowednoadditionalpeaks(datanotshown).A1.51x10 4Msolution wastoodilutetogiveanappreciablesignal(datanotshown).

Under pH 2.5 (50 mM Na 2HPO 4 buffer) separation conditions, a solution of

3.78x10 3MPcS4WBgaveatallpeakat~7min (Figure 1.11b) .A 1.58x10 3M solution showed a sharp peak at approximately the same time (data not shown). The profilesat260nmshowednoadditionalpeaks(datanotshown).

UVvisspectraofPcS4SandPcS4WBwereessentiallythesameinallthefour solventsmentionedbelow.TheUVvisspectraofPcS4Sareshownin Figure 1.12 (data notshownforPcS4WB).ThespectrainwaterandinpH9.0andpH2.5buffersshowed abroadbandcenteredat~625nm.Ina50%ethanol/H 2Omixture,twobandswereseen

at694and659nm.Thesebandsareduetothemonomericspecies(Reynolds&Kolstad,

1976).Theabsenceofthesharpbandat694nminwaterorinthetwobuffers,pH9.0

andpH2.5,indicatedthatPcS4Swasmainlyaggregated. 18

UVvis spectra of PcS4S and PcS4WB were taken at concentrations which wouldgivetheopticalabsorbancessimilartothoseobservedinCEseparations.TheUV visspectraindicatedthatPcS4SandPcS4WBwereaggregatedundertheCEseparation conditions,atpH9.0,aswellasatpH2.5.

Section IV.

Characterization of sulfonated phthalocyanines by mass spectrometry and capillary electrophoresis

JournalofPorphyrinsandPhthalocyanines,2004,vol.8,pp.13001310.

DabneyW.Dixon,AnilaF.GillandBrianR.Sook

DepartmentofChemistry,GeorgiaStateUniversity,Atlanta,GA30303.

Abstract

We report the characterization of sulfonated phthalocyanines using capillary electrophoresis and mass spectrometry. Derivatives investigated included the copper, cobalt, zinc and metalfree sulfonated phthalocyanines. In general, sulfonated phthalocyanineswerefoundasaggregatesincapillaryelectrophoresisseparations,even at low concentration. Separations were much better at pH 9.0 than at pH 2.5. The addition of βcyclodextrin did not alter the electropherograms significantly. The electropherograms of commercially available copper phthalocyanine3,4',4'',4''' tetrasulfonicacidand4,4',4'',4'''tetrasulfonicacidwereverydifferent,consistentwiththe latter compound having a structure that is not fully sulfonated. Matrixassisted laser 19

desorption/ionization (MALDI) and electrospray ionization (ESI) were used to characterizethesulfonatedphthalocyanines.Ingeneral,MALDIgavebetterresultsthan

ESI. Mass spectral evidence was obtained for a pentasulfonated species of both the metalfree phthalocyanine and zinc phthalocyanine when these species were made by sulfonation of the metalfree phthalocyanine (followed by zinc insertion in the latter case). Sulfonated tetraphenylporphyrin derivatives were used as standards for mass spectrometry and to estimate the effect of net charge on the capillary electrophoresis migration time for sulfonated tetrapyrroles. Clean separation of the sulfonated tetraphenylporphyrin derivatives [5,10,15,20tetrakis(4sulfonatophenyl)porphyrin

(TPPS4); 5,10,15tris(4sulfonatophenyl)20phenylporphyrin (TPPS3); and 5,10bis(4 sulfonatophenyl)15,20diphenylporphyrin (TPPS2a)] was observed by capillary electrophoresis.

Introduction.

Sulfonated phthalocyanines (PcS) are under increasing consideration as

therapeuticagents.Phthalocyanineshavebeenusedclinicallyasphotodynamicagentsin

chemotherapy(Wainwright,1996;Phillips,1997;Sobolevetal.,2000;Allenetal.,2001;

Tedesco et al., 2003). The most widely studied phthalocyanines for photodynamic

therapyarethealuminumsulfonatedphthalocyanines(AlPcSn)(Stranadkoetal.,1999;

Allenetal.,2001). Thesulfonatedzincphthalocyanines have also been the focus of

significantstudy(Brasseuretal.,1988;Fingaretal.,1993;Margaronetal.,1996;Howe

& Zhang, 1997; Howe & Zhang, 1998; Halkiotis et al., 1999; Tabata et al., 2000). 20

Photodynamictreatmentwithphthalocyanineshasbeeninvestigatedfordecontamination ofredbloodcellconcentratesfortransfusion(BenHuretal.,1997;Wainwright,2002).

Otherrecentstudieshavefoundthatsulfonatedphthalocyanineshavebiological activity that is not dependent on the photosensitization characteristics of the phthalocyanine.Forexample,thetetrasulfonatedphthalocyaninewithoutacentralmetal

(PcS4)hasbeenshowntoinhibittransmissiblespongiform encephalopathies (Priola et al., 2000). We have shown that sulfonated phthalocyanines have significant activity againstvaccinia(ChenCollinsetal.,2003).

Studies in our laboratories also have shown that some commercially available

sulfonated phthalocyanines have significant activity against the human

immunodeficiency virus (HIV1) (Vzorov et al., 2003). For the sulfonated zinc phthalocyanines,littledifferenceinactivitywas observedasafunctionofthelevelof

sulfonation of the material. For the sulfonated copper phthalocyanines, copper phthalocyanine3,4',4'',4'''tetrasulfonicacidtetrasodiumsalt[CuPcS(3444),the1,9,16,23

isomer] was more active than copper phthalocyanine4,4',4'',4'''tetrasulfonic acid

tetrasodiumsalt[CuPcS(4444),the2,9,16,23isomer](Vzorovetal.,2003).Thesetwo

structures ostensibly differ only in the position of a sulfonate on one of the phthalocyaninerings.Becausetherewasnoclearcorrelationbetween activityandthe

ostensible extent and position of sulfonation, we have characterized the molecular

structureofthesephthalocyaninesinmoredetail.Specifically,wehavestudiedcopper,

cobalt, zinc and metalfree sulfonated phthalocyanines using capillary electrophoresis

(CE) and both matrixassisted laser desorption/ionization (MALDI) and electrospray 21

ionization (ESI) mass spectrometry. Some compounds were made using the Weber

Busch template synthesis (WB) (Weber & Busch, 1965), which is expected to give a phthalocyaninewithfoursulfonicacidgroups.Othersweremadeviasulfonationofthe parent phthalocyanine; these may be mixtures of products with various extents of sulfonation. Sulfonated tetraphenylporphyrin (TPPSn) derivatives were used for comparisonofcapillaryelectrophoresismigrationtimesandmassspectralfragmentation patterns.

Experimental.

Phthalocyanines and Porphyrins .

SulfonatedphthalocyaninewasavailableviatheWeberBusch synthesis (PcS4

WB) (Weber & Busch, 1965) and via sulfonation of phthalocyanine (PcS4S)

(MidcenturyChemicals,Chicago,IL).Co(II)PcS4,madeviatheWeberBuschsynthesis, was a gift from Dr. Jerry Bommer (Frontier Scientific, Logan, UT). Copper phthalocyanine3,4',4'',4'''tetrasulfonicacidtetrasodiumsalt[CuPcS(3444)]wasobtained from Aldrich (St. Louis, MO). Copper phthalocyanine4,4',4'',4'''tetrasulfonic acid

[CuPcS(4444)] was obtained from Fluka (St. Louis, MO). Sulfonated zinc phthalocyanines,synthesizedeitherviatheWeberBuschprocedure(ZnPcS4WB)orvia zinc insertion into sulfonated phthalocyanine (ZnPcS4I), were also gifts from Dr.

Bommer.Sulfonatedzincphthalocyaninewasalsoavailableinalesssulfonatedform from Midcentury (ZnPcS3). The sulfonated tetraphenylporphyrins (TPPS n) used were 22

TPPS2a (Frontier Scientific), TPPS3 (Midcentury) and TPPS4 (Aldrich). Ethylene diaminetetraaceticacid(EDTA,Aldrich)wasaddedtosomesamples.

Capillary Electrophoresis .

CapillaryelectrophoresiswasperformedonaBeckmanP/ACE5500serieswith

BeckmanGoldchromatographysoftwareandaBeckmandiodearraydetector.Afused silica capillary column (Beckman, 375 m o.d., 75 m i.d., 57 cm overall, 50 cm to detector)wasbuiltinaneCAPcapillarycartridge(Beckman,100x800maperture).

Phosphate buffers were prepared by dissolving NaH 2PO 4, Na 2HPO 4 or KH 2PO 4 in

deionizedwaterandadjustingthesolutiontothedesiredpHwithphosphoricacid,NaOH

orKOH.Allrunningsolutionswerefilteredthrougha0.2mmembranefilter(FP200,

GelmanScienceInc.,AnnArbor,MI)beforeuse.

Newcapillarycolumnswererinsedwith1.0Msodiumhydroxidefor1h,then

withdeionizedwaterfor20min,thenwithrunning bufferfor30min. The capillary

columnwasregeneratedbetweenrunswith0.1Msodiumhydroxidefor5min,thenwith

deionized water for 5 15 min, then with therunning buffer for 10 min. A sample

solutionwaspreparedbydissolvingasmallamountoftheporphyrinorphthalocyanine

(12mg)indeionizedwater(0.5mL).Furtherdilutionsweredoneinwater.

Separationswereperformedwithnormalpolarityfromtheinletvial(anode)tothe

outletvial(cathode)forhighpHandreversepolarityforlowpHseparations.Pressure

injectionsof6swereused.Voltageswerechosen intherangeof2030kV.The

columntemperaturewasapproximately24 °C. 23

Mass Spectrometry .

ElectrosprayionizationexperimentswereperformedusingaFinneganMAT(San

Jose,CA)LCQquadrupoleiontrapmassspectrometerinpositivemode,andthemass rangescannedwas2002000Da.Sampleswerepreparedbytakingapproximately3mg ofsampleanddissolvingin200LMeOH.Thesolutionwasthendiluted10foldwith

0.5%aceticacidand50:50H 2O:MeOH.Thesprayvoltagewas4.5kVandtheflowrate was 3 L/minute. For MS n, the collision energy was 60%. Negative ion mode electrosprayanalysisofporphyrinswasalsoperformedonaMicromassQuattroLCtriple quadrupoleinstrument(Beverly,MA)withArasthecollisiongasandacollisionvoltage of60V.

MALDI experiments were performed using an ABI Voyager DEPro (Applied

Biosystems,Warrington,UK)MALDIreflectrontimeofflightspectrometer.Themass

rangescannedwas2004000Dainpositiveandnegativemodes.Somesampleswere

run with 2,4,6trihydroxyacetophenone (THAP) and EDTAasthematrix.TheTHAP

matrixwaspreparedasa10mg/mlsolutionin50:50mixtureof0.14MEDTAinH 2O

andacetonitrile.ThesamplewasdissolvedinMeOH(0.5mg/ml).Thesamplesolution

wasmixedwiththematrixsolutionina1:20ratioandtheresultingsolutionspottedon

theMALDItargetplate.Somesampleswererunwithαcyano4hydroxycinnamicacid

(CHCA)asthematrix.CHCAwaspreparedat10mg/mlina50:50mixtureofMeOH

and acetonitrile. The sample was dissolved in MeOH (0.5 mg/ml) and mixed with

CHCA.Thesamplesolutionwasmixedwiththematrix solution in a 1:20 ratio and 24

spottedontheMALDItargetplate.Throughoutthetext,peaksareroundedtothenearest unit.

Sulfonation of 5,10,15,20-tetra(2-naphthyl)porphyrin.

Theporphyrinwassynthesizedfollowingtheliterature(RochaGonsalvesetal.,

1991).SulfonationwasperformedfollowingtheprocedureofSutteretal.(Sutteretal.,

1993).5,10,15,20Tetra(2naphthyl)porphyrin(200mg,0.24mmol)wasaddedto5ml ofconcentratedsulfuricacid(Aldrich).Thereactionmixturewasheatedat100 oCfor20 h. Ice was added to the green mixture. The acid was neutralized carefully by the addition of 50% NaOH solution and ice until the color turned red ( caution, very exothermic, keep the flask on ice and add the NaOH very slowly ).ThepHofthesolution wasadjustedto7.Theliquidwasevaporatedundervacuum.Theresultingsolidwas pulverized and the sulfonated porphyrin was extracted into methanol with a Soxhlet

apparatusforapproximately24h.Evaporationofthe solvent gave solid material that

waspurifiedbyaSephadexLH20(Pharmacia)column(6gofSephadexfor100mgof porphyrin) using methanol as the eluent. The column was prepared by putting the

Sephadexinmethanolandwasusedimmediately.Thepurplecoloredband(continuous,

streaking)wascollectedandevaporatedtoobtainthedesiredproduct(T2NapS).

25

Results.

Sulfonated Tetraphenylporphyrins.

Initialbackgroundstudieswereperformedwithsulfonatedtetraphenylporphyrins.

PartialsulfonationofTPPgivesamixtureofsulfonatedderivatives(allsulfonicacidsin

the 4position): the monosulfonated (TPPS1), disulfonated ( adjacent , TPPS2a and

opposite , TPPS2o), trisulfonated (TPPS3) and tetrasulfonated (TPPS4) derivatives.

Thesecompounds,whichcanbecleanlyseparatedbycolumnchromatographyonsilica

C18(Sutteretal.,1993;Rubiresetal.,1999)orwateronsilicagel

(Winkelmanetal.,1967;Fleischeretal.,1971;Zhang et al., 2003), are commercially available.Becausethesecompoundscanbeisolatedasindividualpurespecies,theycan beusedasstandardstoassessthefragmentationpatternsofsulfonatedtetrapyrroles.

The negative ion mode MALDI spectrum of TPPS4 (M ., CHCA) showed the molecularionat934Da,withthemono,di,tri,andtetrasodiumsaltsatintervalsof

+22Da.NopeakscorrespondingtolossofSO 2 (870) or SO 3(854)wereobserved.The

negativeionMALDIspectrumofTPPS3(CHCA)alsogaveacleanmolecularion,again

withnolossofSO 2orSO 3.

ThepositiveionmodeESIspectrumofTPPS4showedthemolecularionat935

(M+H +)Da,withthemono,di,tri,andtetrasodiumsaltsatintervalsof+22Da.There

wasnopeakat855Da,indicatingthatTPPS4didnotloseSO 3.MS/MSanalysisofthe

3 935DapeakshowedlossofSO 2(871),SO 3(855)andPhSO 3 (778).MS analysisofthe

855 fragment showed loss of SO 2 (791), SO 3 (775)andapeakat711whichmightbe

attributedtolossofbothSO 2 andSO 3.InthenegativeionmodeESIspectra,TPPS4, 26

TPPS3,TPPS2aandTPPS2oallshowedonlyverysmallpeaksforthemolecularions;by farthemostprominentpeakswereforthedoublychargedions.ThespectraofTPPS2o and TPPS2a were identical. MS/MS of the 386 [(M2H+)2] peaks of TPPS2a and

TPPS2owerealsoidentical,withthelargestpeaksforlossofSO 3 and SO 3 +SO 2.

The TPPSn isomers were also used as standards for capillary electrophoresis separation.TPPS2a,TPPS3andTPPS4separatedbycapillaryelectrophoresisatpH9.0 withmigrationtimesof4.0,5.0,and6.4min,respectively,bothindividuallyandina mixtureofallthree (Figure 1.13).

As an example of a more complicated system, the sulfonation product of

5,10,15,20tetra(2naphthyl)porphyrin T2NapS was studied. Sulfonation with concentratedsulfuricacidat100 oCfor20hgaveanumberofproducts,asshownbya seriesofpeaksintheCE.ThenegativeionMALDI(CHCA)showedthetetrasulfonic acid (1134) and its mono, di, and trisodium salts as well as the pentasulfonic acid

(1214)anditsmono,di,tri,andtetrasodiumsalts (Figure 1.14A) .

Adimerofthetetrasulfonicacidwiththreesodiumionswasseenstartingat2334, with salts bearing 4, 5, 6, and 7 sodium ions at increments of +22 (Figure 1.14B).

Smallerpeaksattributabletothedimerofthepentasulfonicacidwithfivesodiumions centeredataround2539withsaltsbearing6,7,8,and9sodiumionswerealsoseen.

Finally,aheterodimerofthetetrasulfonic/pentasulfonicacidwithfoursodiumionswas seencenteredat2437,withsaltsbearing5,6,7and8sodiumionsatincrementsof+22.

27

Sulfonated Phthalocyanine.

PcS4WB (synthesized via the WeberBusch process) and PcS4S (synthesized

via sulfonation of phthalocyanine) each appeared as one peak by capillary

electrophoresis,elutingat11min(pH9).Becausesulfonatedphthalocyaninesaggregate

easily,aggregationwasassessedbytakingtheUV/visspectraatopticalabsorbancesvery

similartothoseintheCEexperiments.PcS4WBandPcS4Sinwater,pH2.5buffer

andpH9.0bufferallshowedabroadbandbetween550and750nmwithaλ max atabout

640 nm and a shoulder at about 655 nm. The peak at shorter wavelengths has been ascribedtoanaggregatedform(Reynolds&Kolstad,1976),indicatingthatthesespecies arelargelyaggregatedunderCEconditions.

The negative ion MALDI mass spectrum (THAP) of PcS4WB showed the molecular ion at 834 (M .) Da as well as the mono, di, tri, and tetrasodium salts

(Figure 1.15A) .Apeakat754wasseen,correspondingtolossofsulfonate.Throughout thisworkweassumethatphthalocyaninessynthesized via the WeberBusch procedure arethetetrasulfonates,thoughtrisulfonatespresentintheproductwouldgivethesame mass spectrum as loss of SO 3 in the mass spectrometer itself. No peak at 770, corresponding to loss of SO 2, was observed. Spectra with CHCA, CHCA/EDTA and

THAP/EDTA were generally similar. No peaks attributable to dimers or trimers were seen(CHCA/EDTAorTHAP/EDTA).

The negative ion MALDI mass spectrum (CHCA) of PcS4S showed the molecularionat834Daaswellasthemono,di,andtrisodiumsalts (Figure 1.15B) .

Of interest were peaks at 911 914 Da, appropriate for the pentasulfonated 28

phthalocyanine(Mof914).Peaksat933936Daappropriateforthemonosodiumsalt ofthepentasulfonatedspecieswerealsoseen.Thepeakat779ismostlikelyamatrix artifact, as it was generally observed in compounds tested under these conditions. In positive ion mode, the most prominent peaks in the spectrum were that of the pentasulfonicacidanditsfoursodiumsalts.

Sulfonated Cobalt Phthalocyanine .

CoPcS4WB (synthesized via the WeberBusch process) was studied using negativeionmodeMALDImassspectrometry(CHCA, Figure 1.16 ).Themolecularion

(891,M .)anditsmonoanddisodium(935)saltswereseen.Smallpeakswereobserved

for loss of SO 2 and loss of SO 3(827and811Da,respectively).Thedimerwasalso

observedat1782Da[(2M) .].ThespectruminTHAP/EDTAwasverysimilartothatin

CHCA,withanadditionalsmallpeakattributedtothetrimer.

Sulfonated Zinc Phthalocyanine.

Three forms of sulfonated zinc phthalocyanine were studied, that made via

WeberBusch synthesis (ZnPcS4WB) and two samples made via sulfonation of phthalocyanine. One of the latter was a mixture with an average of less than four sulfonatespermolecule(ZnPcS3)andtheotherwasamixturewithanaverageofabout four sulfonates per molecule, made by sulfonation of the metalfree phthalocyanine, followedbyinsertionofzinc(ZnPcS4I).TheCEofZnPcS3(2.5x10 3M)atpH9.0 showedaseriesofsharppeaksfrom7to14min (Figure 1.17) .Thisseparationwas 29

substantiallybetterthanthatatpH2.5.Theadditionofβcyclodextrinmadeverylittle difference in the electropherogram. The electropherograms of ZnPcS4I and ZnPcS4

WB were very different from those of ZnPcS3. At an injection concentration of approximately2.5x10 4M,theelectropherogramsofZnPcS4IandZnPcS4WBwere

dominated by a single broad peak which appeared at about 10 min. The substantial

difference between the electropherograms of ZnPcS3, and ZnPcS4I and ZnPcS4WB

mightbeduetodifferentialaggregationofthesamples.Previousstudieshaveshownthat

thepresenceofmanyisomersinaZnPcSnmixturereducesthetendencytoaggregate;

ZnPcSn mixtures averaging 34 sulfonates are generally less aggregated than ZnPcS4

(Brasseur et al., 1987; Martin et al., 1991; Rajendiran & Santhanalakshmi, 2002;

Kuznetsova et al., 2003). Aggregation was assessed by taking the UV/vis spectra at

opticalabsorbancesverysimilartothoseintheCEexperiments.ZnPcS4IandZnPcS4

WBinpH9.0bufferbothshowedabroadbandbetween550and750nmwithaλ max at

about630nmandashoulderatabout675nm. Thepeakatshorterwavelengthshasbeen

ascribedtoanaggregatedform(Brasseuretal.,1987;Martinetal.,1991;Spikesetal.,

1995; Rajendiran & Santhanalakshmi, 2002), indicating that these compounds were

largely aggregated under CE conditions. The UV/vis spectra of ZnPcS3 in water, in buffersatpH9.0and2.5,andinDMSOwereallessentiallythesame,withamajorband

at approximately 675 nm; this has been previously identified as the spectrum of the

monomeric form of ZnPcS3 (Brasseur et al., 1987; Martin et al., 1991; Rajendiran &

Santhanalakshmi, 2002). Thus, it appears that ZnPcS3 is not aggregated under CE

conditions. 30

In the negative ion mode MALDI (CHCA/EDTA), ZnPcS4WB showed the

molecularion(896Da,M .),aswellasthemonoanddisodiumsalts (Figure 1.18). An intensepeakascribedtolossofSO 3wasalsoseen(816Da).ThespectruminCHCA

withoutEDTAwasnotasclear.ThespectrumintheTHAP/EDTAmatrixwassimilarto

thatinCHCA/EDTA,exceptthatnolossofSO 3 wasseen.

ZnPcS4I(negativeionmode,CHCA)showedthemolecularion,aswellasthe

monoanddisodiumsalts (Figure 1.19) .SmallpeaksattributabletolossofSO 2andSO 3 wereseen(832and816Da).Aseriesofpeaksbetween972and979wereappropriate forapentasulfonatedspecies(Mat976Da).Themonosodiumsaltwasalsoseen.A dimerofthetetrasulfonicacidwasseenatapproximately1792,withthemono,di,and trisodiumsalts (Figure 1.20) .Smallpeaksattributabletothedimerofthepentasulfonic

acid at around 1952 with the mono and disodium salts were also seen. Finally, a

heterodimerofthetetrasulfonic/pentasulfonicacidwasseenatapproximately1872,with

themono,di,andtrisodiumsalts.Afewvery small peaks attributable to dianionic

dimerswereseen,e.g.,929[(tetrasulfonicaciddimer+3Na) 2]and776[(tetrasulfonic

2 acid dimer – 3 SO 3) ]. These peaks are differentiable from those due to monomeric phthalocyaninespeciesbecausetheyhaveaddedorlostanunevennumberofatleastone molecular group from the dimer (e.g., addition of 3 Na or loss of 3 SO 3 giving the appearance of the addition of 1.5 Na or loss of 1.5 SO 3, respectively). With

THAP/EDTAasthematrix,ZnPcS4Ishowedpeaksat896and918,appropriateforthe molecularionandthecorrespondingmonosodiumsalt,respectively.Apeakforlossof

SO 2fromthetetrasulfonicacidwasseen.AsforthespectrawithCHCAasamatrix,a 31

peak appropriate for the pentasulfonic acid was observed. Running the sample with added Na 2SO 4 in the matrix (CHCA, negative ion mode) did not change the relative

intensity of the peaks, consistent with the assignment of the peak attributed to the pentasulfonic acid as the molecular species, rather than a salt of the tetrasulfonated phthalocyanineandsulfate.

Sulfonated Copper Phthalocyanine .

CuPcS(3444) and CuPcS(4444) were compared using both CE and mass

spectrometry.CapillaryelectrophoresisofCuPcS(3444)showedamajorpeakelutingat

9.5 min (Figure 1.21A) . The UV/visspectra of CuPcS(3444) in water and in buffer

(Figure 1.22) atpH9.0wereessentiallythesamewithbandsat660nmattributedtothe

monomer and 625 nm attributed to the aggregated form (Zelina et al., 1999).

CuPcS(3444)inDMSOwasquitedifferentthanthatinaqueoussolution,withamajor bandatapproximately675nm (Figure 1.22A) ;Ruslinghasproposedthatthecompound

is entirely monomeric in DMSO (Zelina et al., 1999). Capillary electrophoresis of

CuPcS(4444)showedasingle,comparativelybroadpeak, centered at 5.3 min (Figure

1.21B) . The UV/vis spectra of CuPcS(4444) in water and in buffer at pH 9.0 were

essentiallythesame,showingbroadbandscenteredat605and695nm.InDMSO,the bandsremainedverybroad,withashort,sharppeakat672nm,presumablyattributable

tomonomericphthalocyanine (Figure 1.22B) .TheUV/visspectraareconsistentwith

significantaggregationofCuPcS(4444),eveninDMSO. 32

CuPcS(3444)wasstudiedusingpositiveandnegativeionmodeswithbothMALDI andESImassspectrometry.InthepositiveionMALDI(CHCA/EDTA),theparention and the mono, di, tri, and tetrasodium species were seen (Figure 1.23) . No peaks correspondingtolossofSO 2orSO 3 wereseen.Clearpeaksforthedimersand3to7 sodiumionswereseen.Peakswerealsoseenforthetrimerswith5to10sodiumions;no peakscorrespondingtothetetrameranditssodiumsaltswereobserved.Negativeion modeMALDImassspectrometry(CHCA/EDTA)alsoshowedtheparention,andthe mono,di,andtrisodiumsalts,butnolossofSO 2orSO 3.Clearpeaksforthedimersand

1to7sodiumionswereseen.Nopeaksforthetrimerswereseenwithnegativeionmode

MALDI.NeitherpositivenornegativeESIshowedthemolecularion.

MassspectraofCuPcS(4444)weretakenusingpositiveandnegativeionMALDI

andpositiveandnegativeionESI.Innocasewasapeakforthemolecularionobserved.

ThepositiveionMALDI(CHCA)gavepeaks whichcould be attributed to the parent

CuPc(575Da,nosulfonicacids)andCuPcwithonesulfonicacid(655Da);asmallpeak

which might be attributable to CuPc with twosulfonic acids was also seen (735 Da).

Therewasnoevidencefortrisulfonatedortetrasulfonatedspecies.NegativeionMALDI

(CHCA)didnotgiveagoodspectrum.NegativeionMALDIwithCHCA/EDTAagain

gaveapeakthatcouldbeattributedtotheparentCuPc(nosulfonicacids)butnoclear peaksforanymonomericsulfonatedspecieswithasinglenegativecharge.Significant peakswerealsoobservedforanextensiveseriesofdimerswithanetnegativechargeof

1andvaryingnetnumbersofsulfonicacidgroupsandsodiumions.Thenegativeion 33

ESIshowedpeakswhichcouldbeattributedtoCuPc,theparentwithonesulfonicacid, andtothedoublychargedtetrasulfonicacidspecies.

Discussion.

Capillary Electrophoresis .

PreviousseparationsofsulfonatedphthalocyaninesasafunctionofpHhaveused bothlow(pH2.5)(Barbosaetal.,1997)andhigh(pH9–10.5)(Tapley,1995;Schofield

& Asaf, 1997; Pokric et al., 1999) pH buffers. The studies herein indicate that the phthalocyaninecomponentsareseparatedsubstantiallymorereadilyathighpHthanat

low pH. The addition of βcyclodextrin (Andrighetto et al., 2000) did not alter the

electropherogramssignificantly.Schofieldand Asafhavepreviouslyobservedthatthe

addition of acetonitrile or 10 mM ammonium acetate to a 10 mM KH 2PO 4 (pH 9.0) bufferalsohadlittleeffectontheseparationofZnPcS n(Schofield&Asaf,1997).

Sulfonatedphthalocyaninesarepronetoaggregation,evenatlowconcentrations.

Thiscangiveelectropherogramsthatdependontheconcentrationofthephthalocyanine.

It can also give electropherograms that show very little separation of a mixture of

compounds because the individual species in the mixture are aggregated under the

capillaryelectrophoresisconditions.ThepropensityofthecompoundstostackunderCE

conditionswasinvestigatedbytakingtheUV/visspectrumofthephthalocyanineswith

thesamebufferandsamenetabsorbanceasthatfoundinthecapillaryelectrophoresis

experiments.Theopticalbandsindicatedsubstantialdimeroraggregateformostofthe phthalocyanines.Forexample,opticalspectroscopyindicatedthatbothPcS4WBand 34

PcS4Swerefoundinthedimer/aggregatedstate.Bothalsohadverysimilarcapillary electrophoresis migration times, with a single broad peak, presumably due to the aggregatedmixture.Averysimilarsituationwasobservedfor ZnPcS4I and ZnPcS4

WB. Again, optical spectroscopy indicated that both of these phthalocyanines were found in the dimer/aggregated state and both also had very similar capillary electrophoresismigrationtimes,withasinglebroadpeak.Incontrast,theUV/visspectra ofZnPcS3indicatedthatthiscompoundwasfoundasthemonomerunderCEconditions.

TheZnPcS3samplehasasubstantialnumberofcomponents,whichreducesaggregation comparedtothemoresymmetricalZnPcS4,eventhoughZnPcS3hasasmalleraverage net charge. It has been observed previously that ZnPcS n mixtures averaging 34 sulfonatesaregenerallylessaggregatedthanZnPcS4(Brasseuretal.,1987;Martinetal.,

1991;Rajendiran&Santhanalakshmi,2002;Kuznetsovaetal.,2003).vanLierandco workershavenotedthatanisomericmixtureofsulfonatedphthalocyaninesobtainedby sulfonationofzincphthalocyaninewastentimesmoreactiveinphotosensitizationofV

79ChinesehamstercellsthanthehomogeneousderivativepreparedviatheWeberBusch synthesis(Brasseuretal.,1988),presumablybecausetheformerpreparationwasmore monomeric.

Thedifferenceinthe electropherogramsofCuPcS(3444)andCuPcS(4444)was significant.ThemajorpeakforCuPcS(3444)appearedat9.5min.CuPcS(4444)showed nopeakatthismigrationtime;allthematerialappearedasabroadpeakcomingearlierat

5.3 min. The earlier migration time indicates that the average net charge on the phthalocyanineringislessthan4.InacapillaryelectrophoresisstudyofAlPcS n,Pokrić 35

etal.observedapproximately50secondsseparationbetweeneachofthemono,di,tri, andtetrasulfonatedspecies(20mM3cyclohexylamino1propanesulfonicacid,pH10.5 buffer) (Pokric et al., 1999). In our study of sulfonated tetraphenylporphyrins, we observed approximately two minutes separation between TPPS2a, TPPS3 and TPPS4.

Thesethreederivativesaremonomericatopticalconcentrations(absorbance<0.1)atpH values≥7(Corsini&Herrmann,1986;Rubiresetal.,1999;Zhangetal.,2003).Both

Pokrić’sdataandourdataindicatethatsulfonatedtetrapyrrolescanseparatecleanlyasa functionofnetchargeinahomologousseries.However,ourdataonthecopperandzinc sulfonatedphthalocyaninesindicatethatthephthalocyaninesdonotseparatecleanlyif theyareaggregated.

The difference in the structure of CuPcS(3444) and CuPcS(4444) was also indicatedbytheirspectrainDMSO.CuPcS(3444)appearedmonomeric,withapeakat

675 nm, as reported previously by Rusling and coworkers (Zelina et al., 1999).

CuPcS(4444), in contrast, showed only a small peak attributable to the monomer in

DMSO(672nm),withthemajorityofthematerialgivingabroadpeakfrom500to750 nm (Figure 1.22B) .

Mass Spectrometry .

Massspectrometryhasbeenusedtocharacterizesulfonatedphthalocyanines.A number of studies have only reported the parent ion, including those of AlPcS2 via positive mode secondary ion MS (Beeby et al., 1992); ZnPcS4 via negative ion ESI

(Beebyetal.,2001);trisulfonatedphthalocyaninesandtheirzincchelatesviaESIand 36

MALDI(Kudrevichetal.,1997);andthealkylammoniumsaltsofvariousmetalloPcS usingESI(Sanchezetal.,2001).IntheircharacterizationofAlPcS2 usingnegativeion

FAB mass spectrometry, Ambroz observed the parent ion and reported extensive

fragmentation(Ambrozetal.,1991).BressanandcoworkersusedpositiveionESIto

characterize Ru(II) tetrasulfophthalocyanine made via templatecatalyzed condensation

(Bressanetal.,2000).Theyobservedtheparenttetrasulfonicacidaswellastheparent

withone,two,three,andfoursodiumions.Apeakattributedtofivesodiumionswas

also observed. Smyth and coworkers have investigated the mass spectrometry of

CuPcS(3444) (Conneely et al., 2001). The ESI spectrum showed the parent ion as a

n majorpeakat896andMS consecutivelossesof64(SO 2),80(SO 3),80(SO 3)and80

(SO 3)Da.ElectronautodetachmentfromNiPcSandZnPcShasbeenstudiedbyFTICR

(Arnoldetal.,2003).

Herein,weusedpositiveandnegativeionmodeESIandMALDItocharacterize thesulfonatedphthalocyanines.Ingeneral,negativeionMALDIconditionsgavethebest spectra.Inallcases,sodiumsaltpeakswereseen.PeakswereoftenseenforlossofSO 3, andsometimesforlossofSO 2aswell.BothCHCAandTHAPmatricesusuallygave

goodspectra,althoughoftenonewasbetterthantheotherforagivencompound.EDTA

servedtochelateanydicationsthatmightinduceaggregation.Inanumberofcases,the

additionofEDTAgaveclearersodiumsaltpatterns,whichhelpedininterpretationofthe

data.

SulfonatedphthalocyaninemadeviatheWeberBuschprocedure(PcS4WB)and

via sulfonation of phthalocyanine (PcS4S) showed somewhat different mass spectra. 37

Theformerwaslargelythetetrasulfonicacid.Theparentpeakwasat834Da,indicating thatthiswastheradicalion;Smythand coworkershaveobservedradicalionsinthe massspectraofsulfonatedcopperphthalocyanines(Conneelyetal.,2001).Incontrastto

PcS4WB,PcS4Sshowedpeaksappropriateforapentasulfonicacid,indicatingthatone of the peripheral rings on the structure had sulfonated more than once. Although a previousstudyhasnotedmixturesofasulfonatedcopperphthalocyaninethatseemto havehighlevelsofsulfonation(Oppenheimer,1981),thisis,toourknowledge,thefirst report of mass spectral evidence for a pentasulfonic acid in a mixture of sulfonated phthalocyanines. Sulfonation of aromatic rings can give species with more than one sulfonicacidonagivenring(Cerfontainetal.,1994b).Porphyrinswithmorethanone sulfonicacidperperipheralring,madeviasulfonationoftheparentporphyrin,havebeen reported(Hoffmannetal.,1990;Sutteretal.,1993;RochaGonsalvesetal.,1996).Ithas beenreportedthattheWeberBuschsynthesiscangivephthalocyanineswithmorethana total of four sulfonic acids if some of the starting sulfonated phthalic acid derivative carriestwosulfonicacidgroups(Sanderson,2000).

ZnPcS4WB gave peaks appropriate for the tetrasulfonic acid, as expected becausethismoleculewasmadeviatemplatesynthesis.ZnPcS4Ialsoshowedpeaksfor thetetrasulfonicacid,aswellasitsdimer.Apeakcorrespondingtolossof80Dacould eitherbelossofSO 3fromthetetrasulfonicacid,ortrisulfonicacidinthemixture.Of particular interest was a peak that was appropriate for the pentasulfonic acid. This

appearedbothasamonomerandasadimer.Aseriesofpeaksappropriateforthemixed

tetrasulfonic/pentasulfonicacidheterodimerwasalsoseen. 38

Mass spectrometry was used to compare CuPcS(3444) and CuPcS(4444).

CuPcS(3444) gave a spectrum readily attributed to the copper tetrasulfonated phthalocyanine.NolossofSO 2orSO 3wasobservedineitherthepositiveornegative

ionMALDI.Smythandcoworkerspreviouslyobservedpeaksattributabletothelossof both SO 2 and SO 3 from CuPcS(3444)(Conneelyetal.,2001).Ourmassspectrometry conditionsappeartoresultinlessfragmentationthanthoseofSmythandcoworkers.

CuPcS(4444)showedaverydifferentmassspectrumthanCuPcS(3444).Avery largenumberofpeakswereobserved,consistentwithdimersbearingvariousnumbersof sulfonicacids,andthesodiumsaltscorrespondingtothesespecies.Thus,theCE,UV/vis spectroscopy and mass spectrometry are all consistent with the conclusion that

CuPcS(4444)isamixtureofphthalocyanines,dominatedbyspecieswithfewerthanfour sulfonic acids per ring. This mixture is observed in the dimer/aggregated form by

UV/vis,massspectrometryandCE.

The negative ion MALDI mass spectrum of the sulfonated naphthyl porphyrin showed peaks appropriate for the tetra and pentasulfonic acids, as well as their homodimersandthetetrasulfonic/pentasulfonic acidheterodimer.Smallpeaksforthe trimerswerealsoobserved.Formationofthepentasulfonicacidreflectstheease with which more than one sulfonic acid can be added to the naphthyl system. Work of

Cerfontain and colleagues has shown that the model compound 2,2'binaphthalene sulfonatesinitiallyatthe8position,followedbysulfonationatthe8’position,andthen

o atthe6or4positions.SixequivalentsofSO 3 (inCH 2Cl 2at22 C,40min)gaveonly

9%ofthespecieswithonesulfonicacidoneachring,34%ofspecieswithatotalofthree 39

sulfonicacids(twoononering)and57%ofspecieswithatotaloffoursulfonicacids

(twoonbothrings)(Cerfontainetal.,1994a).Thus,additionofmorethanonesulfonic acidtoanaphthylringisfacile.

Conclusions.

Capillaryelectrophoresisseparationofsulfonatedphthalocyaninesissubstantially better at high than at low pH. In general, the compounds are aggregated under CE conditions, making analysis of mixtures of compounds difficult. Using mass spectrometry,evidencewasfoundforapentasulfonicacidformoleculessynthesizedby sulfonationofphthalocyanineitself(PcS4SandZnPcS4I).Spectraofdimersofthe sulfonatedphthalocyanineswereusefulincharacterizingthemixtures.Overall,bothESI and MALDI are effective for mass spectral characterization of sulfonated phthalocyanines,withnegativemodeMALDIusuallygivingthebestdata.

Acknowledgments.

ThisstudywassupportedbyNIHgrantAI45883.WethankDrs.DavidBostwick andSimingWangforhelpwiththemassspectrometry,Drs.PeterHambrightandJerry

Bommer for samples and useful conversations, Dr. Lingamallu Giribabu for assistance withthesynthesisandAtiaAlamandSarahShealyfortechnicalassistance.

ThemanuscriptwascompiledbyDr.D.W.Dixon.BrianR.Sookinterperatedthe mass spectra. Anila F. Gill recorded the UVvis spectra and capillary electrophoresis data. 40

N N N H N N H N N N

Figure1.1.Structureofphthalocyanine.

41

H 3 SO

H

3 N N N SO N N M S 3 N N N sofsulfonated HO S

3 HO

2,

C, MCl C, o catalyst 170 - 190 170 urea, nitrobenzene urea,

COOH COOH

Figure1.2.WeberandBuschmethodforthesynthesi phthalocyanines. S

3 HO

42

5 N N N 5 N

N M 5555 5 N N N - 3 M(II) Phthalocyanine Phthalocyanine M(II) tetrasulfonicacid (4444) Metal M = SO 5 5 N N

N erial,phthalicacid,hasthe - - 3 3 N N N SO SO N N lent5position. M N N M 4455 4 N N N 5 N N N S 4 3 O -

5

N N N 4 N N M 4544

4 N - - N N

COO COO 4 3 4 4 S 3 O 4-Sulfophthalic acid 4-Sulfophthalic - N N N 4 N N M 4444 Figure.1.3.Possibleisomerswhenthestartingmat substituent,sulfonicacid,atthe4ortheequiva

4 N N N 4

43

- COO- COO

- - - 4 COO O3S 4 COO 3 3 - SO3

4 4

N N N 6 N N N 4 4 N M N N M N 4 N N 3 N N N N

4 4

3444/ 6555 4444/5555

Figure.1.4.Examplesofsomeofthepossibleisomerswhenthestartingmaterial, phthalicacid,hasthesubstituent,sulfonicacid,atthe3and4position.

44

4 4 HPO HPO M 2 M 2 -3 -5 44).

pH2.5 3.58x10 pH2.5 4.25x10 (d) 50 mM 50 (d) Na (c) 50 (c) mM Na

3 5 7 9 11 13 15

3 5 7 9 11 13 15 0 6 5 4 3 2 1 90 80 70 60 50 40 30 20 10 100 time (min)

4 4 Figure1.5.CapillaryelectropherogramsofCuPcS(34 PO PO M M 2 2 -3 -5

pH 9.0 pH 3.58 x10 9.0 pH 4.25 x10 (a) 10(a) KH mM (b) 10(b) KH mM 5 6 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15 0 8 6 4 2 0 80 70 60 50 40 30 20 10 18 16 14 12 10

(mAU) absorbance

45

4 4 HPO M 2 HPO 2 -3

pH pH 2.5 2.5~ x10 pH pH 2.5 diluted 4-fold (c) 50 (c) mM Na mM50 (d) Na

0 5 10 15 20 25 30 0 5 10 15 20 25 30 6 1 31 26 21 16 11 9 8 7 6 5 4 3 2 1

time (min) 4 4 M PO PO 2 2 -3

pH pH 9.0 2.5~ x10 pH 9.0 diluted 2-fold (b) mM10(b) KH (a) mM10(a) KH Figure1.6.CapillaryelectropherogramsofCuPcS(4444).

0 5 10 15 20 25 30 0 5 10 15 20 25 30 9 7 5 3 1

11 6 5 4 3 2 absorbance (mAU) absorbance

46

3.5

3.0 (a) 10 mM KH 2PO 4 pH 9.0 2.5 1.05 x10 -4 M

2.0

1.5

1.0 3 5 7 9 11 13 15 17 19

12

10 (b) 50 mM Na 2HPO 4 pH 2.5 8 -4 absorbance (mAU) absorbance 4.26 x10 M

6

4

2

0 3 5 7 9 11 13 15 17 19 time (min) Figure1.7.CapillaryelectropherogramsofZnPcS4.

47

30

25 (a) 10 mM KH 2PO 4 pH 9.0 20 2.82 x 10 -3 M 15

10 5

0 3 8 13 18 23 28 50 45 (b) 50 mM NaH PO4 40 2 pH 2.5 35 2.82 x 10 -3 M absorbance (mAU) absorbance 30 25 20 15 10

5

0 3 8 13 18 23 28 time (min)

Figure1.8.CapillaryelectropherogramsofNiPcS4.

48

4

4 PO 2 HPO 2

10mM KH 50 mM 50Na (c) pH (c)9.0 pH (d) pH 2.5 (d) pH 250 350 450 550 650 750 250 350 450 550 650 750 0.05 0.04 0.03 0.02 0.01 0.00 0.05 0.04 0.03 0.02 0.01 0.00

wavelength (nm) wavelength

Figure1.9.UVvisspectraofNiPcS4.

O 2

O 2 (a) (a) H

(b) 50% ethanol/H (b) 50% 250 350 450 550 650 750 250 350 450 550 650 750 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

0.05 0.04 0.03 0.02 0.01 0.00 absorbance

49

M M

-3 -4

3.78 3.78 x10 1.51 x10 (c) PcS4-WB (c) (d) PcS4-WB (d)

)andPcS4WB.

,pH9.0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 4 5 0

8 7 6 5 4 3 2 1 40 35 30 25 20 15 10 PO 2 time (min) M

M -2 -3 1.46x10 1.73x10 (a) PcS4-S(a) (b) PcS4-S(b)

Figure1.10.CapillaryelectropherogramsofPcS4(S Theseparationbufferis10mMKH

0 5 10 15 20 25 30 0 5 10 15 20 25 30 8 6 4 2 0 4 3 2 1

20 18 16 14 12 10 absorbance (mAU) absorbance

50

25 (a) PcS4-S 20 1.46 x10 -2 M

15

10 5 0 0 5 10 15 20 25 30 40 35 (b) PcS4-WB 30 -3

absorbance (mAU) absorbance 3.78 x10 M 25

20

15

10

5

0 0 5 10 15 20 25 30 time (min) Figure1.11.CapillaryelectropherogramsofPcS4SandPcS4WB. Theseparationbufferis50mMNa 2HPO 4 buffer,pH2.5.

51

4 4 PO 2 HPO 2

S. 10 mM10KH 50 mM50Na (c) pH (c) 9.0 (d) pH 2.5 (d)pH

250 350 450 550 650 750 250 350 450 550 650 750 0.030 0.025 0.020 0.015 0.010 0.005 0.000 0.030 0.025 0.020 0.015 0.010 0.005 0.000 visspectraofPcS4 wavelength (nm) wavelength

O 2 Figure1.12.UV

O 2 (b) 50% ethanol/H (b)50% (a) H O 2

H 250 350 450 550 650 750 250 350 450 550 650 750 0.250 0.200 0.150 0.100 0.050 0.000

0.070 0.060 0.050 0.040 0.030 0.020 0.010 0.000 absorbance

52

Figure1.13.Capillaryelectrophoresisseparation ofTPPS2a(4min), TPPS3(5min),andTPPS4(6.4min),pH9.0(≈10Mporphyrin,10 mMphosphatebuffer,30kV).

53

T2NapS.PanelAshowstheregion acid(▲)aswellastheheterodimer ofthe ulfonic (♦)andthepentasulfonic acid(▲)aswell

msaltsareseen.DatainterpretedbyBrianR. regioncorrespondingtothedimer.Peaksforthe

Figure1.14.NegativeionMALDIspectrum(CHCA)of correspondingtothemonomer.Peaksforthetetras astheirsodiumsaltsareseen.PanelBshowsthe homodimers ofthetetrasulfonic (♦)andpentasulfonic Sook. tetrasulfonic/pentasulfonic acid(■)andtheirsodiu

54

100 834 80 60 856 40 %intensity 754 878 900 20 922 0 750 800 850 900 950 mass (m/z)

100 834

80 856 60 912

40 % % intensity x 878 20 934 0 750 800 850 900 950 mass (m/z)

Figure1.15.NegativeionMALDIspectrumofPcS4.PanelA:PcS4 WB(THAP/EDTA).Theparentionisseen(834),asa rethemono, di,tri,andtetrasodiumsaltsatintervalsof+22andapeakconsistent withlossofSO3(754).PanelB:PcS4S(CHCA).Theparentionis seen(834),asarethemonoanddisodiumsalts.Thepeaksat911 914and933936areappropriateforthepentasulfonicacidandits monosodiumsalt,respectively.DatainterpretedbyBrianR.Sook.

55

891 100

80

60

% % intensity 40 827 811 20 1782 935

0 250 850 1450 2050 2650 mass (m/z)

Figure1.16.NegativeionmodeMALDIspectrumofC oPcS4 (CHCA).Theparentionisseen(891),asarethedimer(1782) andpeaksconsistentwithlossofSO 2(827)andSO 3(811).Data interpretedbyBrianR.Sook.

56

50 A 40 30 20

10

absorbance (mAU) absorbance 0 0 5 10 15 20 25 30 time (min) 50 B 40 30 20 10 absorbance (mAU) absorbance 0 0 5 10 15 20 25 30 time (min) Figure1.17.CapillaryelectrophoresisseparationofZnPcS3. PanelA:pH9.0(10mMphosphatebuffer,30kV).PanelB:pH2.5 (50mMphosphate,20kV).

57

100 816

896 80 60

% % intensity 40

20 0 850 1000 1050 800 900 950 mass (m/z) Figure1.18.NegativeionMALDIspectrum(CHCA/EDTA)ofZnPcS4WB. Theparentisseen(896)asisthelossofSO3(816).DatainterpretedbyBrianR. Sook.

58

100 896 80

60 918

% intensity 976 40

940 20 816 832 998 0 700 800 900 1000 1100 mass (m/z)

Figure1.19.NegativeionMALDIspectrum(CHCA)of ZnPcS4I.Theregion correspondingtothemonomerisshown.Themonoanddisodiumsalts,aswell aslossesofSO2andSO3fromtheparention,areseen.Peaksat976and998Da areconsistentwiththepentasulfonicacidanditsmonosodiumsalt,respectively. DatainterpretedbyBrianR.Sook.

59

100

80 1872 60 40 1952 % % intensity 1792

20

0 2050 1650 1750 1850 1950 2150 mass (m/z) Figure1.20.NegativeionMALDIspectrum(CHCA/EDTA) of ZnPcS4I. The region correspondingtothedimerisshown.Peaksforthehomodimersofthetetrasulfonic(♦) andpentasulfonicacid(▲)aswellastheheterodimerofthetetrasulfonic/pentasulfonic acid(■)andtheirsodiumsaltsareseen.DatainterpretedbyBrianR.Sook.

60

Figure1.21.Capillaryelectrophoresisofsulfonat edcopper phthalocyaninesatpH9.0(10mMphosphate,30kV).PanelA: CuPcS(3444)(~2.5x105M).PanelB:CuPcS(4444) (~2.5x104M).

61

uPcS(3444)in pH9.0buffer.PanelD:

pperphthalocyanines.PanelA:CuPcS(3444),

Figure1.22.UV/visspectroscopyofsulfonatedco inDMSO.PanelB:CuPcS(4444)inDMSO.PanelC:C CuPcS(4444)inpH9.0buffer.

62

100 monomer 80 60 40 % intensity % dimer 20 trimer 750 1200 1700 2200 2600 mass (m/z)

Figure1.23.PositiveionmodeMALDIofCuPcS(3444) (CHCA/EDTA). Themonomeranditssodiumsaltsareseen(895),asarethedimersalts (peaksarecenteredat1902;thisisthe5sodiums alt)andtrimersalts (peakscenteredat2866;thisisthe8sodiumsalt).Datainterpretedby BrianR.Sook. 63

References

Allen,C.M.,Sharman,W.M.,andvanLier,J.E.(2001).Currentstatusof phthalocyaninesinthephotodynamictherapyofcancer. J. Porph. Phthalo. 5,161169.

Amaral,C.L.C.andPoliti,M.J.(1997).Effectofureaonthedimerizationequilibrium ofnickeltetrasulfonatedphthalocyanineinbulkandinthehydrophiliccompartmentof AOTreversedmicelles. Langmuir 13 ,42194222.

Ambroz,M.,Beeby,A.,MacRobert,A.J.,Simpson,M.S.,Svensen,R.K.,andPhillips, D.(1991).Preparative,analyticalandfluorescencespectroscopicstudiesofsulphonated aluminiumphthalocyaninephotosensitizers. J. Photochem. Photobiol. B 9,8795.

Andrighetto,P.,Carofiglio,T.,Fornasier,R.,andTonellato,U.(2000).Capillary electrophoresisbehaviorofwatersolubleanionicporphyrinsinthepresenceof β cyclodextrinanditsOmethylatedderivatives. Electrophoresis 21 ,619626.

Arnold,K.,Balaban,T.S.,Blom,M.N.,Ehrler,O.T.,Gilb,S.,Hampe,O.,vanLier,J. E.,Weber,J.M.,andKappes,M.M.(2003).Electronautodetachmentfromisolated nickelandcopperphthalocyaninetetrasulfonatetetraanions:Isomerspecificrates. J. Phys. Chem. A 107 ,794803.

Barbosa,C.A.S.,Constantino,V.R.L.,andTavares,M.F.M.(1997).Useofcapillary electrophoresisinthecharacterizationofsulfonatedmetallophthalocyanines:A comparativeevaluationofpurificationproceduresfollowingsynthesisbythe condensationmethod. J. Capillary Electrophor. 4,157166.

Beeby,A.,Bishop,S.M.,Khoo,B.J.,MacRobert,A.J.,andPhillips,D.(1992). Chemicalandspectroscopiccharacterizationofdisulphonatedaluminumphthalocyanine. In "PhotodynamicTherapyandBiomedicalLasers:ProceedingsoftheInternational ConferenceonPhotodynamicTherapyandMedicalLaserApplications"(P.Spinelli,M. DalFante,andR.Marchesini,Eds.),pp.845850.ElsevierScience,Amsterdam.

Beeby,A.,FitzGerald,S.,andStanley,C.F.(2001).Protonationoftetrasulfonatedzinc phthalocyanineinaqueousacetonitrilesolution. Photochem. Photobiol. 74 ,566569.

BenHur,E.,Barshtein,G.,Chen,S.,andYedgar,S.(1997).Photodynamictreatmentof redbloodcellconcentratesforvirusinactivationenhancesredbloodcellaggregation: Protectionwithantioxidants. Photochem. Photobiol. 66 ,509512.

Brasseur,N.,Ali,H.,Langlois,R.,andvanLier,J.E.(1988).Biologicalactivitiesof phthalocyaninesIX.PhotosensitizationofV79chinesehamstercellsandEMT6mouse mammarytumorbyselectivelysulfonatedzincphthalocyanines. Photochem. Photobiol. 47 ,705711. 64

Brasseur,N.,Ali,H.,Langlois,R.,Wagner,J.R.,Rousseau,J.,andvanLier,J.E. (1987).BiologicalactivitiesofphthalocyaninesV.PhotodynamictherapyofEMT6 mammarytumorsinmicewithsulfonatedphthalocyanines. Photochem. Photobiol. 45 , 581586.

Bressan,M.,Celli,N.,d'Alessandro,N.,Liberatore,L.,Morvillo,A.,andTonucci,L. (2000).Rutheniumsulfophthalocyaninecatalystfortheoxidationofchlorinatedolefins withhydrogenperoxide. J. Organometal. Chem. 594 ,416420.

Cerfontain,H.,Zou,Y.S.,andBakker,B.H.(1994a).Onthepositionalreactivityorder inthesulfonationofphenylsubstitutedandnaphthylsubstitutedwithSO 3. Rec. Trav. Chim. Pays-Bas 113 ,517523.

Cerfontain,H.,Zou,Y.S.,andBakker,B.H.(1994b).Thepositionalreactivityorderin thesulfurtrioxidesulfonationofandderivativescontainingan electronwithdrawingsubstituent. Rec. Trav. Chim. Pays-Bas 113 ,403410.

ChenCollins,A.R.M.,Dixon,D.W.,Vzorov,A.N.,Marzilli,L.G.,andCompans,R. W.(2003).Preventionofpoxvirusinfectionbytetrapyrroles. BMC Infect. Dis. 3,9.

Conneely,A.,McClean,S.,Smyth,W.F.,andMcMullan,G.(2001).Studyofthemass spectrometricbehaviourofphthalocyanineandazodyesusingelectrosprayionisationand matrixassistedlaserdesorption/ionisation. Rapid Commun. Mass Spectrom. 15 ,2076 2084.

Conneely,A.,Smyth,W.F.,andMcMullan,G.(2002).Studyofthewhiterotfungal degradationofselectedphthalocyaninedyesbycapillaryelectrophoresisandliquid chromatography. Anal. Chim. Acta 451 ,259270.

Corsini,A.andHerrmann,O.(1986).Aggregationof meso tetra( p sulphonatophenyl)anditsCu(II)andZn(II)complexesinaqueoussolution. Talanta 33 ,335339.

Dixon,D.W.,Gill,A.F.,andSook,B.R.(2004).Characterizationofsulfonated phthalocyaninesbymassspectrometryandcapillaryelectrophoresis. J. Porph. Phthalo. 8,13001310.

Fingar,V.H.,Wieman,J.T.,Karavolos,P.S.,WeberDoak,K.,Ouellet,R.,andvan Lier,J.E.(1993).Theeffectsofphotodynamictherapyusingdifferentlysubstitutedzinc phthalocyaninesonvesselconstriction,vesselleakageandtumorresponse. Photochem. Photobiol. 58 ,251258.

Fleischer,E.B.,Palmer,J.M.,Srivastava,T.S.,andChatterjee,A.(1971). Thermodynamicandkineticpropertiesofanironporphyrinsystem. J. Am. Chem. Soc. 93 ,31623167. 65

Halkiotis,K.,Yova,D.,andPantelias,G.(1999).Invitroevaluationofthegenotoxicand clastogenicpotentialofphotodynamictherapy. Mutagenesis 14 ,193198.

Hoffmann,P.,Labat,G.,Robert,A.,andMeunier,B.(1990).Highlyselective brominationoftetramesitylporphyrin:Aneasyaccesstorobustmetalloporphyrins,M Br 8TMPandMBr 8TMPS.Examplesofapplicationincatalyticoxygenationand oxidationreactions. Tetrahedron Lett. 31 ,19911994.

Howe,L.andZhang,J.Z.(1997).Ultrafaststudiesofexcitedstatedynamicsof phthalocyanineandzincphthalocyaninetetrasulfonateinsolution. J. Phys. Chem. A 101 , 32073213.

Howe,L.andZhang,J.Z.(1998).Theeffectofbiologicalsubstratesontheultrafast excitedstatedynamicsofzincphthalocyaninetetrasulfonateinsolution. Photochem. Photobiol. 67 ,9096.

Kudrevich,S.V.,Brasseur,N.,LaMadeleine,C.,Gilbert,S.,andvanLier,J.E.(1997). Synthesesandphotodynamicactivitiesofnoveltrisulfonatedzincphthalocyanine derivatives. J. Med. Chem. 40 ,38973904.

Kuznetsova,N.A.,Gretsova,N.S.,Derkacheva,V.M.,Kaliya,O.L.,andLuk'yanets,E. A.(2003).Sulfonatedphthalocyanines:Aggregationandsingletoxygenquantumyieldin aqueoussolutions. J. Porph. Phthalo. 7,147154.

Leznoff,C.C.andLever,A.B.P.(1989)."Phthalocyanines:PropertiesandApplications VolI."NewYork,NY.

Leznoff,C.C.andLever,A.B.P.(1993)."Phthalocyanines:PropertiesandApplications VolIII."VCH,NewNork.

Margaron,P.,Grégoire,M.J.,Šcasnár,V.,Ali,H.,andvanLier,J.E.(1996).Structure photodynamicactivityrelationshipsofaseriesof4substitutedzincphthalocyanines. Photochem. Photobiol. 63 ,217223.

Martin,P.C.,Gouterman,M.,Pepich,B.V.,Renzoni,G.E.,andSchindele,D.C. (1991).Effectsofligands,solvent,andvariablesulfonationofdimerformationon aluminumandzincphthalocyaninesulfonates. Inorg. Chem. 30 ,33053309.

Oppenheimer,L.E.(1981).Ionpairchromatographyofsulfonatedcopper phthalocyanine. J. Chrom. Sci. 19 ,266269.

Peng,X.,Sternberg,E.,andDolphin,D.(2005a).Separationofporphyrinbased photosensitizerisomersbylaserinducedfluorescencecapillaryelectrophoresis. Electrophoresis 26 ,38613868. 66

Peng,X.,Sternberg,E.,andDolphin,D.(2005b).Separationofporphyrinbased photosensitizerisomersbylaserinducedfluorescencecapillaryelectrophoresis. Electrophoresis 26 ,38613868.

Phillips,D.(1997).Chemicalmechanismsinphotodynamictherapywith phthalocyanines. Prog. React. Kinet. 22 ,175300.

Pokric,B.,Allinson,N.M.,Bergström,E.T.,andGoodall,D.M.(1999).Dynamic analysisofcapillaryelectrophoresisdatausingrealtimeneuralnetworks. J. Chromatogr. A833 ,231244.

Priola,S.A.,Raines,A.,andCaughey,W.S.(2000).Porphyrinandphthalocyanine antiscrapiecompounds. Science 287 ,15031506.

Rajendiran,N.andSanthanalakshmi,J.(2002).Interactionofsulfurdioxidewithzinc(II) tetrasulfophthalocyanineinaqueousmedium:steadystatefluorescencequenching studies. Polyhedron 21 ,951957.

Reynolds,W.L.andKolstad,J.J.(1976).Aggregationof4,4',4'',4''' tetrasulfophthalocyanineinelectrolytesolutions.J. Inorg. Nucl. Chem. 38 ,18351838.

RochaGonsalves,A.M.D.,Johnstone,R.A.W.,Pereira,M.M.,deSantAna,A.M.P., Serra,A.C.,Sobral,A.J.F.N.,andStocks,P.A.(1996).Newproceduresforthe synthesisandanalysisof5,10,15,20tetrakis(sulphophenyl)porphyrinsandderivatives throughchlorosulphonation. Heterocycles 43 ,829838.

RochaGonsalves,A.M.D.,Varejao,J.M.T.B.,andPereira,M.M.(1991).Somenew aspectsrelatedtothesynthesisof meso substitutedporphyrins. J. Heterocycl. Chem. 28 , 635640.

Rubires,R.,Crusats,J.,ElHachemi,Z.,Jaramillo,T.,Lopez,M.,Valls,E.,Farrera,J. A.,andRibó,J.M.(1999).Selfassemblyinwaterofthesodiumsaltsof meso sulfonatophenylsubstitutedporphyrins. New J. Chem. 23 ,189198.

Sanchez,M.,Fache,E.,Bonnet,D.,andMeunier,B.(2001).Synthesisoforganosoluble metallophthalocyaninesbearingelectronwithdrawingsubstituents. J. Porph. Phthalo. 5, 867872.

Sanderson,W.A.(2000).Di&octasulphophthalocyanine&naphthalocyaninedye derivativesforuseintissuedemarcation,imaging&diagnosisoftumourcells&diseased lymphnodes. UK Patent Application GB 2,343,187A .

Schofield,J.andAsaf,M.(1997).Analysisofsulphonatedphthalocyaninedyesby capillaryelectrophoresis. J. Chromatogr. A 770 ,345348. 67

Sobolev,A.S.,Jans,D.A.,andRosenkranz,A.A.(2000).Targetedintracellulardelivery ofphotosensitizers. Prog. Biophys. Mol. Biol. 73 ,5190.

Spikes,J.D.,vanLier,J.E.,andBommer,J.C.(1995).Acomparisonofthe photopropertiesofzincphthalocyanineandzincnaphthalocyaninetetrasulfonatesmodel sensitizersforthephotodynamictherapyoftumors. J. Photochem. Photobiol. A 91 ,193 198.

Stranadko,E.F.,Meshkov,V.M.,Koraboyev,U.M.,andRiabov,M.V.(1999).Clinical photodynamictherapyusingRussianphotosensitizersPhotohemeandPhotosense:six yearexperience. Proc. SPIE 4059 ,2531.

Sutter,T.P.G.,Rahimi,R.,Hambright,P.,Bommer,J.C.,Kumar,M.,andNeta,P. (1993).Stericandinductiveeffectonthebasicityofporphyrinsandonthesiteof protonationofporphyrindianions. J. Chem. Soc. Faraday Trans. 89 ,495502.

Tabata,K.,Fukushima,K.,Oda,K.,andOkura,I.(2000).Selectiveaggregationofzinc phthalocyaninesintheskin. J. Porph. Phthalo. 4,278284.

Tapley,K.N.(1995).Capillaryelectrophoreticanalysisofthereactionsofbifunctional reactivedyesundervariousconditionsincludingastudyoftheanalysisofthe traditionallydifficulttoanalyzephthalocyaninedyes. J. Chromatogr. A 706 ,555562.

Tedesco,A.C.,Rotta,J.C.G.,andLunardi,C.N.(2003).Synthesis,photophysicaland photochemicalaspectsofphthalocyaninesforphotodynamictherapy. Curr. Org. Chem. 7,187196.

Vzorov,A.N.,Marzilli,L.G.,Compans,R.W.,andDixon,D.W.(2003).Preventionof HIV1infectionbyphthalocyanines. Antiviral Res. 59 ,99109.

Wainwright,M.(1996).Nonporphyrinphotosensitizersinbiomedicine. Chem. Soc. Rev. 25 ,351359.

Wainwright,M.(2002).Theemergingchemistryofbloodproductdisinfection. Chem. Soc. Rev. 31 ,128136.

Weber,J.H.andBusch,D.H.(1965).Complexesderivedfromstrongfieldligands. XIX.Magneticpropertiesoftransitionmetalderivativesof4,4',4'',4''' tetrasulfophthalocyanine. Inorg. Chem. 4,469471.

Winkelman,J.,Slater,G.,andGrossman,J.(1967).Theconcentrationintumorandother tissuesofparenterallyadministeredtritiumand 14 Clabeledtetraphenylporphinesulfonate. Cancer Res. 27 ,20602064. 68

Zelina,J.P.,Njue,C.K.,Rusling,J.F.,Kamau,G.N.,Masila,M.,andKibugu,J. (1999).Influenceofsurfactantbasedmicroheterogeneousfluidsonaggregationofcopper phthalocyaninetetrasulfonate. J. Porph. Phthalo. 3,188195.

Zelina,J.P.andRusling,J.F.(1995).Molecularorientationinselfassembledfilmsof copperphthalocyaninetetrasulfonateandacationicsurfactant. Micr. Mat. 5,203210.

Zhang,Y.H.,Chen,D.M.,He,T.,andLiu,F.C.(2003).Ramanandinfraredspectral studyof meso sulfonatophenylsubstitutedporphyrins(TPPSn,n=1,2A,2O,3,4). Spectrochim. Acta A Mol. Biomol. Spectrosc. 59 ,87101.

69

Chapter 2

Insights into Anionic Tetraaryl Porphyrins

Incollaborativestudies,weobservedthatanumberofsulfonatedporphyrinsalso hadexcellentantiviralactivityagainstthehumanimmunodeficiencyvirus(Vzorovetal.,

2002)andpoxvirus(ChenCollinsetal.,2003).Thesecompoundshadvaryinglevelsof toxicity and viral inhibition activities. Finally a copper chelate of 5,10,15,20tetra(2 naphthyl)porphyrin (T2NapS,Cu) was proposed for clinical trials. We performed a number of studies to look in detail at the structures and spectra of possible metalloporphyrintherapeuticcandidates.Themajorityofthisworkhasbeenpublished

(Dixonetal.,2005)andisgivenasSectionVofthischapter.Belowisabriefoverview ofporphyrins(SectionI),areviewofcapillaryelectrophoresisofporphyrins(SectionII), areviewofthestudyofcyclodextrinswithporphyrins(SectionIII)andexperimentsthat werenotpublished(SectionIV).

Section I.

Introduction to porphyrins. i. Structure.

Porphyrinsarenaturallyoccurringaromaticmacrocycliccompoundsderivedfrom porphin (Figure 2.1a), atetradentateligandwithfourringslinkedviamethine bridges.Substitutionofsomeorallofthehydrogensonthepyrroleringsand/oratthe methinebridgeofthe porphin resultsinporphyrins (Figure 2.1a and 2.1b) (Falk,1964). 70

ThepyrroleringsaredesignatedbyArabicnumbers.Themethinebridges,alsocalledthe meso positions,aredesignatedbytheGreekletters, α, β, γ,and δ.Porphyrinsareplanar structures, however; there can be deviations from planarity due to factors such as peripheralsubstitutions,metalincorporationandaxialligationofthecentralmetal. ii. Spectral properties.

Theopticalabsorptionandemissionaredeterminedbythe πelectronsofthering oftheporphyrin.Theabsorptionandemissionchangeslightlyduetothepresenceofthe metalinthering.TheUVvisabsorptionspectrumshowsintenseabsorptionat~400nm, theSoretband.Ithasahighextinctioncoefficientintherangeof24x10 5 M1cm 1,

followedbyseveralweakerabsorptionbands(Qbands)athigherwavelengths(450700

nm)(Lindseyetal.,1987).Thefreebaseormetalfreeformhasafour band,D 2h type spectrum.Theaciddicationortheprotonateddicationicform,withaprotonattachedto eachcentralnitrogen,hasatwobandD 4h typespectrum.

ThemetalloporphyrinshaveanintenseSoretbandbetween380nmand420nm, dependingonthemetal.Twovisiblebandsareseenbetween500and600nm,withthe extinctioncoefficientinthenarrowrangeof1.22x10 4M 1cm 1(Falk,1964).Tothe blueoftheSoretareweakerbandsMandN,at~215and~325nmandbetweenthetwo

isanotherweakerband,theLband.

iii. Stability.

Certainporphyrinsarestableeveninthepresenceofconcentratedacids,suchas

sulfuric acid under certain conditions (Buchler, 1975). However, degradation of the

tetrapyrrole to monopyrroles has been reported with chromic acid, potassium 71

permanganateandhydriodicacid.Thetwopyrrolicnitrogenatoms,bearinglonepairsof electrons,canbeprotonatedeasilywithacidssuchastrifluoroaceticacid(Falk,1964).

Strongbasessuchasalkoxidescanremovetheprotons(pK a~16)fromtheinnernitrogen

atomsofaporphyrintoformadianion.Theporphyrincomplexeswithtransitionmetal

ions are very stable, e.g., the stability constant for the zinc derivative of

tetraphenylporphyrin(ZnTPP),logK s,is29(Falk,1964).

iv. Synthetic porphyrins.

The general method of synthesis of porphyrins is simple. It involves the

condensationoftheappropriatealdehydewithpyrrole.Theearliestmethodwasreported byRothemundin1939involvingthecondensationofmorethan25aliphatic,aromatic

and heterocyclic aldehydes with pyrrole to form porphyrins (Rothemund, 1939). The

earliestmethodsinvolvedharshconditionsduringthesynthesis,e.g.,usingsealedtube

underanaerobicconditions,inpyridinesolution,at220 oC,undernitrogenfor48h.The

yields were very low, only 5%, and there were contaminants such as chlorin. More

modernsyntheticmethodsdonotrequireharshconditionsandgivehigheryields.Adler

etal.condensedequimolaramountsofbenzaldehydeandpyrrolefor30minbyrefluxing

inpropionicacidat141 oC,inopenair(Adleretal.,1967).Theyieldwas20%.This

method still had several disadvantages. It required harsh conditions, needed benzaldehydes(whichcannotbeusedwithsensitivefunctionalgroups),producedtarand

gavepoorreproducibility.Toovercomesuchproblemsanothermethodwasreportedby

Lindsey (Lindsey et al., 1987). The condensation reaction was carried out at room 72

temperatureundernitrogeninmethylenechloride,inthepresenceofawaterscavenger, aswellasanacidcatalyst,followedbytheadditionofanoxidant.Theyieldwas50%.

Anyporphyrinderivativeinwhichatleastoneofthecentralnitrogenatomsofa porphyrinformsabondtoametalatomiscalledametalloporphyrin.Metalloporphyrins found in nature have metals such as Mg (), Mn (blood), Fe (hemes), Co

(vitaminB12 ),V(mineraloils),Zn(yeastmutants),etc(Dolphin,1978).Manysynthetic metalloporphyrinshavebeensynthesized;almostallmetalsandsomesemimetalscanbe insertedintothe porphin core.Syntheticmetalloporphyrinsaremadeviathereactionofa free base/parent or free acid form with a metal salt. When coordination occurs, two protons are removed from the pyrrole nitrogen atoms, leaving a charge of 2 on the porphyrinring. v. Anti-HIV activities of porphyrins and their metalloderivatives.

Synthetic porphyrinsshowedantiviralactivityagainstHIVinfectioninassaysthat measuredinhibitionofviralreplication.Sulfonated derivatives of tetraphenylporphyrin

(TPPS)havebeenshowntobeactive,ashaveotherselectedtetraarylporphyrins(Dixon etal.,1990;Dixonetal.,1992;Neurathetal.,1992;Neurathetal.,1992;Debnathetal.,

1994;Neurathetal.,1994a;Neurathetal.,1995;Songetal.,1997;Vzorovetal.,2002).

In general,activityagainstHIVwasinthemicromolar range in such antiviral assays.

Recently it was found that porphyrins can inhibit the initial infection process by inactivatingtheinfectivityofcellfreevirus(Vzorovetal.,2002).

73

Section II.

Review.

Capillary electrophoresis separation of porphyrins. i. Natural porphyrins.

A number of groups have analyzed natural porphyrins via capillary electrophoresis(CE).VariousmodesofCEhavebeenusedtostudynaturalporphyrins, e.g., micellar electrokinetic chromatography (MEKC), microemulsion electrokinetic chromatography(MEEKC),andnonaqueousCE,describedinmoredetailbelow.Much of the interest in separations of natural porphyrins comes from efforts to characterize bloodlevelsoftheporphyrinsinvolvedinporphyrias.Porphyriasare geneticdiseases caused by enzyme deficiencies in heme production (Alla & Bonkovsky, 2005). CE is usedinclinicallaboratorymethodsfordiagnosisofporphyrias(Zaider&Bickers,1998).

Optimization of capillary electrophoresis for the separation of natural porphyrins .

TherehasbeenextensiveefforttoenhanceseparationsviaCE.Theseparations canbeenhancedbytheuseoforganicsolvents,aloneorincombinationwithsurfactants.

This review reports the optimization studies specifically directed towards the investigation of the effects of three parameters on separation enhancement: organic solvents,surfactantsanddetectors. a. Use of organic solvents.

Organic solvents can be used as pure nonaqueous solvents, aqueous/organic mixtures,orasacombinationofanorganicsolventwithotherorganicmodifier(s).They 74

canbeusedinthesamplematrixand/orinseparationbuffer.Theseparationofnatural porphyrinsishinderedduetotheirlimitedsolubilityinsolvents.

OptimizationoforganicsolventsinCEseparationsisaverycommonmethodto enhance the signal and to improve the resolution of separation. Robert and Spinks reportedtheenhancementofseparationofmetallatedpetroporphyrinsfoundincrudeoils, bythestudyingtheeffectofsolventsandthesurfactantsodiumdodecylsulfate(SDS)

(Robert&Spinks,1997).ThemetalloderivativesseparatedwereNi(II)andV(IV)O,with various porphyrin ring types, e.g., etioporphyrin and octaethylporphyrin. Robert and

SpinksstudiedtheeffectofvariousconcentrationsofSDS(20100mM)withborate bufferathighpHandobservednoresolutionenhancement(Robert&Spinks,1997).The porphyrins comigrated with the micelles. It was reported that porphyrin solubility in buffer increased with increasing SDS concentration, evidenced by the increasing peak areas. The effect of acetone in borate buffer at high pH was studied by varying the acetone concentration from 0 30%. At 30% acetone, all the four porphyrins were resolvedinlessthan31min.Theeffectofothersolventswasalsoreported,including methyl ethyl ketone, acetonitrile (ACN) and methanol. A 30% v/v solvent with 70% buffercontaining40mMSDSwasreportedtogivebestseparation.Acetonewasreported tobethebestorganicmodifier.ACNandmethanoldidnotimprovetheseparation.

The enhancement of separation of six porphyrin methyl esters was reported in bothaqueousandnonaqueousmedia,bytheuseofvariousorganicsolvents(Lietal.,

2005). Li et al. compared four techniques, micellar electrokinetic chromatography,

MEKC (aqueous and nonaqueous), microemulsion electrokinetic chromatography, 75

MEEKC (nonaqueous) and CE (nonaqueous). Using aqueous MEKC, they reported separationsatvariousconcentrationsofACN(050%v/v)inCAPSbufferathighpH with60mMSDS.Theyrecommendedtheuseof2035%ofACN.At20and30%

ACNallcomponentswereseparated,butnottothebaseline.Althoughtheresolutionwas enhanced,thepeakareaswerenotfullyreproducible.Theyseparatedthesixporphyrins withKH 2PO 4bufferin Nmethylformamide,usingvariousconcentrationsofSDS(100,

120and140mM).Thebestseparationobservedwasoverthelongestmigrationtime, using the highest concentration of SDS. MEEKC separations were performed with a borate buffer (pH 9.0) containing SDS microemulsion. The best separation (almost to baseline) was achieved with 30% 2propanol in a system with 0.8% w/w nheptane,

2.25%w/wSDS,1.0%w/wBrij35,6.6%w/w1butanol,and30%v/v2propanol.They alsoperformedseparationsusingtheabovementionedconditions,butwithoutheptane and 1butanol in the system, with 10% or 20% 2propanol, giving peaks which were comparativelylessresolved.NonaqueousCZEseparationsinstronglyacidicconditions

(10 mM perchloric acid) with ACN and methanol gave the best separation of all the techniques tested. With a 50:50 mixture of methanol and ACN, all six peaks were baselineresolvedinaslittleas3min.

So et al. (So et al., 2001) reported the separation of the two coproporphyrin isomers,IandIII(negativelycharged),usingvariousadditivesinthegeneralbuffer,20 mMCAPSathighpH.Theystudiedtheeffectofthreesurfactantsonseparation:sodium cholate (SC), sodium taurodeoxycholate (STDC) and SDS, in the presence of three organicsolvents,ACN,methanolorDMF.TheseparationinthepresenceofDMFand 76

methanolinthebufferwaspartiallyand/orbaselineresolved.However,longermigration timeswererequired,and/orlargerbaselinenoiselevelswereobserved.Incomparingthe surfactants, the best separation was observed with 60 mM SC with 20% ACN. This separationconditionwasfurtherstudiedwithvariousamountsofACN,withandwithout

NaCl.Itwasreportedthatthebestseparationofthetwoisomerswasachievedwith1%

NaCland20%ACN.Stacking(withNaCl)concentratestheanalyteinthecolumn.Soet al.reportedthatNaClwithACNincreasedtheionicstrengthinthesampleandfacilitated theremovalofanyproteinsinthesystem,whichcangetadsorbedonthecapillarywalls.

SharperandtallerpeakswereobservedwiththeadditionofACN,e.g.,with50%ACN and1%NaClw/v. b. Use of surfactants.

Surfactants have been regularly used in CE to control the selectivity of the separation, reduce aggregation of the analyte and increase the efficiency of the separation.Wuetal.reportedtheuseofamixtureofanionicsurfactantfortheseparation ofvariousnaturalporphyrins(Wuetal.,1994).Thenaturalporphyrinsstudiedwereboth hydrophobicandhydrophilic:porphyrincarboxylicacids,hematoporphyrinderivatives, fourtypesofisomersofcoproporphyrinandotherclinicallyimportantporphyrins.They usedalaserinducedfluorescence(LIF)detector(discussedinmoredetailbelow).They studied the enhancement is separation due to surfactants, SDS and Triton QS15, in combinationwithbilesalts[taurodeoxycholicacid(TDC)anddeoxycholicacid(DCA)], inboratebuffer.Alongwiththis,theeffectofthepresenceofACN,atbothneutraland high pH, was also analyzed. Bile salts have been reported to be good biological 77

surfactantsduerigidhelicalmicellaraggregates(Pico&Houssier,1989).Itwasreported that separation of the six porphyrins with Triton and TDC alone was not successful.

However,thecombinationofthetwoatpH7.4with15%ACNimprovedtheseparation.

OnlyfouroutofsevenpeakswereobservedwhenSDSalonewasused.However,witha combination of Triton and TDC with 10% ACN, all seven peaks were observed at physiologicalpH.Theyreportedgoodseparationoftheisomersofcoproporphyrinwitha combinationofTritonandDCAwith15%ACNathighpH(9.0).Theyalsoseparated hematoporphyrinderivativesundervariousconditions.

Kiyoharaetal.separatedsixporphyrins[freebase,copperandzinccomplexesof hematoporphyrin(HP)andprotoporphyrin(PP)]usingMEKC (Kiyoharaetal.,1993).

TheyusedvaryingconcentrationsofSDS,DMFandCAPS(3cyclohexylamino)buffer at pH 11. Kiyohara et al. observed that when CAPS alone was used, the three HP compounds[H 2HP,Cu(HP),Zn(HP)]movedtowardsthenegative electrode,indicating

thattheelectrophoretic mobilityforthesenegatively charged HP species were smaller

than that of the electroosmotic flow of the solution. SDS (25 mM) was added to the buffertoincreasethesolubilityofeachporphyrin,butadecreaseinthereproducibilityof

themigrationvelocitieswasobserved.DMFwasaddedupto10%(v/v),whichdidnot

improvethereproducibilitybutdidimprovethesolubility.BothSDSandDMFenhanced

reproducibilityandsolubility.TheeffectoftheconcentrationofSDSonthemigration behavior was also studied, and it was found that the capacity factor (the ratio of the

amountofasoluteinthemicellephasetothatinthebulkaqueousphase)didnotalways

increasewithincreasingconcentrationofSDS. 78

Separation of six urinary porphyrins were comparedbyregularCEandMEKC using20mMCAPSatpH11byabsorbanceandfluorescencedetection(Weinbergeret al.,1990).Thelimitofdetection(100pmol/mlrange)wasreportedwithanoptimized fluorescence system. The separation without the presence of surfactant in the running bufferwasperformedinthepresenceof10%methanolwithbaselineseparationwithin

12 min. In the case of MEKC, various concentrations of SDS were studied, with and

without 15% methanol. They also analyzed the effect of temperature and voltage on

separation.IncreasingtheconcentrationofSDSfrom100mMto150mMat45 oC(no

methanol)onlyincreasedthemigrationtimeslightlybutdidnotenhancetheseparation.

Weinbergeretal.reportedthatelectrostaticrepulsionofthenegativenatureofboththe

analytesandsurfactants,underthoseseparationconditions,wasthereasonforthelonger

migrationtime.Methanolwasusedtosolubilizetheanalyteandtoincreasethesharpness

ofthepeaks.Highertemperature(55 oC)andvoltage(30kV)wereusedtoreducethe migrationtime.

Bowseretal.reportedusingBrij35inanonaqueous, methanolbased 20 mM

CAPS(pH10.5)bufferfordisaggregation,aswellasforcontrollingtheselectivelyof separationofhematoporphyrin,hydroxyethylvinyldeuteroporphyrin,protoporphyrin,as wellasPhotofrin(Bowseret al.,1996).Variousconcentrations of the surfactant were used(535mM).ThepolyetherchainofBrij35doesnotformmicellesinthepresence of methanol. However, it can complex with the analyte through hydrogen bonding resultinginseparation.Theyreportedpartialseparationof60peaksforPhotofrinwithin

30minusing5mMBrij35.IncaseofPhotofrin,variousseparationsconditionshadtobe 79

usedbecauseanyonesetofconditionswasnotapplicableduetothecomplexityofthis analyte. Bowser et al. reported that because hematoporphyrin, hydroxyethylvinyl deuteroporphyrin,andprotoporphyrinhavesimilarsizesandcharges,theseparationwas mainlyduetothedifferenceintheextentofcomplexationofBrij35andtheanalytes, especiallyatlowerBrij35concentrations.Athigher Brij35 concentrationstherewere moremonomericspeciesoftheanalyte.HencemorecomplexationwasseenwithBrij35 as the peaks converged. Bowser et al. reported that the separation at high Brij 35 concentrationwasgovernedbythedifferenceinthechargetosizeratioofthemonomer additive complex instead of the extent of complexation. Bowser et al. reported the separation of the porphyrin acid monomers, mesoporphyrin, corpoporphyrin, pentacarboxylporphyrin, hexacarboxylporphyrin, heptacarboxylporphyrin and uroporphyrin, ascribing the separation to pure electrostatic iondipole interaction with

Brij35(Bowseretal.,1996). c. Detection/signal enhancement.

UVdetectionisoftenutilizedwithCEseparations because it is simple to use, rugged, and inexpensive. UV detectors have important advantages, i.e., fluorescent analytesarenotrequiredandsourcesareavailablethatcoverthewholeUVandvisible range(Chiang&Li,1997).Otherdetectionmethodshavealsobeenemloyed,duetotheir highersensitivityandlowerdetectionlimit,e.g.,LIF.

Sinceporphyrinswithoutacentralmetalareintrinsicallyfluorescent,nofurther modificationisrequiredforLIFdetection.Wuetal.reportedadetectionlimitinthe1 80

10 nM range for the natural porphyrins. The separation by the use of surfactants and organicmodifierhasbeendiscussedearlierinthissection.

Inareviewontheuseofchemiluminescence(CL)fordetectionofbiomolecules by CE, GarciaCampana et al. reported that Tsukagoshi’s group developed a new CE apparatus with online CL detection using the luminolH2O2 system for analyzing hematin as an iron (III) porphyrin complex (GarciaCampana et al., 2003). The CL reagent solution (luminol + H 2O2) was left for more than 24 h before use, as a fresh

solutionresultedinnoiseandnonreproducibility.ItwasreportedthatalmostconstantCL

intensitywasobservedafterthesolutionwasallowedtostandforabout12h.

ICPMS detection has been reported to offer absolute detection limits that are

slightlylowerthanthoseobtainedwithUVvisspectrophotometer(Ackleyetal.,2000).

Other advantages, including high sensitivity, are element specificity and scans for

multiple mass to charge ratios. Ackley et al. compared the separation of vitamin B 12 ,

CoPP,MnPP,andZnPPusingstandardoncolumnUVdetectionandICPMS.

ii. CE analysis of charged synthetic porphyrins.

a. Separation of anionic aromatic porphyrins.

SimplemixturesofsulfonatedaromaticporphyrinscanbeseparatedbyCEasa

functionofcharge.Moststudieshaveshownenhancedseparationwithorganicmodifiers

andsurfactants,asdiscussedinthesectionsbelow.

Kalnyetal.reportedtheseparationofPd(II)TPPSandTPPS(Kalnyetal.,2001).

Their efforts were directed towards demonstrating the analytical method for the

determination of traces of Pd (0.8 g /L) by CE, with no interference from Pt, using 81

citratebufferatlowpH(3.5).Theyreportedthequantitativeanalysismethodofthemetal concentrationusingalinearcalibrationcurve.Theycomparedtheirstudiestoanearlier studyusingspectrophotometricdeterminationofPd(II)intheformofPd(II)TPPS.The metalloporphyrinswhichdidnotinterferewiththePdwerecomplexesofMn,Co,Ni,Cu andZn.ThesewereanalyzedviaCEunderthesameseparationconditions.Pd(II)TPPS elutedat8.12minwhilethefreebaseelutedat11min.

1. Addition of surfactants and organic modifiers to enhance separation.

There are several studies based on micellar electrokinetic capillary chromatography(MECC),wheresurfactantshavebeenusedtoenhanceCEseparations.

Lim et al. used SDS in sodium borate buffer for the separation of Temoporfin,

5,10,15,20tetra( mhydroxyphenyl)chlorin ( mTHPC) and its conjugate with poly(ethylene)glycol (PEG), temoporfin–poly(ethylene glycol) conjugates ( mTHPC–

PEG) (Lim et al., 2000). Lim et al. reported good separation and quantitative

measurement of both mTHPC and mTHPCPEG conjugates in less than 10 min.

However,thedetectionwasnotsensitiveenoughtomeasurelevelsinplasma,duetothe

limitedclinicalsamplevolume.

Zhangetal.usedMECCtoseparateMnTPPS4andCoTPPS4.Theyused10mM

sodium borate buffer, pH 9.6 (Zhang et al., 1998). Zhang et al. demonstrated the

separationwith10,20and50mMofSDS.Theyreportedthatseparationwasbestwith

20mMSDS.Thebuffercontained1mMluminol,sincetheeffortsweredirectedtowards

improving the apparatus for online chemiluminescence (CL) detection with CE. 82

Porphyrins are used as catalysts for the CL reaction between luminol and H 2O2; the detectiondetailsarediscussedbelow.

Pengetal.reportedthatthecombineduseofvarioussurfactants(e.g.,SDS)and

organic solvents (e.g., ACN), while varying their concentrations, resulted in good

separation and acceptable time profiles (Peng et al., 2002). They separated synthetic,

unsymmetrical photosensitizer isomers (a variety of optical and region isomers of porphyrins, and chlorins with different physicochemical properties): benzoporphyrin

derivative monoacid, benzoporphyrin ethyl monoacid, 2[1hexyloxyethyl]2

devinylpyropheophorbidea, diethyleneglycol diester benzoporphyrin derivative and tin

ethyl etiopurpurin. However, only the separation of the first two compounds will be

reviewedhereastheywereanionicundertheseparationconditions.Individualseparation

ofthetwocompoundsandtheirtwoenantiomerswasperformedusinga40mMborate buffer,pH9.2with30%ACNand10mMSDS.ThepresenceofACNandSDShelped

toremovetheaggregationproblem.

Peng et al. have shown that the simultaneous CE separation of the two

compounds,eachintoitstwoenantiomers,couldbeenhancedatalowervoltageof10kV

with120mMborate,28%ACN,and15mMSDS(Pengetal.,2002).Thisrecipealso

reducedthecurrentduringtheseparationsignificantly.EffectonseparationsduetoSDS

concentration,ACN amount,buffertypes,orbuffer ionicstrengthwasalsostudied. It

wasreportedthatseparationefficiencyimprovedbythepresenceofACNandDMFin

therunningbuffer;however,thepresenceofmethanolorpropanoldidnotimprovethe

separations. 83

Inanotherstudy,Pengetal.againreportedthe use of surfactants and organic modifiersfortheanalysisandseparationoftwosynthetic,unsymmetricalphotosensitizer isomers,derivativesofbenzoporphyrin(BPD)(Pengetal.,2005).Theseparationswere performed at various pH values, with various buffers. The first compound was benzoporphyrinderivativemonoacid,BPDMA.Thesecondcompoundwastheprincipal metabolite, benzoporphyrin derivative diacid, which has two enantiomers. Peng et al. reportedthatBPDenantiomersareveryeasilyhydrolyzedathighpH(CAPSbuffer,pH

>11).Theydidnotrecommendtheuseofhighconcentrations of ammonium acetate buffer,becauseitcausedformationofbubblesinsidethecapillary.Incitricacidbuffer, theBPDenantiomerswereprotonatedatthepropionicsidechain.Theeffectivecharge was the same for BPDDA and BPDMA, and the electrophoretic mobility difference between the two enantiomers was very small. However, at pH > 3.5 BPDDA and

BPDMA were deprotonated. The preferred buffer was borateduetoitshighbuffering capacity and its ability to be used at high concentrations. BPDMA and BPDDA enantiomerswerepoorlyseparatedatpH8.1.Theycouldbeseparatedtosomeextentat pH8.6andwerecompletelyseparatedatpH9.2withlessthan1%decompositionin1h.

By increasing the pH to 9.6, the BPD enantiomers were further distinguished but a decreaseinsignalwasreported.AtthishighpH,thefluorescencewasadverselyaffected andthemigrationtimewaslonger.

Pengetal.havealsodiscussedtheseparationenhancementbytheuseofchiral selectors,HPβCD,DMβCD, βCDand γCDandbilesalts(Pengetal.,2005).They 84

reportedbilesalts,especiallysodiumcholate(2025mM)togivethebestseparationof allthechiralselectorsused.Noneoftheotheradditivesimprovedchiralseparation.

Peng et al. have also discussed the effect of organicsolventsinenhancingthe

separation in the case of BPD derivatives. The organic solvents alter the polarity and

viscosityofthebuffer,byactingassolventsfortheanalyteswhicharepoorlysolublein

aqueous solution. The organic solvents increase solvation of solutes and modify the

affinities of hydrophobic solutes. ACN, DMF, methanol, DMSO, npropanol and

isopropanol were studied. Separations of the enantiomeric forms were reported by

varyingthepercentageofACN.Itwasreportedthat1015%ACNwasideal.

Andrighetto et al . reported the effect on CE separation due to thepresence of

cyclodextrins (CDs) and organic modifiers (Andrighetto et al., 2000). They studied

watersoluble anionic porphyrins, such as TCPP [ meso tetrakis(4

carboxyphenyl)porphyrin], TSPP [ meso tetrakis(4sulfonatophenyl) porphyrin] and its

zincandcoppercomplexes(Andrighettoetal.,2000).Theaggregationoftheporphyrins

inaqueoussolutionswaspreventedbyusingcyclodextrins(CDs)andorganicmodifiers.

βCD and its Omethylated derivatives, DMβCD [heptakis(2,6diOmethyl)β

cyclodextrin]andTMβCD[heptakis(2,3,6triOmethyl)βcyclodextrin] were used to

separate CuTPPS and TPPS. Andrighetto et al. used a high concentration phosphate buffer.TheseparationswereperformedatlowpH,<3tominimizetheelectroosmotic

flow(EOF)andtheanalysistimes.Theadditionof1mm βCDtothebufferresultedin

sharperpeaksandlongermigrationtimes.Inthepresenceof1mMDMβCDthepeaks

were not separated and the migration times increased. In the presence of TMβCD, a 85

strongercomplexationwasobserved,wherethetwoporphyrinscomigratetogiveasingle peak. Andrighetto et al. concludedthatthe bindingofcyclodextrinstothe porphyrins increasedintheorderof βCD<DMβCD<TMβCD,whichisoppositetotheorderfor separationoftheporphyrins.

Andrighettoetal.alsousedtheorganicmodifier,20%DMSO,toseparateTSPP,

CuTPPSandZnTPPSwith0.75mM βCD.Atthisconcentrationof βCD,CuTPPSand

ZnTPPSpeakscouldnotberesolvedbutthepeakforTPPSwasobserved.Changingthe

βCDconcentrationdidnothelptoseparatethetwoporphyrins.TheadditionofDMSOto

the buffer reduced the binding affinity between the porphyrin and βCD, allowing for betterseparation.Thereasonreportedforthisobservationwastheformationofinclusion compoundsbetween βCDandtheorganicsolvents,duetothehydrophobiceffect.This givesthesecomplexesmorestabilityinaqueoussolutionsthaninorganicsolventsorin mixed waterorganic solvent mixtures (Zhang et al., 1998). In the presence of 20%

DMSOinthebuffer,onlytwopeakswereobserved.However,thepresenceof0.75mM

βCD resulted in baseline separation of the three porphyrins and even some minor porphyrinimpurities.

Dixonetal.showedthatsimplemixturesofsulfonatednaphthylporphyrinscan beseparatedasafunctionofchargebycapillaryelectrophoresisathighpH(Dixonetal.,

2004).ThisworkhasbeenreportedinitsentiretyasSectionVofthischapter.Separation wasenhancedbytheuseofcyclodextrins.Thesulfonatednaphthylporphyrinsstudied weremixturesofnumerouscompounds,inwhichtheporphyrinhadbeensulfonatedto variable extents or had various positional isomers. The compounds analyzed were 86

sulfonated 5,10,15,20tetra(1naphthyl)porphyrin (T1NapS) and sulfonated 5,10,15,20 tetra(2naphthyl)porphyrin(T2NapS)andtheirCuorFederivatives.

The electropherograms of the T1NapS and T2NapS species were in general

similar.ThecomparisonoftheseparationofT2Nap5S,Cuinthepresenceof βCDand

γCDshowedthat βCDgaveaseriesofpoorlyresolvedpeaksfromapproximately46 min; γCDshowedthreeprominentpeaksfrom3.54.5min. The electropherogram of

T1Nap5S,CuinthepresenceofCDwasverysimilartothatofT2Nap5S,Cu.However,

unlikethe2naphthylT2Nap5S,Cu,the1naphthylT1Nap5S,Cu showed three distinct peaksevenintheabsenceofcyclodextrin.Thiscouldbetheresultofreductioninself stackingofthe1naphthylporphyrin;itsatropisomershavehinderedrotationaroundthe

1naphthylporphinebond.Asforthe2naphthylisomersT2NapS, βCDseemedtoshow morecomponents,butwithoutbaselineseparation.Theextentofsulfonationwasgreater forT1Nap10S(10hsulfonation)thanforT1Nap5S(5hsulfonation),asindicatedbyan additional peak at 7 min for T1Nap10S. The addition of a metal to the central core affectedthedetailedpatternofthepeaksandthenetmigrationtimes.CEseparationof

T2NapS,Fe species did not give good separation even with cyclodextrins, presumably duetotheaxialligationoftheiron(various axial ligands in exchange as well as the equilibriumbetweenthemonomerand oxodimer).

2. Detection methods/signal enhancement.

Zhang et al. reported the enhancement of CE signal by the use of online chemiluminescence (CL) detection (Zhang et al., 1998). For chemiluminescence reactions involving various analyte separations, luminolinNaOHwasaddedtoH2O2. 87

Themetalloporphyrinswereusedascatalystsforthisreaction.Zhangetal.reportedthe separation and detection of MnTPPS4 and CoTPPS4. The separation conditions for

CoTPPS4were:0.01Mphosphatebufferelectrophoreticbufferwith0.001Mluminolat pH4.5,adjustedwith0.001Mnitricacid.FortheseparationofMnTPPS4theseparation conditionswere:0.01Mboratebufferwith0.001MluminolatpH9.6. b. Cationic Porphyrins. Dixon et al. reported the separation of symmetrical and unsymmetrical,syntheticcationicporphyrinsatlowpH(25)basedonthedifferencein chargeand/ormassoftheanalytes(Dixonetal.,1998).Theporphyrinsweresynthesized by alkylation of the parent tetrapyridylporphyrin (TPyP) to give various pyridinium porphyrins, including the tetramethylated (TMPyP4), tetrabutylated (TBPyP4), and

tetraoctylated (TOPyP4)derivatives.ThemethylationofTPyPresultedinamixtureof

the mono, cis di, trans di, tri and tetramethylated porphyrins (TMPyP4). The other porphyrins had side chain of aminopropyl and ethylcarboxylic acid. Porphyrins with pyridiniumgroupatthe2position,onthephenylring(TMPyP2)werealsostudied.

The effect of pH on separation was showed by the separation of a mixture of

TMPyP4,TBuPyP4andTOcPyP4atpH3.0,3.7and4.4.Thebestseparationwasseenat thelowestpH.Themigrationtimewasdependentonthelengthofthesidechainonthe pyridylgroup,TOcPyP4havingthelongestmigrationtime.

Tetraphenylporphyrinswithasinglesubstituentatthe2position,inwhicheach ring has identical substituents, have four isomers, termed atropisomers: αααα, αααb,

ααββand αβαβ.Separationofthefullymethylatedtetra2pyridylporphyrinwasdone athighconcentrationofthephosphatebufferatthreedifferentpHvalues(2.0,3.0and 88

4.0). The different atropisomers had different mobilities, presumably resulting from differentshapesanddipolemoments.

Capillaryelectrophoresisseparationswerealsoreportedforthesyntheticmixture of authentic samples of the monomethylated, cis dimethylated, trimethylated and

tetramethylatedTMPyP4.Goodseparationwasachievedwitha75mM phosphatebuffer

atpH2.0,3.0,4.0and5.0.TheseparationwassensitivetopHandionicstrengthofthe buffer,aswellastotheappliedvoltage.AtpH2,onlythreepeakswereobserved.When

thepHwashigherthan5,nobaselineseparationwasobserved.Thebestresolutionof

this mixture was observed at pH 3 4, where the unalkylated pyridyl rings are presumably protonated. The ionic strength of buffer was also important for this

separation.Withalowerconcentrationbuffer,50mM,onlyasinglepeakwasobserved.

Atabufferconcentrationof100mM,onlyadiffuseandbroadpeakwasobserved.When

thevoltagewashigherthan10kV,theseparationtimewasshorterbuttheresolutionwas poorer.Atvoltageslowerthan10kV,peakbroadeningoccurred.AtpHvalueswherethe pyridyl nitrogens were not protonated (pH.5), good separations were not achieved, presumablybecausethecationicporphyrinsinteractedwiththepartialnegativecharges

of the silica on the capillary walls. Also, the four components were not separated

completelyatlowpH(pH2).

Dixonetal.alsoshowedtheseparationofTPyPderivatives bearing additional

charges. Optimal separation of the propionate TPyP derivatives by capillary

electrophoresis was achieved at 13 kV with a 50 mM phosphate buffer at pH 2.5.

Voltages higher or lower than 13 kV gave different resolutions, but did not affect the 89

separation significantly. Relatively low pH values (< 3) were needed to achieve this separation.NoseparationwasobservedatpH5,wherethesepropionateTPyPderivatives werepresumablyzwitterionswithanetchargeofzero,andhencehadnoelectrophoretic mobility.

Dixonetal.reportedthatcobalt III ,copper II ,iron III ,manganese III ,palladium II ,tin IV , vanadyl(VO)andzinc II derivativesofTMPyP4complexescanbeseparated.Separation

conditionsinvolvedhighconcentrationphosphatebufferatlowpH(2.1).

iii. Complexation between a synthetic, aromatic and anionic porphyrins (organic

anion) organic cation and an organic anion in aqueous solutions. Ithasbeenshown

thatthecomplexationofaorganicanionicgroupandanorganiccationcanbeenhanced bytheadditionoligosaccharides,e.g.,TPPS4with Methylene Blue in the presence of

CDs(Hamai&Satou,2001).Hamaietal.studiedthecomplexationbetweenTPPS4and the organic cationic groups octyltrimethylammonium bromide (OTMA) and hexyltrimethylammoniumbromide(HTMA)inthepresenceof γCD(Hamaietal.,2006).

In the case of both OTMA and HTMA micelles were not formed due to using low concentrationsofboth.TheyhaveusedspectrometricmethodsandCEinthisstudy.

Hamaietal.reportedtheabsorptionspectraofthecomplexofTSPP(1 M)with

OTMA(variableconcentrations)in γCD(5mM)solutionatpH7.3.Theyproposedthe formationofaternaryinclusioncomplexof1:1:1CD:TPPS4:OTMA,viaICD(induced circulardichroism).TheadditionofOTMAdidnotdissociatetheTPPS4CDcomplex.

Hamaietal.reportedthefluorescencespectraofTPPS4inthepresenceof γCDatpH7.3, withvaryingconcentrationsofOTMA.Theformationofthe γCDTSPPOTMAternary 90

inclusioncomplexwasshownviafluorescence;the1:2TPPS4OTMAcomplexmightbe formed at high OTMA concentration. Equilibrium constant was not evaluated using fluorescencefortheformationofthe γCDTSPPOTMAinthepresenceof5mMCDand variableOTMAconcentrations.Equilibriumconstantwasnotevaluatedduetotheless than10%variationinfluorescenceintensitychange.However,equilibriumconstantwas reported via CE studies. The equilibrium constants for TPPS4.OTMA (K 1) and

TPPS4.2OTMA (K 2) complexes were evaluated via fluorescence studies. The same

analyticalanalysiswasperformedwithHTMAandsimilartrendswereseen;formationof

the 1:1 and 1:2 TPPS4HTMA complex. The K 1 for HTMA was greater than that for

OTMAandtheK 2 forHTMAwassmallerthanthatforOTMA.Itwasreportedthatthis

was probably due to hydrophobic and hence cooperative interactions between the two

OTMA compared to the interactions TPPS4 and OTMA. The formation of the 1:2

TPPS4OTMAHTMAcomplexwascooperativelypreferred.Hamaietal.proposedthat

sincethecooperativeinteractionsofOTMAseemedtobemuchstrongerthanthoseof

HTMA,itleadtothegreaterK 2valueforOTMA.

TheCEstudieswereperformedusingthesamebufferswhichwerealsousedfor

spectroscopic studies (6.7 mM phosphate buffer, pH 7.3). Electropherograms were

reportedfor10 MTPPS4withvariableCDconcentration.Hamaietal.reportedthatas

theCDconcentrationincreased,themigrationtimeofTPPS4shortened,indicatingthe

formation of γCDTPPS4inclusioncomplex.TheincorporationofTSPP into the γCD

cavity increased the apparent molecular volume of TPPS4. The apparently increased

volumeofaTPPS4moleculeincreasedtheelectrophoreticmobilityofTPPS4,because 91

TPPS4isnegativelycharged.Thecomplexformedwas1:1 γCDTPPS4.Theequilibrium constantfortheformationwasdeterminedviaelectrophoreticmobilityofTPPS4.

ElectropherogramswerealsoreportedwheretheconcentrationofTPPS4was10

M,CDwas5mMandtheconcentrationofOTMAwasvariable.Themigrationtimeof theEOFmarkerindicatedtheadsorptionofOTMAon thewallsofthecapillary.The electrophoretic mobility of TPPS4 increased with increased OTMA concentration, indicatingcomplexation.Itwasreportedthattheequilibriumconstantfortheformation of 1:1 TPPS4.OTMA (K 1) was twice that of the equilibrium constant measured via fluorescence. It was reported that 1:2 TPPS4.OTMA could not be formed due to low

OTMAconcentrations.

Section III.

Review.

Cyclodextrins and TPPS4.

Aconsiderableamountofworkhasbeenreportedconcerningthecomplexationof cyclodextrins(CDs)andthetetrasulfonated5,10,15,20tetraphenylporphyrin(TPPS4).In ourstudy,capillaryelectrophoresis(CE)wasusedtoanalyzeanalytes,includingTPPS4.

CyclodextrinswereaddedtotherunningbufferintheCEexperimentstoenhancethe signal,obtainsharperpeaks,preventaggregationofsample,andifpossible,reducethe migrationtimeoftheanalytes.TheexperimentaldetailsarediscussedinSectionIVand

V of this chapter. This section reviews the work of various research groups on cyclodextrinsandTPPS4andtheeffectsofthiscomplexation. 92

Cyclodextrinsarecyclicoligosaccharides,namedaccordingtothenumberofD glucopyranose units: αCDhas6, βCDhas7,and γCDhas8units(Gubitz&Schmid,

1997).Theyareconeshapedwithahollowcavity.Theyaresolubleinwaterduetothe presenceoftheprimaryandsecondaryhydroxygroups,positionedatthenarrowandthe

widerimofthecyclodextrincavity,respectively.However,thecoreisveryhydrophobic,

enabling a wide variety of organic compounds to form inclusion complexes with

cyclodextrinsinaqueoussolution.

Alongwiththenative α, βand γCD,theirvariousmodifiedcyclodextrinshave

alsobeenstudied.Cyclodextrinsmodifiedbyspacersarenotreviewedherein.Studiesof both uncharged and charged cyclodextrins (cationic and anionic) have been reported.

TPPS4 has been studied with the Omethylated derivatives, DMβCD and TMβCD

(Andrighettoetal.,2000),the2hyroxypropylderivatives(Hamai&Koshiyama,1999;

Mosinger et al., 2000); the ionic cyclodextrins, sulfurbutyletherβCD (SBEβCD) and

carboxymethylβCD(CMβCD),havealsobeenused(Wangetal.,2001a;Wangetal.,

2002) . Complexation between TPPS4 and different cyclodextrins has been studied via

fluorescencespectroscopy,polarography,TLCandNMR(Wangetal.,2002).Forionic

cyclodextrinsthechargeinteractionplaysanimportantroleintheinclusionprocedure

(Wangetal.,2002).

i. Aggregation of TPPS4.

BeforedetailingtheinteractionofTPPS4withcyclodextrins,itisusefultoreview

the aggregation of TPPS4, for example, in aqueous solutions. Aggregation has been

reportedinneutralconditionsat40 Mandbasicconditionsat20 Mconcentrationof 93

theporphyrin(Ribóetal.,1995).TPPS4aggregationinacidicaqueoussolutionsat1mM concentration has also been studied (Rubires et al., 1999). Aggregation has been proposed to be due to the hydrophobic phenyl groups leading to lateral aggregation

(Rubiresetal.,1999;ElHachemietal.,2001).Underneutralconditions,staggered ππ stacking is due to the hydrophobic interaction between porphyrin macrocycles, where

TTPS4aggregatesintostacksofnoparticulargeometry(Ribóetal.,1995).WhenTPPS4 is diprotonated (acidic conditions) aggregation results through the electrostatic interactions between the positively charged porphyrin ring and the sulfonate groups

(edgetoedgeorJaggregates).TheseJaggregatesgivedifferentarraysdependingonthe mesosubstitutionpattern(Rubiresetal.,1999).Haggregates(facetoface)arereported for porphyrin species with less than four sulfonic acid groups or phenyl rings. It was proposedthatitwaseasytoconvertfromhomoassociatesofTPPS4toheteroassociates ofcyclodextrinTPPS4.Thiswasfacilitatedbythefreerotationofthesulfonatophenyl groupinsidethecyclodextrincavity(Ribóetal.,1995). ii. The effect of cyclodextrins on the aggregation of TPPS4.

UsingtechniquessuchasNMR(Ribóetal.,1995;ElHachemietal.,2001)and adsorptionandfluorescencespectroscopy(Wangetal.,2001b)ithasbeenreportedthat cyclodextrinshelpindisintegratingtheeasilyformedaggregatesincaseofconcentrated aqueoussolutionsofTPPS4.

ElHachemietal.studiedaseriesofsulfonatophenyl meso substitutedporphyrins

withvaryingdegreeofsulfonation(TPPS n),includingTPPS4,withnativecyclodextrin

(ElHachemietal.,2001).TheyusedNMR,wheretheconcentrationoftheporphyrinwas 94

high,resultinginpartiallyaggregatedTPPS4.Theeffectoftheextentofhomoassociation ontheratioofsulfonatophenyltophenylsubstituentswasstudied.Thelesssulfonated porphyrins aggregated more, utilizing their hydrophobic phenyl groups. Cyclodextrins did not have significant effect on porphyrin disaggregation, as seen by small or no changesintheNMRspectraoftheporphyrinaggregates.ElHachemietal.alsoreported the competition between porphyrin homoassociation and porphyrincyclodextrin heteroassociation. ElHachemi et al. proposed that the complexation between the porphyrinandthecyclodextrincanhindertheformationofstaggeredstacksofporphyrin homoassociates ( ππ stacking) but has less effect on aggregation due to the

homoassociation through the hydrophobic region of the phenyl substituents (lateral

aggregation).

ElHachemi et al. reported that at least partial, and under certain experimental

conditionscomplete,disaggregationofTPPS4occurredwith βand γCD;studieswere performedat500MHzoveratemperaturerangeof767 oC.Disaggregationoccurredat

highertemperatureandalsowiththeadditionofcyclodextrins.Thiswasdetectedthrough

asignificantchangeofthechemicalshiftsoftheporphyrinsignalsandalsothroughan

increaseinsignalresolution.ForTPPS4disaggregationwaspossibleathighcyclodextrin

concentration at room temperature. For the less sulfonated porphyrins, both high

temperatures and high cyclodextrin concentrations were necessary to obtain 1H NMR spectraofgoodresolution.

95

iii. Complexation through the meso-phenyl group.

Ribóet al .reportedthatTPPS4inneutralmediaformsinclusionassemblies,throughits meso phenyl groups,with βCDand γCD,butnotwith αCD(Ribóetal.,1995).Thiswas suggested by the presence of an NOE signal observedbetweentheinternalprotonsof cyclodextrinsandthe ortho and meta protonsofTPPS4for βCDand γCD,butnotwith

αCD.Ribóetal.proposedthatthephenylringoftheporphyrinpenetratestoasimilar

extentforbothofthelargercyclodextrins.InthecaseofdiprotonatedTPPS4,inclusion

complexeswereformedonlywith βCD.Thisisbecausetheinclusioncomplexformed betweendiprotonatedTPPS4and βCDcouldplacethephenylgroupsoftheporphyrin

nearlyorthogonaltotheporphyrinring.However,with γCD,inclusioncomplexesarenot

formed.Thisisbecausethephenylgroupsoftheporphyrinareplanartotheporphyrin

ringintheinclusioncomplex.Thismightcausesterichindrancebetweenthecyclodextrin

CH 2OHgroupsandthephenylrings. iv. Complexation of TPPS4 takes place through the primary and secondary face for

γγγCD and βββCD, respectively.

Primaryandsecondaryhydroxygroupsarepositionedatthenarrowandwiderim

ofthecyclodextrincavity,respectively.Theendsarereferredasprimaryandsecondary

faceofthecyclodextrin,respectively(Ribóetal.,1995).

Studiesofnative, β and γCD have been able to show how these cyclodextrins

interactwiththeporphyrin.NMRstudiesindicatedthat βand γCDcomplexwithTPPS4 through the secondary and primary face, respectively. This was indicated by the significant chemicalshiftsforthehydrogensplacedintheprimaryfaceinthecaseof 96

γCDandforhydrogensplacedintheinternalsecondaryfaceinthecase βCD(Ribóetal.,

1995; Hamai & Koshiyama, 1999; El Hachemi et al., 2001). UVvis absorption and fluorescence studies were used to propose the complexation geometries through the bindingconstantcalculations(Mosingeretal.,2000).Mosingeretal.usedthemodified cyclodextrin,HPβCD,andreportedthatcomplexationinvolvestheprimaryfaceofthe

2 modifiedcyclodextrinwithabindingconstant, Kb,ofabout10 timesthe Kbfornative

βCD.

v. Different cyclodextrins complex with TPPS4 with different stoichiometries.

Theequilibriumconstantforthe1:1complexationbetweenTPPS4and βCDhave been reported (Venema et al., 1998; Mosinger et al., 2000). Ribó et al. studied the

complex formation in aqueous solution using NMR and electronic absorption

spectroscopy(Ribóetal.,1995).A2:1complexationratiowith βand γCD,butnotwith

αCD was reported. Wang et al., in an earlier (Wang etal.,2001c)andalsoinamore

recent work (Wang et al., 2002), with native as well as modified cyclodextrins, e.g.,

γCD, βCD, HPβCD, SBEβCD and CMβCD, reported 1:1, as well as 1:2

complexationswiththecyclodextrins.HamaiandKoshiyanastudiedthecomplexationof

TPPS4 with αCD, βCD, TMβCD and γCD by absorption, fluorescence and induced

circular dichroism spectra in basic solutions (pH 10.1) (Hamai & Koshiyama, 1999).

Theyproposedthat αCDand βCDmostlikelyform1:1and2:1hostguestcomplexes

with TPPS4, while TMβCD and γCD form 2:1 and 1:1 complexes with TPPS4,

respectively.Mosingeretal.proposeda1:1complexationbetweenTPPS4andHPCDs

inaqueousneutralsolutions(Mosingeretal.,2000). 97

Section IV.

Experiments. i. Materials and methods.

The porphyrins purchased from Frontier Scientific (Logan, Utah) were: TPP, meso tetraphenylporphine; TPPS4, meso tetraphenylporphyrin tetrasulfonate;

Co(II)TPPS4, the cobalt chelate of meso tetraphenylporphyrin tetrasulfonate and

Cu(II)TPPS4, the copper chelate of meso tetraphenylporphyrin tetrasulfonate. The porphyrins obtained from Midcentury Chemicals (Chicago, IL) were TPPS3, meso tetraphenylporphyrin trisulfonated(MidcenturyChemicals,Chicago,IL);Mn(III)TPPS4,

the manganese chelate of meso tetraphenylporphyrin tetrasulfonate; Ag(II)TPPS4, the

silver chelate of meso tetraphenylporphyrin tetrasulfonate; TNapPS, sulfonated

5,10,15,20tetranaphthalenenephenylporphyrin; TAnthPS, sulfonated 5,10,15,20tetra

anthracenephenylporphyrin; TPP(8Br)S,Cu, the copper chelate of sulfonated betaBr 8

tetraphenylporphyrin; TPP(16F)S,Cu the copper chelate of sulfonated tetra(2,3,5,6

tetrafluoro)phenylporphyrin;TPP(2,3F2)S,Cu,thecopperchelateofsulfonatedtetra(2

3dilfuoro)phenylporphyrin;TPP(2,4F2)S,Cu,thecopperchelateofsulfonatedtetra(2

4dilfuoro)phenylporphyrin;TPP(2,5F2)S,Cu,thecopperchelateofsulfonatedtetra(2

5dilfuoro)phenylporphyrin; and TPP(3,5F2)S,Cu, the copper chelate of sulfonated

tetra(35dilfuoro)phenylporphyrin. 98

The letter ‘S’ in the designation indicates that the parent porphyrin was sulfonated.Acompound abbreviationfollowedbyametalreferstothemetalchelate of

thatcompound;e.g.,TPPS4,CuisthecopperchelateofTPPS4.

ii. Results and discussion.

Capillary electrophoresis analysis of porphyrins.

Porphyrinstocksolutionsof~2x10 3Mwerepreparedbyweight.Thestock

solutionwasdilutedto10and100fold.Thedataathigherconcentrationswasnotvery

helpfulduetoporphyrinaggregationinsolutions.SeparationswereperformedattwopH

conditions;withalowpHbuffer,50mMphosphate(pH2.5;reversepolarity)andwitha

highpHbuffer,10mMphosphate(pH9.0;normalpolarity).

The UVvis spectra were recorded under the same conditions as used for CE

separations(pH2.5and9.0),aswellasinothersolvents. ThedilutionsforUVvisstudies

weremadefromthesamestocksolutionwhichwasusedforCEseparations.

a. Capillary electrophoresis analysis of porphyrins with phenyl groups with sulfonic

acid groups only as substituents:

1.1. Capillary electrophoresis separation of TPPS4.

Asinglepeakwasseenat5.9minunderpH9.0separationconditions( λmax 413.5 nm)and13.9minunderpH2.5separationconditions( λmax 433nm)(datanotshown).

Themigrationtimesvariedwithconcentrationoftheporphyrinsolution,especiallyfor separationsatpH9.0.Theelectropherogramsathigherconcentrationsshowedmultiple, asymmetric peaks with longer migration times perhapsduetoporphyrinstacking.The shiftofthe λmax from412nmunderpH9.0separationconditionsto~433nmunderpH 99

2.5separationconditionsisduetotheprotonationoftheinnernitrogensoftheporphyrin atlowpH(Jimenezetal.,1991).

1.2. UV-vis spectra of TPPS4.

The UVvis spectra of TPPS4 in deionized water showed the characteristic porphyrinpeaksforthethreedilutionsofthestocksolution(~2x10 3Mbyweight;the

dilutionfactorsof301,1001and3001,intheconcentrationrangeof~3x10 63x10 7

Mbyweight) (Figure 2.2a) .Themajorpeak(Soret)wasobservedat413.5nmandthe

smaller peaks (Qband) at 515, 553, 579 and 633 nm. An almost identical pattern of peaks was seen in a 10 mM KH 2PO 4 buffer (pH 9.0) (Figure 2.2b) . In a 50 mM

5 6 Na 2HPO 4 buffer (pH 2.5) at the lower concentrations of TPPS4 (~ 10 and 10 M by

weight),amajorpeakat~434nmandtwominorpeaksat~644and592nmwereseen

(Figure 2.2c) .However,asolutionofdilutionfactor301(~10 4 Mbyweight),inthelow pHbuffer,showedtwoadditionalpeaksat~490nmand~705nm,alongwiththerestof the peaks appearing at lower concentrations. These two additional peaks have been

2 ascribedtotheformationofJaggregatesofthediacid(H 4TPPS 4 )(Ohnoetal.,1993).

ThisoccursathighTPPS4concentrations,whereBeer’slawisnolongerfollowed.The

appearanceofthe490nmpeakforTPPS4hasalsobeenattributedtoaggregateformation

uponprotonationoftheporphinemonomers(Akinsetal.,1996b).

100

2.1. Capillary electrophoresis separation of CuTPPS4.

UnderpH9.0separationconditions,asharppeakwithslightfrontingat7.0min

(λmax 410nm,withasecondbandat537nm)wasobserved(datanotshown).UnderpH

2.5separationconditions,onlyasinglesharppeakat6.2minwithtailinganda λmax of

411nmwasobserved(datanotshown).The λmax shiftedslightlyfrom405nmto411nm astheconcentrationoftheporphyrinsolutiondecreased(overaconcentrationrangeof~

10 4 10 6Mbyweight)underpH2.5separationconditions.Thereasonisunknownfor thesmallshiftobservedinthe λmax withconcentrationintheCEexperimentbutnotinthe

UVvisexperiment.

2.2. UV-vis spectra of CuTPPS4.

TheUVvisspectraofCuTPPS4indeionizedwater (Figure 2.3) andin10mM

KH 2PO 4 buffer (pH 9.0) (data not shown) showed the characteristic porphyrin peak at

412nmandasecondpeakat540nmforallfivedilutionsofthestocksolution(~10 4M byweight;thedilutionfactorsof26,39,51,101and752intheconcentrationrangeof~

4 x 10 6 1 x 10 7 M by weight) . The Qband region consisted of a single peak, as

expected for a metalloporphyrin (Herrmann et al., 1978). The spectra of dilutions of

TPPS4in50mMNa 2HPO 4buffer(pH2.5)werealmostidenticaltothoseinthe10mM

KH 2PO 4buffer(pH9.0)(datanotshown).Thereasonforsimilarspectraatboththehigh

andlowpHconditionsisduetothefactthatCuTPPS4doesnotundergocoreprotonation

andremainstetraanionicinmoderatelyacidicsolutions(Herrmannetal.,1978). 101

3.1. Capillary electrophoresis separation of TPPS3.

UnderpH9.0separationconditionsanunresolvedpeak,withslightfronting,was

observedat4.7min(412nm)(datanotshown).Thefrontingeffectwasobservedatthe bothhighandlowconcentrationsoftheporphyrin.UnderpH2.5separationconditions

the peak height was much lower than that in the case of pH 9.0 for equivalent

concentrations(datanotshown).Anunresolved,sharppeakat14.4minwithashortpeak

at 14.8 min was observed (433 nm). The shift of λmax from 412 nm under pH 9.0

separationconditionsto433nmunderpH2.5separationconditionswasobserveddueto protonationofinnernitrogensatlowpH.

3.2. UV-vis spectra of TPPS3.

TheUVvisspectraofTPPS3indeionizedwater(~104Mbyweight;thedilution factorsof17,25,33,50,100,200and1000intheconcentrationrangeof~1x10 53x

7 10 Mbyweight) (Figure 2.4a) . TheSoretpeak shiftedslightlyfrom~418to~415nm asthesampleconcentrationwasincreased,indicatingpossibleaggregation.TheQbands wereseenat~515,555,584and634nm.Pasternacketal.reportedthespectraldatafor

TPPS3 in an 80 90% ethylene glycolwater mixture at pH 7.5. The Soret peak was reportedat418nm,whiletheQbandat514,550,587and642nm(Pasternack,1973).

Rubiresetal.reportedtheUVvisspectraldataofTPPS3inwaterfor5x10 6 Mand2

4 x10 Maqueoussolutions(Rubiresetal.,1999).Inbothcasesthe λmax was~412nmand

theQbandswere~515,553,580and636nm.Inamorerecentstudy, afteroursand

others earlier research, Zhang et al. reported theUVvis spectra of TPPS3 under three 102

differentconditions(Zhangetal.,2003a).InneutralsolutiontheSoretbandwasreported

at413nmandfourweakQbandsat516,553,580,and634nm.

TheQbandsofTPPS3andTPPS4spectraareslightlydifferentinapH9.0buffer

(datanotshown).ForTPPS4thepeakheightsdecreasedingoingfrom515nmto633nm

(thefirsttothefourthpeakoftheQband)whereasforTPPS3thefirsttwopeaksofthe

Qbandat515and555nmareessentiallyofthesameheightandthethirdpeakat~584

nmisquitebroad.Thiswasobservedatall concentrationsstudied.

4 TheUVvisspectraofTPPS3in50mMNa 2HPO 4buffer(pH2.5)(~10 Mby weight;thedilutionfactorsof17,20,25,33,50,100,200and500intheconcentration rangeof~1x10 55x10 7 Mbyweight)areshownin Figure 2.4b .Itisknownthat

TPPS3 shows extensive aggregation and low solubility in water (Kalyanasundaram &

NeumannSpallart,1982).OurUVvisdataisconsistentwithallthepreviousandmore recentstudies.Inmildlyacidicsolution(pH45),theSoretwasredshiftedto434nm andtheQbandswereat595and647nmduetotheformationofNprotonateddiacid

2+ (H 4TPPS3 , reported earlier). When the pH of the solution decreased below 2, new

2+ bandsoftheaggregatedporphyrindiacid(H 4TPPS3 )appearedat489and708nmwith higherintensitythantheSoretat434andtheQbandat647nm.

AbroadandsplitSoretpeakwasobservedwith λmax of421and433nm( Figure

2.4b) .Astheconcentrationoftheporphyrinwasincreased,thepeakheightat421nm increasedattheexpenseofthe433nmpeak.FourpeakswereseenintheQbandregion,

~556,594,645and700707nm.Thepeakat~700707nmisknowntobeduetothe 103

formationofJaggregatesinthecaseofTPPS4(Akinsetal.,1996a).Asinthecaseof

TPPS4,apeak~490nmwasseenevenatverylowconcentrationsofthesample.Rubires

etal.reportedtheUVvisdataforthethreedifferentconcentrationsofTPPS3,2x10 6,

2x10 5 and2x10 4Msolutionsin0.1MHCl(Rubiresetal.,1999).TheSoretpeakwas shiftedto~440nmforthetwohigherconcentrations.Theprominentpeakwasnotthe

Soretpeakbutthepeakat490nm.Theaggregationwasmorepronouncedintheworkof

Rubiresetal.,duetothepresenceof0.1MHCl,comparedto50mMNa 2HPO 4buffer

(pH2.5)asusedinthisstudy.Thebandat~700nmwasalmostthesameheightasthe

Soretband.

4. Capillary electrophoresis separation of a mixture of metalloderivative of TPPS4.

AsolutionmixturecontainingMn(III),Co(II), Cu(II) and Ag(II) derivatives of

TPPS4wasprepared(~10 5Meachbyweight).Peakswereseenat4.29min(Mn,400

nm),5.33min(Co,425nm),6.38min(Cu,412nm)and7.70min(Ag,420nm)( Figure

2.5) . The peaks were assigned according to their migration time from their individual

separations. The clear separation indicated that CE was a useful technique for the

separationofmetalloTPPS4mixtures.

b. Capillary electrophoresis analysis of commercial samples of porphyrins with aryl

groups with sulfonic acid groups as substituents (naphthyl and anthracyl groups):

104

1.1. Capillary electrophoresis separation of TNapPS.

Acommerciallyavailablesamplehadfourpeaksat5.7,7.6,10.6and16.1min

underpH9.0separationconditions( Figure 2.6a) .UnderpH2.5separationconditions,

fourpeaksat6.0,8.3,10.7and16.6minwereobserved( Figure 2.6b) .Theshiftof λmax from 420 nm under pH 9.0 separation conditions to 444 nm under pH 2.5 separation conditionscouldbeduetotheprotonationoftheinnernitrogensatlowpH(Herrmannet al.,1978). ThepeaksweremuchtallerunderpH9.0separationconditionsforequivalent

concentrations.

ThemultiplepeaksunderbothhighandlowpHseparationconditionscouldbe

duetothepresenceofspeciesthatweresulfonatedtodifferentextents.Theobservation

thatthepeakpatterndoesnotchangewithdilutionindicatesthatTNapPSislessproneto

selfstackingthanTPPS4,probablybecausethenaphthylringsarelargerthanthephenyl

rings. Hanyz and Wrobel reported that the substitution of the porphyrins with larger

naphthylgroupsprobablyleadstothedelocalizationofthe πelectronsintheporphyrins ring due to the various structures and symmetry of the porphyrin (Hanyz & Wrobel,

2002).

1.2. UV-vis spectra of the TNapPS.

TheUVvisspectraofTNapPSindeionizedwaterweretakenforfivedilutionsof thestocksolution(~1x10 3 M;thedilutionfactorsof101,151,216,301and752,inthe

concentrationrangeof~1x10 51x10 6 Mbyweight)( Figure 2.7a) .Themajorpeak 105

(Soret)at419nmandthesmallerpeaks(Qband)at~516,553,579and633nmwere

observed.Theheightsofthe553and580nmpeaksweredifferentfromthoseofTPPS4.

InthecaseofTPPS4,the553nmpeakwastallerthanthe580nmpeakbutthereverse

wasseeninthecaseofTNapPS,where553nmwasmoreofaplateaushapedregion.In boththecasesthe516nmpeakwasthetallestpeakoftheQband.Absorbancewasalso

observedinthe250350nmregion,withaslightindicationofapeakat~278nm.An

almostidenticalpatternofpeakswasseeninthepH9.0buffer(datanotshown).

InthepH2.5bufferamajor,arelativelybroadpeakat~444nmandtwominor peaksat~636and683nm(Qband)wereobserved(versusthefourpeaksinwaterorin

apH9.0buffer( Figure 2.7b) .

2.1. Capillary electrophoresis separation of TAnthPS.

Acommerciallyavailable samplehadmultiplepeakswithshoulderpeaks,at8.8,

10.2and10.5min(435nm)underpH9.0separationconditions.UnderpH2.5separation conditionsthesamplehadonlyasmallsinglepeakat~6.3min(434nm)( Figure 2.8a) .

ThepeakheightswereabouttwicehigherunderpH2.5separationconditions( Figure

2.8b) .TAnthPSdoesnotstackundertheCEconditionsatbothpH,shownbythesame peakpatternatbothhighandlowconcentrationsofthesample(datanotshown).

2.2. UV-vis spectra of the TAnthPS.

The UVvis spectra of TAnthPS in deionized water (data not shown), and in buffers at pH 2.5 ( Figure 2.9) andpH9.0(datanotshown)arealmostidentical.Five 106

dilutionsofthestocksolution(~1x10 3 M;thedilutionfactorsof101,151,216,301and

752,intheconcentrationrangeof~1x10 51x10 6 Mbyweight)wereused.TheSoret peakwasobservedat~434nm,usuallyobservedat~415nmatneutralandhighpHfor most porphyrins. The Qband region had two peaks, at ~ 560 nm, and very low absorbanceat~517nm.

c. Sulfonated tetraphenylporphin with two fluoro-groups on the phenyl rings:

TPP(2,6-F2)S (free base, DD194), TPP(2,3-F2)S,Cu (DD755), TPP(2,4-F2)S,Cu

(DD720), TPP(2,5-F2)S,Cu (DD713) and TPP(3,5-F2)S,Cu (DD746).

The sulfonated derivatives of five difluoro tetraphenylporphyrins were studied: derivativeswith2,3,2,4,2,5,2,6and3,5difluorosubstituentpatterns (Figure 2.10) .

The2,6derivativeisthefreebase.Thesederivativesdifferedonlyinthepositionofthe two fluorine substituents on the peripheral phenyl rings. Biological tests (done in Dr.

Compans’ laboratory) indicated that these porphyrins inhibited the HIV1 virus to different extents (Table 2.1) . The goal of this study was to determine if there was a correlationbetweenthestructureoftheporphyrinsandtheirbiologicalactivities. i. UV-vis spectroscopy.

1. The 445 - 450 nm spectral band.

Theaqueoussolutionsoftheseporphyrinsdidnothavethesamecolor.TPP(2,3

F2)S,Cu(DD755),TPP(2,5F2)S,Cu(DD713)andTPP(3,5F2)S,Cu(DD746)gavegreen aqueous solutions while TPP(2,6F2)S (free base, DD194) and TPP(2,4F2)S,Cu

(DD720)gaveredaqueoussolutions. 107

The UVvis spectrum of the free base TPP(2,6F2)S (DD194) was redshifted

slightlyfroma λmax (Soret)at412nminapH9.0buffertoa λmax of417nminapH2.5 buffer (data not shown). This redshift in acidic medium could be due to the partial protonationoftheinnernitrogensatlowpH(Herrmannetal.,1978).ForTPPS4,the

Soretat412nmisshiftedtoevenlongerwavelengths,to~430nmuponprotonationof theinnernitrogensatpH2.5(Riboetal.,1994).Protonationoftheinnernitrogensof

TPP(2,6F2)Sderivativesmightbereduced,incomparisontoTPPS4,eitherbecausethe fluorogroupsremove electrondensityfromthe porphyrin or because the ortho fluoro groupspreventthebendingoftheporphyrinwhichisaconsequenceofprotonation.

Figure 2.11 shows the UVvis spectra of the copper chelates of the difluoro porphyrinsinfourdifferentsolvents:water,1mMEDTA,andphosphatebuffersatpH

7.1and9.0.TheUVvisspectrumofTPP(2,4F2)S(DD720),aredaqueoussolution,had a λmax at 410 nm in all four solvents. The UVvis of the two difluoro compounds,

TPP(2,3F2)S,Cu(DD755)andTPP(2,5F2)S,Cu(DD713),hada445450nmspectral band,inadditiontotheSoretat~410nm,inallfoursolvents;theaqueoussolutionsof thesecompoundsweregreen.The455nmpeakwastallerthanthe410nmpeakincase ofTPP(2,5F2)S,Cu(DD713)inallthefoursolvents.TPP(3,5F2)S,Cu(DD746)didnot havea410peak,butonlyabroad,shortbandat450nmwithaslightshoulderat~475 nminallthefoursolvents;theaqueoussolutionsofthiscompoundwasgreen.

2. Possible origins of the 445 - 450 nm band.

Thereareatleastfourpossibleoriginsofthe445450nmband.First,the445

450nmbandmightbeduetothepresenceofadifferentmetalloporphyrinasanimpurity, 108

alongwiththecopperderivatives.Forexample,W VOTPPS4(451nm)(Fleischeretal.,

1979)andPbTFPS(463nm)(Langley&Hambright,1985)aresubstantiallyredshifted in comparison to the other metalloderivatives of TPPS4, including copper (412 nm)

(Kadishetal.,1989).However,itseemsunlikelythatsuchlargeandvaryingamountsof another metal would have been introduced inadvertently in the synthesis, because the compounds were all made by Dr. Peter Hambright (Howard University) within a few weeksofoneanother.Inourlaboratory,precautionsweretakensothatporphyrindidnot pickupmetalsfromthesurroundings.GlasswarewaswashedwithEDTA,andreagents

(e.g., methanol) were refluxed with EDTA. Reagents with no or minimum traces of metalswereused(e.g.,sulfuricacid).EDTAwasaddedtothesolutionstosequesterany freemetalinthesample.

A second possible reason for the observation of long wavelength band is the protonationoftheinnercorenitrogensoftheporphyrinatlowpH,shiftingtheSoretto longer wavelengths (Herrmann et al., 1978). In this study, however, the porphyrins studiedwerecopperchelatesandtheinnercorewaspreventedfrombeingprotonateddue tocomplexationoftheinnernitrogenswithcopper.Itisunlikelythatthecopperwaslost becausecopperporphyrinsareinstability class II,andonlylosecopperwhentreated

o with100%H 2SO 4at25 Cfor2h(Buchler,1975).ThespectrawereindependentofpH, alsoconsistentwithprotonationnotbeingthecorrectexplanationfortheredshiftofthe

Soretband.

SelfstackingofsulfonatedporphyrinscanleadtosignificantlyredshiftedSoret band. Akinsetal.reportedthattheappearanceofthe490nmpeakforTPPS4couldbe 109

duetoaggregateformationuponprotonationofthe porphine monomers (Akins et al.,

1996b). However, the cause for the appearance of the 445 450 nm band was not

aggregationofthecompoundsunderstudy,becausenochangesintheUVvisspectraof

the compounds were observed even with the addition of DMSO or methanol to the porphyrin solution (regularly used to break aggregates of porphyrins) ( Figure 2.12a) .

Also,nochangesintheUVvisspectrawereobserveduponvaryingtheconcentrationof thecompounds( Figure 2.12b) .TheratiosoftheSoretpeakandthe445450nmpeak

werethesameforallthedifferentconcentrations.

Alongwavelengthbandcouldalsobeduetoadditionalconjugationwithinthe porphyrinthatdevelopsasaresultofsulfonation.Thiswouldbemostlikelyduetothe

formationoftheintramolecularsulfone,formedbylossofwaterbetweenasulfonicacid,

atthe ortho positionofoneofthephenylrings,andaneighboringpyrroleposition.There is precedence for this in the formation of the related cyclic ketones, first reported by

Richeter et al. (Figure 2.13) (Richeteretal.,2003).Theadditionofunsaturated rings fused to the porphyrin system results in bathochromic shifts of all bands. Metalfree

5,10,15,20tetraphenylporphyrin (H 2TPP) has a λmax of 418 nm. The addition of one intramolecularketonetothestructureresultsinashiftoftheSoretfrom418nmto466 nmindichloromethane.Infurtherwork,Richeterandcoworkersmadeallsixisomeric porphyrin diketones and observed that the shift in Soret bands up to 560 nm in dichloromethane (Richeter et al., 2001; Richeter et al., 2004). Richeter also made the derivativesinwhichanaminelinkreplacedtheketone(Richeteretal.,2004).Thesealso showedaredshiftedSoret. 110

The hypothesis that the redshifted bands arise from intramolecular sulfone

formationisstrengthenedbycorrelatingtheextentoftheformationofthe445450nm band to the substituent patterns of the difluoro porphyrins. Fluoro groups are predominantly para directing(99.1%)and ortho directing(0.9%)insulfonation(March,

1992).Thus,theringsaresulfonatedateither para or orthopositiontothetwofluoro

groupsonthephenylrings.Thisresultsintheplacementofsulfonicacidgroupsinthe

orthopositiononthephenylring(andthusinthecloseproximitytothepyrroleringof

the porphyrin core), in case of TPP(2,3F2)S,Cu (DD755), TPP(2,5F2)S,Cu (DD713)

andTPP(3,5F2)S,Cu(DD746).Ifthesesulfonatesnearthepyrroleweretoloseawater

moleculefromthesulfonicacidgroupandtheadjacentpyrrolering,acyclizedsulfone

wouldresult (Figure 2.14a) .Thetextbelowlooksatthecompoundsinturntoestimate

to what extent they might form the sulfone, and compare this with the experimental

observations.

TPP(2,6F2)S(freebase,DD194)cannotsulfonateinthepositions ortho tothe porphyrin, closer to the pyrrole ring, because both of these positions are blocked by

fluorinesthemselves (Figure 2.14b) .Inlinewithacyclicsulfonehypothesis,no450nm bandwasobserved.TPP(2,4F2)S(DD720)shouldnot havesulfonatedintheposition

ortho totheporphyrin,closertothepyrrolering,becausethisis meta tobothfluorines

(Figure 2.14b) .Again,inlinewithacyclicsulfonehypothesis, no450 nmbandwas observed.TPP(3,5F2)S,Cu(DD746)hastwopositions ortho totheporphyrin,eachof which is para to a fluorine. These ortho positions are therefore the most likely to be sulfonated. This compound showed the Soret as a 450 nm band, consistent with the 111

extensive formation of the sulfone. TPP(2,5F2)S,Cu (DD713) has one open position

ortho to the porphyrin; this 6position is ortho to one fluorine and meta to another

(Figure 2.14b) .The3and4positionsonthephenylringareeach ortho toonefluorine

and meta toanother.Thus,allthreepositionsontheringmightbeexpectedtosulfonate.

Sulfonic acid groups at the 3 and 4positions can not ringclose to give the sulfone,

whereas a sulfonic acid group at the 6position can ringclose to give the sulfone.

Consistent with this, significant bands at both 410 and 450 nm were seen. TPP(2,3

F2)S,Cu(DD755)isexpectedtosulfonateatthe5and6positions.Thelattercanring

close;theformercannot.Both410and450nmbands were observed (Figure 2.14b) .

Overall,thereisahighcorrelationbetweenthelikelihoodthataporphyrinwillsulfonate

adjacenttotheporphinering,andtheobservationofintensityat450nmintheoptical

spectrum.Thisisinlinewiththeproposedformationofanintramolecularsulfone.

These experiments may explain our previous observations on efforts to “over

sulfonate”porphyrins,i.e.,toaddmorethanonesulfonicacidgroupperphenylringin

tetraphenylporphyrins.WhenTPPwastreatedwithfuming sulfuric acid (15% oleum)

forlongperiodsoftime,itwasobservedthattheporphyrinwassulfonatedbeyondfour

sulfonicacidgroups(shownbyTLC,datanotshown here).Theresultingspecieshad

only a 450 nm absorption band (and no Soret peak at ~ 410 420 nm). Thus,

oversulfonation may ultimately result in sulfone formation. This could be due to the presenceofmoresulfonicacidonatleastonephenylringoftheporphyrin,improvingthe

chancesofsulfonicacidgroupbeingincloseproximity of a pyrrole ring, to form the

sulfone. 112

ii. CE separation.

Further analysis was done via CE to gain insight into the components of the

difluoroderivativesandthe445450nmband.TheCEdataissummarizedin Table 2.2 .

Simple mixtures of negatively charged sulfonated porphyrins can be separated as a

functionofchargebycapillaryelectrophoresis.Wehaveseparatedthenegativelycharged

TPPS2a,TPPS3andTPPS4bycapillaryelectrophoresisatpH9.0(Dixonetal.,2004).

Thethreecompoundshadmigrationtimesof4.0,5.0,and6.4min,respectively,i.e.,the

least charged specied had the shortest migration time under the separation conditions.

The sulfonated difluoro derivatives of had multiple peaks, indicating the presence of porphyrinspecieswithvaryingextentsofsulfonation.

Figure 2.15 showstheCEseparationsofthedifluoroderivatives.Separationsof thesecompoundsatlowpH(2.5)werenotwellresolved (data not shown). Table 2.2 givesthisdataaswellasthatinphosphatebuffer,pH9.0,without βCD.

TPP(2,6-F2)S (DD194), free base ,hadfourunresolvedpeaksbetween7.3and

7.6min( λmax 412416nm)(datanotshown).

TPP(2,3-F2)S,Cu (DD755), TPP(2,4-F2)S,Cu (DD720), TPP(2,5-F2)S,Cu

(DD713) and TPP(3,5-F2)S,Cu (DD746) allshowedmultiplepeakswhenseparations wereperformedwitha 10mMphosphatebuffer(9.0)containing1mM βCD.Atleast

twopeaksforeachcompound,atbothhigh(datanotshown)andlowconcentrationsof

thecompounds(upto100folddifferencebetweenthehighandlowconcentrationsofthe

compounds) (Figure 2.15) . Addition of βCD to the running buffer decreased the

migrationtime( Table 2.2) .Theeffectof βCDontheenhancementofseparationwasnot 113

thesameforallthefourcompounds.InthecaseofTPP(2,4F2)S,Cu(DD720),twosharp peaks at 5.0 and 6.1 min with λmax of 409 and 414 nm, respectively, were observed

(Figure 2.15) .Nochangeintheelectropherogramswasobservedduetotheadditionof1 mM βCDtotherunningbuffer. ThenegativeionMALDIdata(below)indicatedthatthis compoundwasamixturewithsignificantamountsofatleastthreecompounds,thedi, triandtetrasulfonatedspecies.However,undertheCEseparationconditionsused,only twomajorCEpeakswereobserved.

In the case of TPP(2,5F2)S,Cu (DD713), separation without βCD resulted in

severalsharpunresolvedpeaksbetween6.0and9.0min,withonlyonepeakat6.5min

withboth414and450nmbands(datanotshown).Therestofthepeakshada λmax of~

420nm.With1mM βCDintherunningbuffer,threedistinctpeakswereobserved,at

4.3,5.1and6.3min (Figure 2.15) .Onlythepeakat4.3minhadboththe416nmand

449nmUVvisbands.Theothertwopeakshada λmax of~420nm.Closeinspectionof thefirstpeak,at4.3minshowedthattheratioofthe414nmand450nmbandschanged asonemovedthroughthepeak.Thus,itislikelythatthispeakintheCEwasaresultof twodifferentcompoundscoelutingunderoneapparentpeak.

For TPP(2,3F2)S,Cu (DD755), the three major peaks were observed without

βCDat5.2,6.4and7.7min(datanotshown).Therewerealsoshorterpeaksat~4.5and

12.0min.Thepeaksat5.2and7.7minhad λmax valuesof409and419nm,respectively.

Thepeaksat6.4minhad λmax valuesof414and443nm.Withtheadditionof1mM

βCDtotherunningbuffer,thethreemajorpeakswerestillobservedat5.1,6.2and7.4 114

min,althoughmoreshortpeaksalsoappeared.Thepeaksat5.1and7.4minhad λmax valuesof409and420nm,respectively.Thepeaksat6.2minhad λmax valuesof414and

444nm.

TPP(3,5F2)S,Cu(DD746)gaveunresolvedpeakswithout βCDbetween5.0and

10.0min(datanotshown).Allthepeakshad λmax valuesof~440nm.Theadditionof

βCDdidnotresolvethepeakssignificantly;fourunresolvedpeaksbetween4.0and10.0

minwereobserved (Figure 2.15) .AlltheCEpeakshad λmax ofabout~440nm.If440 nmbandswereduetocyclicsulfones,thenmorethanonecomponentofthiscompound hadthismoiety.

iii. Mass spectrometry.

The negative ion MALDI technique was used to gain information about the substitutions of these compounds. While one can sometimes see dimers in the mass spectrometryofsulfonatedtetrapyrroles(Dixonetal.,2004),onlyinthecaseofTPP(3,5

F2)S,Cu(DD746)weretraceamountsofhomoandheterodimersobservedinthiswork.

Table 2.2 summarizestheMSandCEdataofdifluoroderivativesofCuTPPS4.

1. Number of sulfonic acid groups.

The negative ion MALDI data for almost all the difluoro derivatives showed peaks appropriate for the tri and tetrasulfonated species and their sodium adducts

(Figure 2.16 and 2.17) . Traces of the monosulfonate (896 Da) and its monosodium

adductwereseenforTPP(2,4F2)S,Cu(DD720).Peaksappropriateforthedisulfonated

species and its monosodium adduct were seen for TPP(2,4F2)S,Cu (DD720) and 115

TPP(2,5F2)S,Cu(DD713).Tracesofthepentasulfonate(1219Da)anditsmonoand

disodium adducts were seen for TPP(2,3F2)S,Cu (DD755). Consistent with this

observation,theCEelectropherogramshowedpeaksappearingatmigrationtimeslonger

thanforotherporphyrins,indicatingspecieswith higher negative charge, and hence a

greaterextentofsulfonation.

ThespectrumforTPP(3,5F2)S,Cu(DD746)hadveryfewpeakscomparedtothe

other compounds. It was interesting to observe that the parent sulfonated species

(molecularionpeaksofthesulfonatedspecies)weremissing.Somepeaksseemedtobe

consistentwiththeirsodiumadducts.

2. Loss of 18 Da.

Allfourcopperchelatesshowedpeaksconsistentwiththelossof18Dafromthe

sulfonatedspecies( Figure 2.16 and 2.17) .However,inmostcasesthelossof18Dawas notobservedfromthesodiumadductsofthesesulfonatedspecies.Thismayindicatethat thelossoccurredmorereadilyfromthefullyprotonatedspeciesratherthanfromtheir sodiumadducts.This18Dalossisverylikelythelossofwaterfromasulfonicacidanda pyrrolering,whichareincloseproximity,asdiscussedearlierinthissection.

TPP(2,5F2)S,Cu(DD713)showedapeakat1040Daconsistentwiththelossof waterfromtheparenttrisulfonatedspecies(1058Da)(Figure 2.17a) .The960Dapeak wasappropriateforthelossofwaterfromtheparentdisulfonatedspecies(978Da).A significant peak appropriate for the loss of water from the tetrasulfonated porphyrin

(1138 Da) was not observed at 1120 Da. This peak might have overlapped with the sodiumadductofthetrisulfonatedspecies,i.e.,thepeakat1124Dawasmoreappropriate 116

for the sodium adduct of trisulfonated species than for the water loss from the tetrasulfonatespecies.Thelossofwatercouldhappenforthiscompound,foratleastfor oneofitssulfonatedspecies,basedonobservationoftheCEdataforthiscompound.The

CEdataofthiscompoundshowedonepeak,outofthethreemajorpeaks,withthe450 nmbandalongwiththeSoretband.

There were many overlapping peaks in the mass spectrum of TPP(2,3F2)S,Cu

(DD755)(Figure 2.16b) .The1120Dapeakwasappropriateforthelossofwaterfrom theparenttetrasulfonatedspecies(1138 Da).A peak appropriate for the loss of water

(1200Da)fromthepentasulfonatedspecies(1218)mighthaveoverlappedwiththepeak for the sodium adduct of the tetrasulfonated species. The water loss in case of this compoundpossiblyresultsintheformationofthesulfonering,atleastincaseofoneof thesulfonatedspecies.Thatspeciescouldbedi,triortetrasulfonated.CEdataindicated thatonlytheonepeakoutofthethreemajorpeaks,at6.4min,hadthe445nmband alongwiththeSoretband.TheotherCEpeaksdidnothavethe445nmband.

InthecaseofTPP(2,4F2)S,Cu(DD720),thetallestpeakwasnotforthelossof water,butforthetrisulfonatedspecies(Figure 2.17b) .Peaksforthelossofwaterat960

Da, 1040 and 1120, respectively, were seen for the di (978 Da), tri (1058 Da) and tetrasulfonated(1218Da)porphyrins.Butaccordingtoourreasoningforthelossofwater and consequential sulfone formation, TPP(2,4F2)S,Cu (DD720) which does not sulfonateonthe ortho or para positionsoftheringcannotlosewatertoformthesulfone ring.Therefore,the18Dalossforthiscompoundcouldnotbethelossofwaterresulting insulfoneformation.ThisissupportedbytheCEdataforthiscompound,whereneither 117

ofthetwoCEpeakshadthe445450nmband.Theoriginsofthe18Dapeaksarenot

knownatthispoint.

In the case of TPP(3,5F2)S,Cu (DD746), the parent sulfonated peaks were

missing(Figure 2.16a) .Thepeaksobservedwereappropriateforthelossof18Dafrom

thetriandtetrasulfonatedspeciesandtheirsodiumadducts.However,thetallerpeaks

seemedtobeconsistentwiththesodiumadductsofthetrisulfonatedspecies.Thisisthe

compoundwhichismostlikelytohavelostwatertoformasulfone.AlltheCEpeaksof

thiscompoundhadthe λmax of~440nm.Thus,theUVvisandmassspectrometrydatais

consistentandleadtotheconclusionthatthesulfonationproductsofthismoleculehave

lostwatertoformthesulfone.

3. Loss of SO 2.

LossofSO 2hasbeenobservedpreviouslyforthesulfonatedtetrapyrroles(Dixon et al., 2004). The sulfonic acid group can lose SO 2 to form phenol (Conneely et al.,

2001).LossofaSO 2 wasnotsignificantinthecaseofTPP(2,5F2)S,Cu(DD713)and

TPP(3,5F2)S,Cu(DD746).Thesearethetwocompoundswhichhadveryprominentred

shifted bands, at 445 450 nm. Presumably, loss of SO 2 was not significant for the sulfonatedparentpeakswhichlostwatertogivethesulfonepeaks.

Ontheotherhand,lossofSO 2, andnotthelossofwater,wassignificantinthe

case of TPP(2,4F2)S,Cu (DD720) and TPP(2,3F2)S,Cu (DD755) (Figure 2.18) .

TPP(2,4F2)S,Cu(DD720)didnothavethe445450nmUVvisbandandforTPP(2,3

F2)S,Cu(DD755)thebandwasnotassignificant.Peaksappropriateforthelossofone

SO 2wereobservedfromthetetraandpentasulfonatedspecies.Peaksappropriateforthe 118

lossofoneSO 2werealsoobservedfromtheirmono,diandtrisodiumadducts( Figure

2.18) .

Conclusions about the difluoro derivatives from UV-vis spectroscopy, capillary

electrophoresis and negative ion MALDI data:

TheUV/visSoretbandatabout450nmisbestexplained as due to additional conjugationinthering.Thisismosteasilyexplainedasanintramolecularsulfone.An intramolecularsulfonecanformbycondensationofasulfonicacid,atthe ortho position ofthephenylring,withthepyrrolering.Incomparingthevariousdifluoroderivatives, wenotethatthemorelikelytheporphyrinistosulfonate in the ortho position of the phenylring,themore450nmbandintensityisobserved.Thus,thepresenceandintensity of the 450 band are consistent with the predicted sulfonation pattern of the difluoro porphyrins. All of the sulfonated difluoro derivatives were mixtures, as shown by capillaryelectrophoresisandmassspectrometry.Ingeneral,onlyafewofthepeakshad theopticalsignatureoftheintramolecularsulfoneintheCE.TheMALDIdatashowed thattheporphyrinshadvariousextentsofsulfonation,consistentwiththeobservationof anumberofpeaksinthecapillaryelectropherograms.SignificantpeaksintheMALDI spectrawereattributedtolossofwaterfromtheparentspecies,againconsistentwiththe intramolecular sulfone structure. Although the intramolecular sulfone species has not been reported in the porphyrin literature to our knowledge, extended conjugation via eitheracarbonyloraminelinkageisknown,andresultsinaredshiftedSoret(Richeteret al.,2001;Richeteretal.,2004). 119

RegardingtheMALDIfragmentationpatterns,ingenerallossofwaterseemedto

comefromthesulfonicacidforms,nottheirsodiumadducts,asmightbeexpected.It

alsoappearedthatsomeparentpeakswouldloseH 2OandsomeSO 2;themassspectral patternswerenotconsistentwithasinglemolecularentitylosingeitherH 2OorSO 2.

Althoughitisingeneralpossibletoaddmorethanonesulfonicacidtoaphenyl ring via sulfonation, “oversulfonated” tetraphenyl porphyrins (e.g., a pentasulfonated derivative)havenotbeenreportedintheliterature.Inourcase,TPPtreatedunderforcing sulfonationconditionsgavespeciesthatabsorbedat450nmbutwerenottheprotonated parentTPP.Inviewofourworkonthedifluoroporphyrins,wenowbelievethesespecies tobetheintramolecularsulfones.

d. Sulfonated tetraphenylporphin with bromo groups on the phenyl rings:

TPP(4-Br)S (free base) (DD709), TPP(2-Br)S,Cu (DD774), TPP(3-Br)S,Cu (DD707), and TPP(4-Br)S,Cu (DD710).

Four bromo derivatives of TPPS4 and CuTPPS4 were studied (Figure 2.19) .

Thesederivativesdifferedonlyinthepositionofthebromosubstituentontheperipheral phenyl rings. Thecompoundsshowed goodinhibitory activity against HIV virus and werenotespeciallytoxic(biologicaltestsdoneatDr.Compans’laboratory).Thegoalof thisworkwastostudythestructuralpropertiesofthesecompounds. i. CE separation.

Figure 2.20 showstheCEseparationofthesecompoundsinapH9.0bufferwith

1mM βCD.Theresultsaresummarizedin Table 2.3 .Inthepresenceof1mM βCD,the 120

electropherograms of the free base TPP(4Br)S (DD709)anditsCuderivativeTPP(4

Br)S,Cu(DD710)hadseveralpeaks,notresolvedtothebaseline.Thegeneralpatternof

thepeakswasthesameforthetwocompounds.However,theCuderivativeofTPP(4

Br)S (DD709), TPP(4Br)S,Cu (DD710) had more unresolved components. The broad peak atlongermigrationtimeappearedatevenlongermigrationtime, i.e.,~15min.

Multiplepeaksandlongermigrationtimeindicategreaterextentofsulfonation(Dixonet

al., 2004). TPP(2Br)S,Cu (DD774) had several peaks with considerable resolution between4.5and9.5mininthepresenceof1mM βCD.Themajorpeaks,however,were

observedbetween5.5and6.5min.TPP(3Br)S,Cu(DD707)hadonlytwosharppeaks

andhadtheshortestmigrationtimeamongstallthefourcompounds.Overall,1mM βCD did help in resolving peak components and improving the shape of the peaks (data without βCDnotshown). ii. UV-vis spectra.

Figure 2.21 shows the UVvis spectra of these compounds in water. The λmax wereintherangeof412419nm.AQbandwasseen~540nm.IncaseofTPP(3

Br)S,Cu (DD707) a hint of a 450 nm band was observed. According to our pervious discussionofdifluoroderivativesofTPPS4,the450nmbandcouldbearesultoflossof waterfromasulfonicgrouponthephenylringandthepyrroleringtoformasulfone.For theformationofthesulfoneringthesulfonicringwouldhavetobeincloseproximityof thepyrrolering.Thisisdirectedbythepositionofthehalogensubstituentonthephenyl ring;the3bromosubstituent,TPP(3Br)S,Cu(DD707),shouldhaveasulfonicgroups adjacenttothepyrrolering. 121

SpectrawerealsotakeninvarioussolventsandatvariouspHvalues;inwater,1

mMEDTA,andphosphatebuffersatpH7.1and9.0(datanotshown).Nodifferencein

spectra,exceptforpeakheights,wasobservedunderthedifferentconditions. iii. Mass spectrometry .

Thedataissummarizedin Table 2.4 .ThemultipleCEpeaksforeachcompound

indicatedthepresenceofmorethanonesulfonicacidgrouponthephenylring.Thisis

alsoshownbythenegativeionMALDIdata.Peaksappropriate for the loss of a SO 2 groupfromtheparentsulfonatedspecieswerenotobserved.

ThemassspectrometrydataindicatedthatthefreebaseTPP(4Br)S(DD709)had peaksforthedi(1086Da),tri(1166Da),tetrasulfonated(1246Da)speciesandtheir sodium adducts. TPP(4Br)S,Cu, (DD710) showed peaks appropriate for the di (1086

Da),tri(1166),andtetrasulfonated(1246)species,aswellastheirsodiumadducts.

TPP(3Br)S,Cu(DD707)datawasdifferentfromothercompoundsinthatnopeak

forthetetrasulfonatedspecieswasseen.Peaksappropriateforthediandtrisulfonated

speciesandthepeaksforthesodiumadductsofthetrisulfonatedspecieswerenotvery

significant. The other peaks in the spectrum, including the tallest peak, could not be

assigned.Thepatternofthepeakscouldnotbeassigned.

In the case of TPP(2Br)S,Cu (DD774), the prominent peak was for the pentasulfonated species (1326 Da) and its sodium adducts. Trace amounts of the

tetrasulfonatedspecies(1246Da)anditssodiumsaltswerealsoobserved.

122

Section V.

Sulfonated Naphthyl Porphyrins as Agents Against HIV-1

JournalofInorganicBiochemistry,2005,vol.99,pp.813–821.

DabneyW.Dixon,* 1AnilaF.Gill, 1LingamalluGiribabu, 1 AndreiN.Vzorov, 2AtiaB.

Alam, 1andRichardW.Compans 2

1DepartmentofChemistry,GeorgiaStateUniversity,Atlanta,GA30303. 2DepartmentofMicrobiologyandImmunology,EmoryUniversity,Atlanta,GA30322.

Abstract

Sulfonated 5,10,15,20tetra(1naphthyl)porphyrin (T1NapS) and 5,10,15,20 tetra(2naphthyl)porphyrin (T2NapS) and their copper and iron chelates show activity againstthehumanimmunodeficiencyvirus(HIV1).Theporphyrinswerepreparedby sulfonationoftheparentstructureswithsulfuricacid.Morehighlysulfonatedstructures were prepared by sulfonation for longer times. Matrixassisted laser desorption/ionization(MALDI)massspectrometryshowedspecieswithasmanyaseight sulfonates.Someofthemassspectralpeaksforthecopperchelateswereconsistentwith loss of water, apparently from intermolecular sulfone formation between two adjacent naphthalene rings that took place during copper insertion. The compounds could be separated using capillary electrophoresis; addition of β or γcyclodextrin gave substantiallybetterseparationofthecomponents. Activity against HIV was evaluated usinganepithelialHeLaCD4CCR5cellline;EC 50 valuesforHIV1IIIBandHIV1JR

FLrangedfrom1to15.Thecompoundsexhibitlowtoxicityforhumanepithelialcells 123

and have potential as microbicides which might be used to provide protection against

sexualtransmissionofHIV.

Introduction.

Although many important strides have been made in both pharmaceutical

approachesandinchangingsocialpractices,thecostofthehumanimmunodeficiency

virus(HIV)epidemicinbothhumanandeconomictermscontinuestobestaggering.

OneapproachtoslowingthespreadofHIVistopreventinitialinfectionbythevirus.

Thisismostlikelytobeeffectedwithmicrobicides,topicalagentswhicharedesigned

topreventinfection,ratherthanattemptingtominimize its later ravages (Stone, 2002;

Turpin,2002;Harrisonetal.,2003;D'Cruz&Uckun,2004).Microbicidesneedtobe

safe,effective,convenient,andaffordableastheywillbeusedonalongtermbasis.

Porphyrins have been known for some years to show antiviral activity against

HIV infection in assays that measured inhibition of virus replication. Studies

investigatedprotoporphyrin(Asanakaetal.,1989),hemin(Levereetal.,1991;Neurathet

al.,1991)andotherrelatednaturalporphyrinsandmetalloporphyrins(Dixonetal.,1990;

Neurathetal.,1991;Neurathetal.,1992;DeCampetal.,1992;Debnathetal.,1994;

Neurathetal.,1994a;Neurathetal.,1994b;Debnathetal.,1999;Vzorovetal.,2002;

Dairouetal.,2004).Ingeneral,activityagainstHIVisinthemicromolarrangeinsuch

antiviral assays. In the synthetic porphyrin class, sulfonated derivatives of

tetraphenylporphyrinhavealsobeenshowntobeactive,ashaveotherselectedtetraaryl porphyrins(Dixonetal.,1990;Neurathetal.,1992;Dixonetal.,1992;Debnathetal., 124

1994;Neurathetal.,1994a;Neurathetal.,1995;Songetal.,1997;Vzorovetal.,2002).

Recently, we have found that porphyrins can inhibit the initial infection process by

inactivatingtheinfectivityofcellfreevirus,andthereforehavepotentialasmicrobicides

(Vzorovetal.,2002).Porphyrinscanchelatemetals,specificallycopperandiron,giving

structuresthatarestable,notphotoactive,havechemistrythatisindependentofpHover

the values expected in the female genital tract, and are without redox chemistry that

wouldinterferewithpharmacologicaluse.Alloftheseareimportantinthedevelopment

of a microbicide. Three classes of porphyrins were studied (Vzorov et al., 2002): I)

naturalporphyrins,II)metalchelatesoftetraphenylporphyrintetrasulfonate(TPPS4),and

III) sulfonated tetraaryl porphyrin derivatives. None of the natural porphyrins studied

reducedinfectionbymorethan80%ataconcentrationof5 g/mlintheseassays.Some

metalloTPPS4weremoreactiveandanumberofsulfonatedtetraarylderivativesshowed

significantlyhigheractivity.Someofthemostactive compoundswerethesulfonated

tetranaphthyl porphyrins (T1NapS and T2NapS, Figure 2.22 ). The present study

extendsourpreviousworkbyfurtherdefiningthechemistryandantiviralactivityof

naphthylporphyrins.Thecharacterizationofthesulfonated naphthyl porphyrins is of

interest not only in conjunction with their antiviral activity, but also their use as photosensitizers (Ion et al., 1998; Ion, 1999) and with respect to the effect of the

naphthylgrouponthespinstateofthecentralmetalatom(Silver&Taies,1988).

125

Experimental. a. Synthesis. 5,10,15,20Tetra(1naphthyl)porphyrin(T1Nap)(Treibs&Haeberle,1968;

Fonda et al., 1993) and 5,10,15,20tetra(2naphthyl)porphyrin (T2Nap) (Fonda et al.,

1993;Rao&Maiya,1994)weresynthesizedaccordingtothegeneralliteratureprocedure

(Abrahametal.,1975). Arecentsyntheticprocedureinvolvingheating for10daysat

lower temperatures may give more facile access to larger quantities of the pure parent porphyrins(George&Padmanabhan,2003).Sulfonationwasperformedfollowingthe literature (Miller et al., 1987; Ion et al., 1998; Sutter et al., 1993). Sulfonation with concentratedsulfuricacid(Milleretal.,1987;Sutteretal.,1993)gavecleanerproducts thansulfonationwithfumingsulfuricacid(Sutteretal.,1993;Ionetal.,1998).Asan example,T1Nap(200mg,0.24mmol)wasaddedto5mlofconcentratedsulfuricacid

(Aldrich).Thereactionmixturewasheatedat100oCfor5h.Icewasthenaddedtothe

greenmixture( when working at larger scale, it is safer to pour the sulfuric acid mixture over ice ).Theacidwasneutralizedcarefullybytheadditionof50%NaOHsolutionand

iceuntilthecolorturnedred( caution: very exothermic, keep the flask in ice and add the

NaOH very slowly ). The pH of the solution was adjusted to 7. The liquid was

evaporated under vacuum. The resulting solid was pulverized and the sulfonated porphyrinwasextractedintomethanolwithaSoxhletapparatusforapproximately24h.

EvaporationofthesolventgavesolidmaterialwhichwaspurifiedbyaSephadexLH20

(Pharmacia)column(6gofSephadexfor100mgofporphyrin)usingmethanolasthe

eluent. The column was prepared by putting the Sephadex in methanol and was used

immediately. The purplecolored band (continuous, streaking) was collected and 126

evaporatedtoobtainthedesiredproduct.TheT2Nap sulfonation products were made

analogously. Components could be separated by thin layer chromatography (TLC)

(Merck,RP18F,60/40MeOH/H 2O).

Copperinsertionwasperformedbythecopperoxide method (Herrmann et al.,

1978).Theporphyrin(30mg)wasaddedtorefluxingwaterwhichcontained500mgof

copperoxide.Thereactionmixturewasrefluxedfor12h.Thecompletionofthereaction

wasindicatedbyUV/visspectroscopy(fourQbandsoffreebaseporphyrinreducedto

twobandsofmetalloporphyrin).Thesolventwasfilteredtoremoveexcesscopperoxide.

Thesolventwasevaporatedundervacuumtogetsolidmaterial.Thiswaspasseddowna

columnofionexchangeresin(5g;Dowex50W;H +form;100200mesh,washedwith

water3to4timespriortoloadingsolidmaterialtoremoveexcessacid),elutingwith

water. The red colored band was collected and evaporated to dryness under reduced pressuretoobtainthedesiredproduct.Studiesofcopperinsertionusingcopperoxide

showedthattheinsertionwasoftencompletebystirringatroomtemperatureforabout6

h(30mgporphyrinand500mgcopperoxide).

Ironinsertionwasachievedbyaddingtheporphyrin(30mg)torefluxingwater,

whichcontained500mgofpowderediron(Herrmannetal.,1978).Thereactionmixture

was refluxed for 6 h. The completion of the reaction was indicated by UV/visible

(UV/vis) spectroscopy (four Qbands of freebase porphyrin reduced to two bands of

metalloporphyrin). The solvent was filtered to remove excess iron. The product was

workedupasdescribedaboveforthecopperchelate. 127

Asinpreviousstudiesofsulfonatednaphthylporphyrins,(Milleretal.,1987;Ion

etal.,1998;Ion,1999),purematerialswerenotisolated,presumablyduetothepresence

of inorganic salts and water. In this work, purities were estimated by UV/vis. The

extinctioncoefficientsofT1NapandT2Napinchloroformhavebeenmeasuredas4.4x

10 5andas4.5x10 5M 1cm 1, respectively(425nm) (George&Padmanabhan,2003).

PreviousworkhadshownthattheextinctioncoefficientsofTPPinCHCl 3(Dudicetal.,

1999) and CuTPPS4 in aqueous solution (Gibbs et al., 1980) were very similar.

Therefore, we used the published T1Nap and T2Nap extinction coefficients for our

sulfonatedcopperderivatives.Asimilaranalysisforiron,usingtheextinctioncoefficient

of FeTPPS4 (Fleischer et al., 1971) indicated that the iron chelate should have an

extinctioncoefficientattheSoretofabout1.5x10 5M 1cm 1.Purities,expressedasthe percentofthematerialthatwasporphyrin(assumingatetrasulfonatewithfoursodium

counterions),werethenestimatedasT1Nap,Cu(35%);T2NapS,Cu(36%);T1NapS,Fe

(38%);andT2NapS,Fe(59%).Forcomparison,T1NapSpreparedbysulfonationwith

concentrated sulfuric acid was estimated to be 61% porphyrin (assuming the fully protonated porphyrin dication) by elemental analysis (Miller et al., 1987). Analytical

figureswerenotgivenfortheironcomplex(T1NapS,Fe)inthatstudy,becausesamples

containedvariableamountsofNa 2SO 4(Milleretal.,1987). b. Capillary electrophoresis .Capillary electrophoresiswasperformed ona Beckman

P/ACE5500serieswithBeckmanGoldchromatographysoftwareandaBeckmandiode arraydetector.Afusedsilicacapillarycolumn(Agilent,Wilmington,DE,375mo.d.,

75mi.d.,57cmoverall,50cmtodetector)wasbuiltinaneCAPcapillarycartridge 128

(Beckman, 100 x 800 m aperture). Phosphate buffers were prepared by dissolving

KH 2PO 4indeionizedwaterandadjustingthesolutiontothedesiredpHwithphosphoric acidorKOH.Allrunningsolutionswerefilteredthrougha0.2mmembranefilter(FP

200,GelmanScienceInc.,AnnArbor,MI)beforeuse.

New capillary columns were rinsed with 1.0 M sodium hydroxide for 1 h, followedbydeionizedwaterfor20minandrunningbufferfor30min.Thecapillary columnwasregeneratedbetweenrunswith0.1Msodiumhydroxidefor5min,followed bydeionizedwaterfor515minandrunningbufferfor10min.Asamplesolutionwas preparedbydissolvingasmallamountoftheporphyrin(12mg)indeionizedwater(0.5

mL).Furtherdilutionsweredonewithwater.Separationswereperformedwithnormal polarityfromtheinletvial(anode)totheoutletvial(cathode).Pressureinjectionsof6s

wereused.Thevoltagewas30kV.Thecolumntemperaturewas24 °C.

c. Mass spectrometry (MS) . Matrixassisted laser desorption/ionization (MALDI)

experiments were performed using an ABI Voyager DEPro (Applied Biosystems,

Warrington, UK) MALDI reflectron timeofflight spectrometer. The mass range

scannedwas2006000Dainpositiveandnegativemodes.Thesampleswererunwith

αcyano4hydroxycinnamic acid (CHCA) as the matrix. CHCA was prepared at 10

mg/ml in a 50:50 mixture of MeOH and acetonitrile. The sample was dissolved in

MeOH(0.5mg/ml)andmixedwithCHCA.Thesamplesolutionwasgenerallymixed

with the matrix solution in a 1:20 ratio and spotted on the MALDI target plate.

Throughoutthetext,peaksareroundedtothenearestunit.Dataanalysisconcentratedon 129

theregionaroundthemolecularion(netchargeof1fornegativeionMALDI).Samples

wereisolatedasthesodiumsalts;partialexchangeofthesodiumforprotonspresumably

occurredinthematrix.

AQTOF(quadrupoletimeofflight)spectrometer(WatersMicromassQTOFTM

micro,WatersCorporation,Milford,MA)wasusedtocarryouttheelectrospray(ESI)

massspectrometricexperiments.Nitrogensuppliedbyanitrogengenerator(Model75

72,ParkerBalston,Haverhill,MA)wasusedastheconegasat50L/h,andasthedrying

gasheatedto150°Cataflowrateof450L/htoevaporatesolventsinthespraychamber.

Argon was used as the collision gas. The voltage settings for the API electrospray

interfacewerecapillary,2700V;samplecone,35V;extractioncone,0.5V.Thesource

temperature was at 80 oC and the desolvation temperature was 150 oC. Samples in

negativeionmodewerein50%MeOH.Allsolutions were continuously infused by

meansofasyringepumpatatypicalflowrateof5lmin 1intotheelectrosprayprobe.

MassLynx(version4.0)softwarewasusedforinstrumentcontrol,dataacquisitionand processing.

d. Molecular modeling wasperformedusingPCModel(version8.0,SerenaSoftware,

Bloomington,IL)andtheMMXforcefield.

e. Screening of porphyrins for activity against HIV-1. HIV1IIIB(laboratoryadapted

CCXCR4usagevirus)andJRFL(primaryCCR5usagevirus)wereobtainedfromthe

NIHAIDSResearchandReferenceReagentProgram, andgrownaspreviouslydescribed 130

(Vzorovetal.,2002).Thevirucidalactivityofthesulfonatednaphthylporphyrinswas

evaluated using MAGICCR5 cells (NIH AIDS Research and Reference Reagent

Program),whichareepithelialHeLacellswithhumanreceptorCD4,coreceptorCCR5,

andanintegratedLTRβgalactosidasegene(Chackerianetal.,1997).Porphyrinstock

solutions were prepared at concentrations of 5 mg/ml, diluted 100fold in Dulbecco’s

minimalessentialmedium(DMEM),andmixedwithvirusstock.Sampleswereleftin

thedarkatroomtemperaturefor1h.Fortheassays,25 lofvirus/compoundmixture

wasmixedwith225 lofgrowthmediumcontainingDEAEdextran(15 g/ml)and50

laddedtowellswithconfluentmonolayersofMAGICCR5cells.At2hpostinfection,

anadditional200 lofcompleteDMEMwasadded.Afterthreedaysresidualvirucidal

activitywasmeasuredasdescribedpreviously(Vzorovetal.,2002)byremovalofthe

media, fixation with 1% formaldehyde and 0.2% glutaraldehyde and staining with 5 bromo4chloro3indolylβDgalactopyranoside (Xgal). We observed about 50 60

separatebluenucleiperwellforthepositivecontrol.Scoringofbluenucleiina96well

formatwasgreatlyenhancedbyusingaplanarlens[Olympus(Japan)4x]tovisualizethe

entirewell.Comparisonofthenumberofbluecellsinwellsinfectedwithcompound

treated virus to the number found in wells infected with untreated virus was used to

determineresidualviralinfectivity(expressedinpercent).

f. Cytotoxicity test. A 3(4,5dimethylthiazol2yl)2,5diphenyltetrazolium bromide

(MTT) assay (Pauwels et al., 1988) was performed using the human endometrial

adenocarcinoma cell line HEC1B (obtained from the American Type Culture 131

Collection, Manassas, VA) and the human epithelial MAGICCR5 cell line. For the

MTTassay,compoundsofvaryingconcentrations(1000,100,20,5,and0.5g/ml)in

growth medium were added to 96well plates with HEC1B or MAGICCR5 cells.

Followinga72hincubation,cellswerewashedwithHanks’balancedsaltsolutionto

removecoloredcompoundsand100lofgrowthmediumwith10lofMTT(10mg/ml)

reagent was added to each well. After 4 12 h incubation at 37 oC, 100 l acidic isopropanol(0.04MHClinabsoluteisopropanol)wasadded.Theabsorbancewasread in a computercontrolled photometer. The absorbance at 690 nm was automatically subtracted from the absorbance at 540 nm to eliminate the effects of nonspecific absorption.Dataarereportedastheaverageofquadruplicateassaysforeachcompound.

Results a. Synthesis .The1naphthyland2naphtylporphyrinsweresynthesized following a literature procedure (Abraham et al., 1975). A recent synthetic procedure involving heatingfor10daysatlowertemperaturesmaygivemorefacileaccesstolargerquantities ofthepureparentporphyrins(George&Padmanabhan,2003).Thenaphthylporphyrins were sulfonated with sulfuric acid at 100 oC (Sutter et al., 1993) for 5 and 10 hours

(T1Nap) and 5, 10 and 20 hours (T2Nap) to give samples with increasing extents of sulfonationonthenaphthalenerings.CuorFewereinsertedintoboththeT1Napand

T2Napringsystems,foratotaloffifteensulfonatednaphthylporphyrins.

132

b. Capillary electrophoresis (CE). Simple mixtures of sulfonated porphyrins can be

separated as a function of charge by capillary electrophoresis (Pokric et al., 1999;

Andrighettoetal.,2000;Dixonetal.,2004).The sulfonated naphthyl porphyrins are

mixtures of numerous compounds, however, making separation more difficult. For

example, the T2NapS derivatives were generally one broad peak under standard

conditionsofpH9.0,10mMKH 2PO 4buffer.Theadditionofcyclodextrinsaidedthe separation. The electropherograms of T2Nap5S,Cu in the presence of β and γ cyclodextrinareshownin Figure 2.23 .βCyclodextringaveaseriesofpoorlyresolved peaksfromapproximately4to6min;γcyclodextrinshowedthreeprominentpeaksfrom

3.5to4.5min.

Electropherogramsofsamplespreparedby5,10and 20 h of sulfonation were compared. Figure 2.24 showsthecapillaryelectrophoresisseparationofthefreebase porphyrinsulfonatedfor5and20h.Inbothcases,manypeakswereseen.Thepeaksfor

T2Nap5Scamebetween3and6minwhilethoseforT2Nap20Scamelargelybetween4

and 7 min. Because more sulfonated species have longer migration times under the

conditions of the experiment, this observation indicates that T2Nap20S is more

sulfonatedthanT2Nap5S,asexpected.

Figure 2.25 comparesthethreesulfonationlevelsofT2NapS,Cu.T2Nap5S,Cu and T2Nap10S,Cu have very similar electropherograms, with large peaks at approximately3.5and4min.T2Nap20S,Cushowssomematerialatthesetimes,buthas aconsiderableamountofmaterialwithlongermigrationtimes(5to7min),indicating higherlevelsofsulfonation.Comparingtheelectropherogram of free base T2Nap20S 133

(Figure 2.24B) withthatT2Nap20S,Cu (Figure 2.25) showsthattheadditionofametal to the central core affects the detailed pattern of the peaks; the net migration times, however,aresimilar.CapillaryelectrophoresisoftheT2NapS,Fespeciesdidnotgive goodseparationevenwithcyclodextrins,presumablyduetotheaxialligationoftheiron

(variousaxialligandsinexchangeaswellastheequilibriumbetweenthemonomerand

oxo dimer) (Hambright, 2000). A previous study on the optical spectroscopy of a sulfonatednaphthylporphyrinwasinterpretedinterms of selfstacking of this species

(Silver&Taies,1988).

TheelectropherogramsoftheT1NapSspecieswereingeneralsimilartothatof theT2NapS.Forexample,theelectropherogramofT1Nap5S,Cuinthepresenceofγ cyclodextrin (not shown) was very similar to that of T2Nap5S,Cu (Figure 2.23B) .

However,unlikethe2naphthylT2Nap5S,Cu,the1naphthylT1Nap5S,Cushowedthree distinctpeaksevenintheabsenceofcyclodextrin.Thismaybeduetolessselfstacking ofthe1naphthylporphyrinresultingfromatropisomersduetohinderedrotationaround the1naphthylporphinebond.Asforthe2naphthylisomers,βcyclodextrinseemedto showmorecomponents,butwithoutbaselineseparation.Theextentofsulfonationwas greaterinT1Nap10SthaninT1Nap5Sasshownbyanadditionalpeakat7mininthe formerproduct.

c. Mass spectrometry. c. 1. Effect of central metal ion . As reported previously, the negative ion MALDI

(CHCAmatrix)ofT2Nap5Sshowedaverysimple,clearpatternforthetetrasulfonicacid 134

(1134,M )anditsmono,diandtrisodiumsalts(Dixonetal.,2004).Thepentasulfonic

acid(1214,M )anditsmono,di,tri,andtetrasodiumsaltswerealsoseen.Verysmall peaksconsistentwithsodiumsaltsofthehexasulfonic acid were seen as well. In the highermassregion,homodimersofthetetrasulfonicacidandpentasulfonicacid,aswell asaheterodimerofthetetrasulfonicacidandpentasulfonicacidwereseen.

Thecopperchelateofthemoleculegaveaverydifferentmassspectralpattern.

T2Nap5S,Cushowedalargepeakforthetetrasulfonicacidat1195,butessentiallyno peaksattributabletothesodiumsaltsofthisspecies (Figure 2.26) .Asmallerpeakat

1275 was attributable to the pentasulfonic acid. Peaks attributable to the homo and

heterodimersofthetetraandpentasulfonicacidswereseen.Additionallargepeakswere

observedat1257and1337.Thesehavethemasscorrespondingtolossofwaterfrom pentasulfonic acid and hexasulfonic acid, respectively. The (parent)/(parent water)

ratioswereapproximately85,0.5and0.05forthetetrasulfonicacid,pentasulfonicacid

and hexasulfonic acid, respectively. In the Fe series, T2Nap5S,Fe showed a MALDI

spectrumverysimilartothatofthefreebase,i.e.,withtheparentionanditsmono,di

andtrisodiumsalts,butwithoutsignificantpeaksduetolossofwater.

The negative ion MALDI of T1Nap5S,Cu showed a clean pattern for the

tetrasulfonicacidanditsmono,diandtrisodiumsalts.Themonoanddisodiumsalts

of pentasulfonic acid – H 2O and small peaks appropriate for the same salts of hexasulfonic acid – H 2O were also observed. T1Nap5S showed peaks for the tetrasulfonicacidanditssodiumsalts,aswellasthoseforthedimersandtrimers.

135

c. 2. Effect of extent of sulfonation .IntheCuseries,theT2Nap5S,Cushowedpeaks

appropriateforthetetra,pentaandhexasulfonicacidsortheirlossofwater(M–H 2O) peaks. T2Nap10S,Cu was quite similar, consistent with the very similar

electropherogramsofthesemixtures.T2Nap20S,Cushowed peaks appropriate for the penta,hexa,heptaandoctasulfonicacidsortheirlossofwaterpeaks (Figure 2.27) .

Forthepentasulfonicacid,onlytheparentpeak(M),andnotthatforlossofwater(M–

H2O),wasobserved,whilefortheoctasulfonicacid,onlythepeakforlossofwater(M–

H2O), and not the parent (M), was observed. The (parent)/(parent H 2O) ratios were approximately5and0.2forthehexaandheptasulfonicacid,respectively.Waterloss wasnotobservedintheMALDIspectraofeitherthefreebaseorironporphyrins.

To establish whether water loss had occurred during copper insertion or was occurringinthegasphase,welookedatthenegativeionelectrosprayionization(ESI) spectrumofT2Nap5S,Cu.TheESIspectrumitselfshowed peaks for the tetrasulfonic acid(butnottetrasulfonicacid–H 2O),thepentasulfonicacidandpentasulfonicacid–

H2O, and both the hexa and heptasulfonic acids – H 2O (but no significant peaks

corresponding to the molecular ion of these species). The MS/MS spectrum of the pentasulfonic acid of T2Nap5S,Cu is shown in Figure 2.28 . A clear pattern of

fragmentationcanbeseen.Theparentcompound(1274,M )losesSO 2(64)andSO 3 (80)

togivepeaksat1210and1194,respectively.ThesespeciescaneachloseeitherSO 2 or

SO 3 againtogivespeciesassignedas(M 2SO 2), (M SO 2 SO 3)and(M 2SO 3)at

1146,1130and1114,respectively.ThepatterncontinuesdownthroughlossofSO 2 from 136

the monosulfonic acid. A very similar pattern was seen for the fragmentation of the

tetrasulfonicacidofT2Nap5S,Cu.Lossofwaterinthegasphasewasnotseeninthese

experiments,indicatingthattheM–18peaksareprobablyduetoproductsformedduring

copperinsertion.AnexperimentinwhichT2NapSwasallowedtostirwithcopperoxide

for3,6,and22hshowedsignificantwaterlossforthemorehighlysulfonatedspecies, butdidnotshowincreasingwaterlosswithincreasingcopperoxidecontacttime.

d. Inhibition of viral infection . TomeasuretheinhibitionofHIV1bythecompounds

we used human epithelial HeLaCD4CCR5 cells stably transfected with a plasmid

containing the HIV1 LTR fused to the βgalactosidase gene. This indicator cell line

allowsrapidquantificationofinfectiousHIV1,includingprimaryisolates(Chackerianet

al.,1997). Figure 2.29 showsthatmostcompoundsgavesimilarlevelsofinhibitionof

the virus for HIV1 IIIB. In general,thesecompoundsinactivated80–95%of viral

infectivity at a final compound concentration of 5 g/mL. Little effect of the central

metalwasobserved. ForT2NapSandT2NapS,Fe,themosthighlysulfonatedproduct

hadtheleastactivity.Nodependenceoftheactivityonthedegreeofsulfonationwas

observedforT1NapSoritscopperorironchelates,orforT2NapS,Cu.Inpreviouswork,

weobservedthatviralinhibitionbyTNapSwasveryrapid,beingessentiallycomplete

within two minutes (Vzorov et al., 2002). We have also shown that, for some of the

sulfonated porphyrins, HIV1 remains inactivated after the removal of the compound

(Vzorovetal.,2002). 137

Todeterminetheeffectiveconcentrationofsomeoftheporphyrins,virussamples

weremixedwiththecompoundsatvaryingconcentrations.EC 50 valuesforHIV1IIIB

werelowerthanthosefortheprimaryisolateHIV1JRFL (Table 2.5) .

CellviabilitiesweredeterminedusinganMTTassaywiththehumanendometrial adenocarcinomacelllineHEC1BorMAGICCR5cells.Thecompoundsexhibitedlow toxicityinbothcelllines.CC 50 valuesforMAGICCR5cellsrangedfrom415to1000

g/ml (Table 2.5) . Therapeutic indices for HIV1 IIIB varied from 86 to 925, with

T1Nap20S,Cuhavingthehighestindex.Thecompoundshadlowertherapeuticindices withHIV1JRFL,varyingfrom32to132.

Discussion a. Extent of sulfonation. Theextentofsulfonationwasexpectedtoincreaseasthetime ofsulfonationincreased,aswasgenerallyobservedtobethecase.Ingeneral,thelonger thesulfonationtime,thelongertheaveragecapillaryelectrophoresismigrationtime.For example,theelectropherogramsoftheT2NapS,Cuseries were consistent with species withnetchargesof4,5and6fromthe5hsulfonationandspecieswithnetchargesof

5 and higher from the 20 h sulfonation. The MALDI mass spectra also generally showedhigherlevelsofsulfonationwithlongersulfonationtimes.Thedataindicatethat asignificantfractionoftheporphyrinshaveoneormorenaphthylringswithmorethan onesulfonicacid.

Additionofmorethanonesulfonicacidgrouppernaphthylringisexpectedtobe facile.WorkofCerfontainandcolleagueshasshownthatthemodelcompound1,1’ 138

binaphthalene sulfonates initially at the 4position, followed by sulfonation at the 4’ position,andthenwithalmostequalfacilityatthe6or7position.Sixequivalentsof

o SO 3 (inCH 2Cl 2at22 C,40min)givesonlyabout10%ofthespecieswithonesulfonic

acidoneachring;alltherestofthematerialhastwosulfonicacidsonatleastonering

(Cerfontain et al., 1994a). 2,2'Binaphthalene sulfonates initially at the 8position,

followed by sulfonation at the 8’position (Cerfontain et al., 1994a). The subsequent

sulfonicacidsareaddedatthe6or4positions.SixequivalentsofSO 3 (inCH 2Cl 2at22 oC,40min)giveonly9%ofspecieswithonlyonesulfonicacidoneachring.Asforthe

1naphthylsystem,additionofmorethanonesulfonicacidtothenaphthylringisfacile.

Thepositionalisomersuponsulfonationwithsulfuricacidareexpectedtobeverysimilar

tothoseobtainedwithsulfonationwithSO 3 inCH 2Cl 2 (Cerfontainetal.,1982).Neither

naphthylsystemsulfonatestogivesulfonicacidsadjacenttooneanotherineitherthe

ortho or peri positions.

b. Loss of water .SignificantpeakswereseenforlossofwaterinanumberofMALDI massspectraofthecopperchelatesforboththeT1NapandT2Napstructures,butnotfor thefreebases,orfortheironchelates.Lossofwaterforthecopperchelateswasalso observedintheESImassspectrum.However,nolossofwaterwasobservedintheESI

MS/MS experiment, indicating that water loss was probably not occurring in the gas phase.Thesedataareconsistentwithwaterlossoccurringduringcopperinsertion(using copperoxide).RochaGonsalvesandcolleagueshavenoteddegradationofsulfonated 139

porphyrinsuponcopperinsertionwhentheporphyrinwasleftincontactwiththecopper

forextendedperiods(RochaGonsalvesetal.,1996).

Lossofwatercouldbearesultofeithersulfoneorsulfonicanhydrideformation.

Forthenaphthylporphyrins,molecularmodelingshowsthatsulfonesbridgingthe7,7’ positionsinthe1naphthylseriesorthe4,8’or8,8’positionsinthe2naphthylseriescan be formed without substantial deformation of the porphyrin central core. It is also possible that an anhydride might be formed from two sulfonic acids. Sulfonic acid

anhydrides are quite sensitive to water, however, generally hydrolyzing rapidly in the

absenceofstericcompression(Cerfontainetal.,1997);Christensenhasmeasuredahalf

lifeoflessthan10secondsatroomtemperature(Christensen,1966).Becausethecopper

insertion was performed in water, it is likely that the products are the sulfones. As

outlinedabove,theextentoflossofwaterincreasedwiththelevelofsulfonationinthe

T2Nap,Cuseries.Thismayindicatethatsulfoneformationismorefacileforthemore

highlysulfonatedspecies,asmightbeexpectedbothbecausetherearemoresulfonicacid

groupsinappropriatepositionsforsulfoneformationandbecausesulfoneformationwill

minimizeelectrostaticrepulsioninmorehighlysulfonatedderivatives.

c. CE separation .Inthecurrentstudy,someseparationofthecomponentsofthe1

naphthylmixturewasachievedwithouttheadditionofcyclodextrins.Thismayreflect

the conformations of the 1naphthyl groups, which extend above and beneath the porphyrin plane, reducing selfstacking. Previous work has shown that selfstacking

reducestheCEseparationoftetrapyrroles(Dixonetal.,2004).Inthe2naphthylseries, 140

separation was aided significantly by the addition of cyclodextrins; β and γ

cyclodextrinsgavequitedifferentpatterns.Theelectropherogram of T2NapS (Figure

2.24) shows a multiplicity of peaks, indicating molecules with different numbers of

sulfonicacidsaswellasdifferentpositionsofthe sulfonic acids. Cyclodextrins have beenshowntobeeffectiveinseparatingthepositionalisomersofnaphthalenesulfonic

acids(Alonsoetal.,1999;Fischeretal.,2003;Chen&Ding,2004).Someofthepeaks

may also be due to atropisomers; separation of atropisomers using a cyclodextrin has beenobservedpreviouslyinadifferentsystem(Zerbinati&Trotta,2003).

d. Antiviral activity . Small polyanionic molecules have been shown to inhibit HIV

replicationbypreventingvirusattachment(adsorption)tothesurfaceofthehostcell(De

Clercq,2002).Theviralentryprocessinvolvestheinteractionofgp120withtheprimary

cellularreceptor,CD4(Dalgleishetal.,1984).Suchbindingresultsinaconformational

changeingp120(Sattentau&Moore,1991)whichinturnenablesgp120tointeractwith

acoreceptor,generallyeitherCCR5orCXCR4. Studieshaveshownthatchangesinthe

conformation of the V3 loop of gp120 may lead to the inhibition of virus entry into

susceptiblecells(Trujilloetal.,2000;Cormier&Dragic,2002;Dettinetal.,2003).The

interactionofpolyanionicsubstanceswithHIVcanbe consideredspecific,asrepeated passageinthepresenceofpolyanionscanleadtoresistancemediatedbymutationsinthe

envelopeglycoproteingp120,particularlyintheV3loop(Esteetal.,1997;Cabreraetal.,

1999). 141

Anumberofstudieshaveindicatedthatnegatively charged porphyrins can

inhibitHIVviainteractionwiththeV3loopofgp120(Debnathetal.,1994;Debnathet

al.,1999;Neurathetal.,1995;Neurathetal.,1992;Neurathetal.,1991;Songetal.,

1997;Dairouetal.,2004).Thesulfonatednaphthylporphyrinspresumablyalsointeract

withthetheV3loop,whichisrichinarginineand lysine residues. In doing so, the polyanions could shield the V3 loop and therefore interfere with binding of the HIV

virionstocellsurfacecomponents(Gallaheretal.,1995).Recentworkonsulfonated phthalocyanineshasshownnocorrelationofantiHIVactivityandinhibitionofgp120

CD4binding,however,indicatingthatthemechanismofinhibitionofthesecompounds

mayinvolveinhibitionofbindingtothecoreceptor,orthatsomeothermechanismof blocking of HIV infection is operative (Vzorov et al., 2003). The present results

demonstratethattheantiHIVactivityofthesulfonatednaphthylporphyrinsisrelatively

independent of the degree of sulfonation and the nature of the central metal atom,

indicatingthatarangeofstructuresmaybeeffectiveforviralinhibition.

Acknowledgments

ThisstudywassupportedbyNIHgrantAI45883.The authors thank Dahnide

Taylorforassistancewiththebiologicalassays,Dr.SimingWangandMs.SarahShealy

forthemassspectraandDr.PeterHambrightforusefuldiscussions.

ThemanuscriptwascompiledbyDr.D.W.Dixon.AnilaF.GillrecordedtheUV visspectraandcapillaryelectrophoresisdataandinterpretedthemassspectrometrydata.

Dr.LingamalluGiribabusynthesizedthecompounds.Dr.RichardW.Compansdirected 142

the bilogical studies at Emory University and Andrei N Vzorov performed those experimentsandprovidedthedata.AtiaB.Alamprovidedboththetechnicalandrecord keepingassistance.

143

Comments

active, probably probably active, not toxic active, not very not probably toxic active, somewhat toxic toxic active, 93 89 90 20 Tox. (MTT)

4 39 38 29 cells)

Tox. (growing

vesofTPPS. 88 64 20 12 cells Tox. (trypan blue)% blue)% viable 4 39 38 20

Min. toxicity 0 0 3 40 HIV remaining % infected% (DD720) (DD755) (DD713) (DD746)

Abbreviation TPP(2,4-F2)S,Cu TPP(2,3-F2)S,Cu TPP(2,5-F2)S,Cu TPP(3,5-F2)S,Cu Table.2.1.Biologicaldataforthedifluoro derivati FromthelaboratoryofDr.Compans. 144

2 es - - ps. 4S, 5S 4S, 4S, 5S 4S, species species 4S, 5S, 6S 5S, 4S, losing SO losing Sulfonated F

* por 3,5 - *

5S 4S, 4S 3S, 4S 3S, (traces) species species 2S, 3S, 4S 3S, 2S, F Sulfonated water losing F

*

for (traces) (traces) species por MS peaks 4S, 5S, 6S 5S, 4S, 5S 4S, 3S, 4S 3S, 2S, 4S 3S, 2S, 4S 3S, 2S, sulfonated (traces), 1S

* F

(nm) max max λ λ λλ 416 and 449 nm 449 and 416 nm 421 nm 419 nm ~ 440 F Notattempted nm 409 nm 444 and 414 nm 420 nm 410 nm 414 por F CD - CD 2,4 2,5 β β ββ ndmassspectrometrydataforthedifluoroderivativ times * buffer + 1 buffer + migration mM sulfonicacid groups,asdirectedbythefluorogrou 4.7 min 4.7 min 6.1 Not attempted Not 5.1 min 5.1 min 6.2 min 7.4 4 unresolved unresolved 4 peaks, - 4.0 min 10 min 4.3 min 5.1 min 6.3

F F 3 (nm)

por 2, max λ λ λλ * * 412 – 412 nm 416 nm 409 nm 443 and 414 nm 419 nm 409 nm 414 the6.5 peak at only 414 both minhad nm 450 nmand other the bands; nm 420 peaks~ ~ 440 nm 440 ~

F * times 10 mM 10 buffer-

migration phosphate 5.0 min 5.0 min 6.1 4 unresolved 4 unresolved peaks, - 7.3 min 7.6 min 5.2 min 6.4 min 7.7 Several unresolved peaks, - 6.0 min 9.0 3 unresolved peaks, - 5.0 min 10

por 2,6 *

F (DD720) (DD194) (DD755) (DD746) (DD713) Compounds TPP(2,4-F2)S,Cu TPP(2,6-F2)S,Cu TPP(2,3-F2)S,Cu TPP(3,5-F2)S,Cu TPP(2,5-F2)S,Cu ofTPPS4.Theasterisksindicatetheplacementof Table2.2.Summaryofthecapillaryelectrophoresisa 145

max (nm) max λ λ λλ

416 – 416 nm 417 – 419 nm 423 nm 415 – 415 nm 419 CD β β ββ - migrationtimes buffer1 + mM 5 - only with peaks 6

slight resolution, slight 3.5 -min 7.5 moderately peaks 9 ~ 4.5 - resolved, min 9.5 min 3 min 3.5 unresolved Several 10 5 b/w and peaks peak a board and min min at 16 ivativesofTPPS4. (nm) max λ λ λλ

413 413 -nm 417 418 -nm 423 a with nm 415 of hint slight nm 450 412 -nm 414 10mMphosphate buffer 4 -min 6 (pH 9.0) (pH - migrationtimes several unresolved peaks, unresolved several - 5.5 andpeaks, short 2 8 min components, unresolved 4- min 7 components, unresolved 7 4min and A few unresolved peaks peaks A unresolved few of several peak A broad of several peak A broad

(DD709) (DD774) (DD707) (DD710) TPP(4-Br)S Compounds

TPP(2-Br)S,Cu TPP(3-Br)S,Cu TPP(4-Br)S,Cu Table2.3.SummaryoftheCEdataforthebromoder 146

Table2.4.SummaryofthenegativeionMALDIdataf orthebromoderivativesofTPPS4. TPP(4-Br)S (DD709) (M) 2S 3S 4S 5S Na adducts 0, 1, 2 0, 1, 2 0, 1, 2, 3 TPP(2-Br)S,Cu (DD774) Na adducts 0, 1, 2, 3 0, 1, 2, 3, 4, 5 TPP(4-Br)S,Cu (DD710) Na adducts 0, 1, 2 0, 1, 2, 3 0, 1, 2 M=molecularionpeakortheparentsulfonatedspeciespeak 147

Table2.5.EC 50 andCC 50 forselectedsulfonatedmetalloporphyrins.Datafromthe laboratoryofDr.Compans. Compound Inactivation Inactivation CC 50 Therapeutic Therapeutic HIV1IIIB HIV1JRFL (g/ml) a index index b EC 50 (g/ml) EC 50 (g/ml) (HIV1IIIB) (HIV1JR FL) b T1Nap20S,Cu 1 7 925 925 132 T2Nap20S,Cu 2 12 500 250 42 T1Nap10S,Fe 2 13 415 208 32 T2Nap10S,Fe 10 14 860 86 61 aResultsobtainedbyMTTassayusingMAGICCR5cells b ThetherapeuticindexvaluewasdefinedastheCC 50 /EC 50

148

SO3H N HN N HN N N HO3S M SO3H NH N NH N N N

SO3H Figure2.1a.Structureofporphin(left),tetraphenylporphyrin(TPyP4)(center), andtetrasulfonatedtetraphenylporphyrin(TPPS4)(right). SO3H SO3H NH N NH N HO3S SO3H HO3S SO3H N HN N HN SO3H SO3H Figure2.1b.Structureofnaphthylporphyrin(TNapPS)(left)andanthracyl porphyrin(TAnthPS)(right). 149

3 3.0 (b) pH 9.0 (a) H 2O 2 2.0

1 1.0 absorbance

0 0.0 300 350 400 450 500 550 600 650 700 750 800 300 350 400 450 500 550 600 650 700 750 800

3.0 (c) pH 2.5

2.0 1.0 0.0 300 350 400 450 500 550 600 650 700 750 800 wavelength (nm) Figure2.2.UVvisspectraofTPPS4.Intheordero fdecreasingconcentration,the dilutionfactorsare301,1001and3001ofthestock solution(~10 3Mbyweight). 150

2.0

1.5 5 4 1.0 3 2 absorbance 1 0.5 0.0 300 350 400 450 500 550 600 650 700 wavelength (nm) Figure2.3.UVvisspectraofCuTPPS4inwater.In the orderofdecreasingconcentration,thedilutionfac torsare 26,39,51,101and752ofthestocksolution(~10 4Mby weight). 151

2.0 7 (a) H 2O 6 1.5 5 4 1.0 3 2

absorbance 1 0.5 0.0 300 400 500 600 700 800 2.0 8 (b) pH 2.5 7 1.5 6 5 4 1.0 3 absorbance 2 0.5 1 0.0 300 400 500 600 700 800 wavelength (nm) Figure2.4.UVvisspectraofTPPS3inwater:(a)I ntheorderof decreasingconcentration,thedilutionfactorsare 17,25,33,50,100,200 4 and1000ofthestocksolution(10 Mbyweight).(b)Intheorderof decreasingconcentration,thedilutionfactorsare 17,20,25,33,50,100, 4 200and500ofthestocksolution(10 Mbyweight). 152

10.0 CuTPPS4 9.5 MnTPPS4 9.0 AgTPPS4 8.5 CoTPPS4 8.0 7.5 7.0 absorbance (mAU) absorbance 6.5 6.0 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 time (min) Figure2.5.Capillaryelectrophoresisseparationof metalloderivativesof TPPS4.Separationconditions:10mMKH 2PO 4buffer,pH9.0,30kV, 412nm. 153

12 8 10 (a) 10 mM KH 2PO 4 7 (b) 50 mM Na 2HPO 4

pH 9.0, 420 nm 6 pH 2.5, 444 nm 8 5 6 4 4 3 2 2

absorbance (mAU) absorbance 0 1 0 5 10 15 20 25 30 0 5 10 15 20 25 30 time (min) Figure2.6.CapillaryelectropherogramsofTNapPS. 3.0 2.0 (b) pH 2.5 (a) H 2O 1.5 2.0 5 5 4 1.0 4 3 3 1.0 2 2 absorbance 0.5 1 1 0.0 0.0 200 300 400 500 600 700 800 200 300 400 500 600 700 800 wavelength (nm) Figure2.7.UVvisspectraofTNapPS.Intheorder ofdecreasing concentration,thedilutionfactorswere101,151, 216,301and752of 3 thestocksolution(~10 M). 154

11 5.0 (b) 50 mM Na HPO 9 (a) 10 mM KH 2PO 4 2 4 pH 2.5, 434 nm pH 9.0, 435 nm 4.0 7

5 3.0

3 absorbance (mAU) absorbance 1 2.0 2 4 6 8 10 12 14 2 3 4 5 6 7 8 9 10 time (min) Figure2.8.CapillaryelectropherogramsofTAnthPS.

3

2 5 4

1 3 absorbance 2 1 0 200 300 400 500 600 700 800 wavelength (nm)

Figure2.9.UVvisspectraofTAnthPSinpH2.5buffer.Intheorderof decreasingconcentration,thedilutionfactorswere101,151,216,301and 752ofthestocksolution(~10 3M). 155

1

H H 3 3 F F SO SO F F H H 3 3 F F F SO N N SO N N F F F Cu Cu S N N N S N 3 3 F

F HO HO F F ofTPPS4. S TPPS(2,4-F)S,Cu (DD720) 3 S F 3 F H TPPS(2,3-F)S,Cu(DD755) 3 HO

HO SO F

F H 3 F F SO N HN N S NH 3 F F HO F F

(DD194) TPPS(2,6-F)S H 3 H S 3 3 SO SO F HO F F F H H 3 3 F F F F SO N N SO N N Cu Cu N S N S N N 3 3 F F F F Figure2.10.Structuresofthedifluoroderivatives HO HO

F F F F S S TPPS(2,5-F)S,Cu (DD713) TPPS(2,5-F)S,Cu 3 3

TPPS(3,5-F)S,Cu (DD746) HO HO

156

______ ~ 410 nm ~ 410 (DD755) (DD720) λ ~ 415, 445 nm 415, 445 ~ λ TPPS(2,3-F)S,Cu TPPS(2,4-F)S,Cu

ifluoroderivativesofTPPS4invarious 200 300 400 500 600 700 200 300 400 500 600 700 1.0 0.8 0.5 0.3 0.0 0.6 0.5 0.4 0.3 0.2 0.1 0.0 ..;bufferpH7.1:;bufferpH9.0:

wavelength (nm) wavelength

~ 445 nm ~445 (DD713) (DD746) λ ~ 420, 450 nm 450 ~ 420, ;1mMEDTA:……… λ TPPS(2,5-F)S,Cu TPPS(3,5-F)S,Cu

______ O: 2

solvents.H Figure2.11.UVvisspectraoftheCuchelatesofd 200 300 400 500 600 700 200 300 400 500 600 700 0

0.30 0.25 0.20 0.15 0.10 0.05 0.00 0.07 0.06 0.05 0.04 0.03 0.02 0.01 absorbance

157

0.6 H2O (419, 450 0.5 nm) DMSO (424, 455 0.4 nm) 50% methanol 0.3 (417, 449 nm) 50 mM buffer, pH

absorbance 0.2 3.5 (421, 450 nm)

0.1

0 200 300 400 500 600 700 wavelength (nm) Figure2.12a.UVvisSpectraofTPP(2,5F2)S,Cu(DD713) invarioussolventstocheckforaggregation.

1.0 420/450 = 0.8256 420/450 = 0.8189 0.8 420/450 = 0.8177 420/450 = 0.8179 0.6 420/450 = 0.8212

absorbance 420/450 = 0.8227 0.4 420/450 = 0.8549

0.2

0.0 200 300 400 500 600 700 wavelength (nm) Figure2.12b.UVvisSpectraofvariousdilutionsof

158

N N M N N

S O O (a) N N N N M M N N N N C NR O

(b)

Figure2.13.Formationofcyclicstructuresintetraphenylporphyrins.(a)the proposedcyclicsulfonering,(b)cyclicketoneandamineringsin tetrapyrrolesreportedinliterature.

159

F * F

groups. por 3,5 2,5F)S,Cu F * F

F F F N N * 2

Cu 5 por N N willbeplaced,directedbythe F F

S * O F O F

F F por F ofsulfonicacidgroups,asdirectedbythefluoro 2,4 2,5 * mationofsulfonering,shownhereincaseofTPPS( F

F F F 3 por 2, para*5 F F positionsindicatewherethesulfonicacidgroup(s) * * ortho*2 N N 2 para Cu 5 ortho*5 N and N F F F * ortho*5 ortho F por para*2 2,6 * Table.2.14b.Theasterisksindicatetheplacement F F (DD713).The Figure2.14a.Lossofwatercouldresultinthefor fluorogroups.

160

CD,pH9.0,30kV. β TPPS(2,3-F)S,Cu (DD755) fluoroderivativesofTPPS4.

TPPS(2,4-F)S,Cu(DD720)

2.5 4.5 6.5 8.5 10.5 12.5 14.5 8 6 4 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16 14 12 10 8 6 4 20 18 16 14 12 10 buffer+1mM 4 PO

2 time (min)

TPPS(3,5-F)S,Cu TPPS(3,5-F)S,Cu (DD746) TPPS(2,5-F)S,Cu(DD713)

Figure2.15.Capillaryelectrophoresisseparationof Separationconditions:10mMKH 2.5 4.5 6.5 8.5 10.5 12.5 14.5 9 8 7 6 5 4 2.5 4.5 6.5 8.5 10.5 12.5 14.5

12 11 10 9 8 7 6 5 4

13 12 11 10 (mAU) absorbance

161

1328  )isdueto  

 

  ,1139)andpentasulfonic  

 )isduetolossof18Dafrom   

  1090 1149 1209 1268  ,1059),tetra(  ,1219)andtheirsodiumadductsareseen.  

1030 0 60 80 40 20 100 lossofwaterfrompentasulfonicacid. Figure2.16b.NegativeionMALDImassspectrum ofTPP(2,3F2)S,Cu(DD755).Peakscorresponding totri( Thepeakat1120( acid( tetrasulfonicacid.Thepeakat1201( mass (m/z) 1219 0

 

   )isdueto ,1059)and 

    

 ,979),tri(  

,1139)andtheirsodium 

957 1044 1132 0

,899),di( 40 20 60 80

100

% intensity % intensity % 

)isduetolossofwaterfromtetrasulfonicacid.  Figure2.16a.NegativeionMALDImassspectrum ofTPP(3,5F2)S,Cu(DD746).Peakscorresponding tomono( tetrasulfonicacid( adductsareseen.Thepeakat1040( lossof18Dafromtrisulfonicacid.Thepeakat112 (

162

. 20 1239    )isdueto 

   ,1059)and

   )is duetolossofwater      ,979),tri( )isduetolossof18Dafrom ,1139)andtheirsodiumadducts     

937 1038 1138 

 ,899),di(  837 0 )isduetolossoffwaterfromtetrasulfonicacid 80 60 40 20 100  lossofwaterfromtrisulfonicacid.Thepeakat11 ( fromdisulfonicacid.Thepeakat1040( Thepeakat1201( tetrasulfonicacid( areseen.Thepeaksat960( Figure2.17b.NegativeionMALDImassspectrumof TPP(2,4F2)S,Cu(DD720).Peakscorrespondingto mono( pentasulfonicacid. mass (m/z) )   ( akat ,1139) 

      

     

976 1072 1169 1265  )isduetolossofwaterfrom

 ,1059)andtetrasulfonicacid(  879

0

20 60 80

40 100 % intensity % % intensity % )isduetolossof18Dafromtrisulfonicacid.

 ,979),tri(  andtheirsodiumadductsareseen.Thepeakat960 Figure2.17a.NegativeionMALDImassspectrumof TPP(2,5F2)S,Cu(DD713).Peakscorrespondingtodi ( is duetolossofwaterfromdisulfonicacid.Thepe 1040( Thepeakat1120( tetrasulfonicacid. 163

7, 1328 from

2 

 fromtetrasulfonic  2

  ,1139)andpentasulfonicacid     ) areduetolossofSO

  1090 1149 1209 1268

 ) areduetolossofSO   ,1059),tetra(

 ,1219)areseen.Thepeaksat1075,1097,1119and 1030  acidanditssodiumadducts.Thepeaksat1155,117 1199and1221( Figure2.18b.NegativeionMALDImassspectrumof TPP(2,3F2)S,Cu(DD755).Peakscorrespondingto tri( 1141( ( pentasulfonicacidanditssodiumadducts. 0 60 80 40 20 100 1239

mass (m/z)   ) are

  ,979),tri    )aredueto ,1139)are     fromsodium

2  ,899),di(     fromsodiumadductsof 2 937 1038 1138

fromsodiumadductsoftrisulfonic  2 ) areduetolossofSO 837



,1059)andtetrasulfonicacid( 0

80 60 40 20 % intensity % % intensity %  100 duetolossofSO adductsofpentasulfonicacid. seen.Thepeaksat1017and1039( tetrasulfonicacid.Thepeaksat1177,1199and 1221( acid.Thepeaksat1097,1119and1141( Figure2.18a.NegativeionMALDImassspectrum ofTPP(2,4F2)S,Cu(DD720).Peaks correspondingtomono( lossofSO (

164

TPPS(4-Br)S (DD709) TPPS(4-Br)S,Cu (DD710)

Br Br SO3H SO3H

NH N N N HO S HO S 3 3 Cu Br Br Br Br SO H SO H N HN 3 N N 3

SO3H SO3H Br Br

TPPS(3-Br)S,Cu (DD707) TPP(2-Br)S,Cu (DD774)

Br SO3H SO3H Br

Br Br N N N N HO3S HO3S Cu Cu SO H SO H N N 3 N N 3 Br Br

Br

Br SO3H SO3H

Figure2.19.StructuresofbromoderivativesofTPPS4.

165

CD. β

ivativesof TPPS4. TPPS(4-Br)S,Cu (DD710) TPPS(3-Br)S,Cu (DD707) 2.5 4.5 6.5 8.5 10.5 12.5 14.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 5 0 35 30 25 20 15 10 ,pH9.0bufferwith1mM 5 0 25 20 15 10 4 PO

2 time (min)

TPPS(4-Br)S (DD709) TPP(2-Br)S.Cu (DD774) Figure2.20.Capillaryelectropherogramsofbromoder Separationconditions:10mMKH

2.5 4.5 6.5 8.5 10.5 12.5 14.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5

5 0

8 7 6 5 4 3 2 1 0 30 25 20 15 10 (mAU) absorbance

166

TPPS4inwater.

TPPS(3-Br)S,Cu(DD707) TPPS(4-Br)S,Cu (DD710) TPPS(4-Br)S,Cu(DD710) ~ 415 nm (195, 300, 540 nm) 540 300, ~415 nm (195, λ ~ 415 nm (195, 300, hints of 450, 540 nm) 540 450, hints of300, ~ 415(195, nm 200 300 400 500 600 700 200 300 400 500 600 700 0.6 0.5 0.4 0.3 0.2 0.1 0.0 λ 0.6 0.5 0.4 0.3 0.2 0.1 0.0

wavelength (nm) wavelength

Figure2.21.UVvisspectraofbromoderivativesof TPPS(4-Br)S (DD709) TPP(2-Br)S.Cu (DD774) ~ 419 (~ 310, 270, 540 nm) 540 310, 270, (~ ~ 419 ~ 415 nm (270, 515, 550 nm) 515,550 415 nm ~ (270, λ λ 200 250 300 350 400 450 500 550 600 650 700 200 300 400 500 600 700

0 0.6 0.5 0.4 0.3 0.2 0.1 0.0

0.6 0.5 0.4 0.3 0.2 0.1 absorbance

167

Figure2.22.Structuresofsulfonated1naphthyl(T1NapS,left)and2naphthyl (T2NapS,right)porphyrins.Tetrasulfonatedporphyrinswithonesulfonicacidon eachsidechainareshown.MisCu,Feor2H. 168

Figure2.23.CEseparationofT2Nap5S,CuinpH9.0,10mMKH 2PO 4buffer.A: with1mMβcyclodextrin;B:with1mMγcyclodextrin. 169

Figure2.24.CEofT2NapSmadebysulfonationfor5h(A,T2Nap5S)and20h (B,T2Nap20S)(pH9.0,10mMKH 2PO 4buffer,1mMγcyclodextrin). 170

Figure2.25.CEofT2NapS,Cu(pH9.0,10mMKH 2PO 4buffer,1mMγ cyclodextrin).Sulfonationfor5h(..),10h()and20h(_____). 171

Figure2.26.NegativeionMALDImassspectrumofT2Nap5S,Cu.Peaks correspondingtothetetrasulfonicacid(▼,1195)andpentasulfonicacid(▲, 1275)areseen.Thepeaksat1257and1337areattributedtothesulfones(lossof water)frompentasulfonicacid(▲)andhexasulfonicacid(■),respectively. 172

Figure2.27.NegativeionMALDImassspectrumofT2Nap20S,Cushowed peaksappropriateforthepentasulfonicacid(▲);thehexa(■)andheptasulfonic acids(♦)andtheirMH 2Opeaks;andtheMH 2Opeakcorrespondingtothe octasulfonicacid(●).Sodiumsaltsofsomeofthesulfonicacidspeciesarealso seen. 173

Figure2.28.NegativeionESIMS/MSofthepentasulfonicacidpeak(▲) at1274ofT2Nap5S,Cu.Thepeakat1210isattributedtolossofSO2(◊). SuccessivelossesofnSO 3(□)and[SO 2+(n1)SO 3](○)canbeseen (n=24).PeaksarealsoseenforlossesoftwoSO 2andeitheroneortwo SO 3. 174

Figure2.29.ActivityofsulfonatednaphthylporphyrinsagainstHIV1IIIB.Compounds ataconcentrationof50 g/mlwereincubatedwithHIV1IIIBinthedarkfor1h;the compound/virusmixturewasdiluted10foldandusedtoinoculateMAGICCR5cells. HIVinfectivitywasmeasuredafterthreedaysbyremovalofthemedia,fixationand stainingwithXgal.TheactivityagainstHIVwasmeasuredbydividingthenumberof infected,βgalexpressingcellsinwellsinfectedwithcompoundtreatedvirusbythe numberinwellsinfectedwithuntreatedvirus.Dataareplottedasthemeanofoneortwo experiments,eachwiththreeorfourreplications.Errorbarsrepresentstandard deviations.Thenaphthylporphyrinsweresulfonatedfor5and10hours(T1Nap)and5, 10and20hours(T2Nap).DatafromthelaboratoryofDr.Compans.

175

References

Abraham,R.J.,Hawkes,G.H.,Hudson,M.F.,andSmith,K.M.(1975).Thenuclear magneticresonancespectraofporphyrins.PartX.Carbon13nuclearmagnetic resonancespectraofsome meso-tetraarylporphyrinsandtheirmetalchelates. J. Chem. Soc. Perkin Trans. 2 204211.

Ackley,K.L.,Day,J.A.,andCaruso,J.A.(2000).Separationofmetalloporphyrinsby capillaryelectrophoresiswithUVdetectionandinductivelycoupledplasmamass spectrometricdetection. J. Chromatogr. A 888 ,293298.

Adler,A.D.,Longo,F.R.,Finarelli,J.D.,Goldmacher,J.,Assour,J.,andKorsakoff,L. (1967).Asimplifiedsynthesisfor meso tetraphenylporphyrins. J. Org. Chem. 32 ,476.

Akins,D.L.,Ozcelik,S.,Zhu,H.R.,andGuo,C.(1996a).Fluorescencedecaykinetics andstructureofaggregatedtetrakis(psulfonatophenyl)porphyrin. J. Phys. Chem. 100 , 1439014396.

Akins,D.L.,Zhu,H.R.,andGuo,C.(1996b).Aggregationoftetraarylsubstituted porphyrinsinhomogeneoussolution. J. Phys. Chem. 100 ,54205425.

Alla,V.andBonkovsky,H.L.(2005).Ironinnonhemochromatoticliverdisorders. Semin. Liver Dis. 25 ,461472.

Alonso,M.C.,Castillo,M.,andBarceló,D.(1999).Solidphaseextractionprocedureof polarbenzeneandnaphthalenesulfonatesinindustrialeffluentsfollowedbyunequivocal determinationwithionpairchromatography/electrospraymassspectrometry. Anal. Chem. 71 ,25862593.

Andrighetto,P.,Carofiglio,T.,Fornasier,R.,andTonellato,U.(2000).Capillary electrophoresisbehaviorofwatersolubleanionicporphyrinsinthepresenceof β cyclodextrinanditsOmethylatedderivatives. Electrophoresis 21 ,619626.

Asanaka,M.,Kurimura,T.,Toya,H.,Ogaki,J.,andKato,Y.(1989).AntiHIVactivity ofprotoporphyrin. AIDS 3,403404.

Bowser,M.T.,Sternberg,E.D.,andChen,D.D.Y.(1996).Developmentand applicationofanonaqueouscapillaryelectrophoresissystemfortheanlysisofporphyrins andtheiroligomers(PHOTOFRIN). Anal. Biochem. 241 ,143150.

Buchler,J.W.(1975).Staticcoordinationchemistryofmetalloporphyrins. In "Porphyrins andMetalloporphyrins"(K.M.Smith,Ed.),pp.157231.Elsevier,NewYork. 176

Cabrera,C.,Witvrouw,M.,Gutierrez,A.,Clotet,B.,Kuipers,M.E.,Swart,P.J.,Meijer, D.K.,Desmyter,J.,DeClercq,E.,andEste,J.A.(1999).Resistanceofthehuman immunodeficiencyvirustotheinhibitoryactionofnegativelychargedalbuminsonvirus bindingtoCD4. AIDS Res. Hum. Retroviruses 20 ,15351543.

Cerfontain,H.,KoebergTelder,A.,Laali,K.,Lambrechts,H.J.A.,anddeWit,P. (1982).Aromaticsulfonation85.Halogendirectingandstericeffectsinthesulfonation ofthetwelvehalogenotoluenesandsomerelatedcompounds. Rec. Trav. Chim. Pays-Bas 101 ,390392.

Cerfontain,H.,KoebergTelder,A.,vanLindert,H.C.A.,andBakker,B.H.(1997). Aromaticsulfonation131.Formationofsulfonicacidsandsulfonicanhydridesinthe sulfurtrioxidesulfonationofsomedialkylbenzenesand1,omegadiarylalkanes. Liebigs Ann. /Recl. 22272233.

Cerfontain,H.,Zou,Y.S.,andBakker,B.H.(1994).Onthepositionalreactivityorderin thesulfonationofphenylsubstitutedandnaphthylsubstitutednaphthaleneswithSO 3. Rec. Trav. Chim. Pays-Bas 113 ,517523.

Chackerian,B.,Long,E.M.,Luciw,P.A.,andOverbaugh,J.(1997).Human immunodeficiencyvirustype1coreceptorsparticipateinpostentrystagesinthevirus replicationcycleandfunctioninsimianimmunodeficiencyvirusinfection. J. Virol. 71 , 39323939.

Chen,M.H.andDing,W.H.(2004).Separationandmigrationbehaviorofpositional andstructuralnaphthalenesulfonateisomersbycyclodextrinmediatedcapillary electrophoresis. J. Chromatogr. A 1033 ,167172.

ChenCollins,A.R.M.,Dixon,D.W.,Vzorov,A.N.,Marzilli,L.G.,andCompans,R. W.(2003).Preventionofpoxvirusinfectionbytetrapyrroles. BMC Infect. Dis. 3,9.

Chiang,S.C.C.andLi,S.F.Y.(1997).Separationofporphyrinsbycapillary electrophoresisinfusedsilicaandethylenevinylacetatecopolymercapillarieswith visibleabsorbancedetection. Biomed. Chromatogr. 11 ,366370.

Christensen,N.H.(1966).Kineticstudiesofthehydrolysisofaromaticsulfonic anhydrides. Acta Chem. Scand. 20 ,19551964.

Conneely,A.,McClean,S.,Smyth,W.F.,andMcMullan,G.(2001).Studyofthemass spectrometricbehaviourofphthalocyanineandazodyesusingelectrosprayionisationand matrixassistedlaserdesorption/ionisation. Rapid Commun. Mass Spectrom. 15 ,2076 2084. 177

Cormier,E.G.andDragic,T.(2002).ThecrownandstemoftheV3loopplaydistinct rolesinhumanimmunodeficiencyvirustype1envelopeglycoproteininteractionswith theCCR5coreceptor. J. Virol. 76 ,89538957.

D'Cruz,O.J.andUckun,F.M.(2004).Clinicaldevelopmentofmicrobicidesforthe preventionofHIVinfection. Curr. Pharm. Des. 10 ,315336.

Dairou,J.,VeverBizet,C.,andBrault,D.(2004).Interactionofsulfonatedanionic porphyrinswithHIVglycoproteingp120:Photodamagesrevealedbyinhibitionof antibodybindingtoV3andC5domains. Antiviral Res. 61 ,3747.

Dalgleish,A.G.,Beverley,P.C.,Clapham,P.R.,Crawford,D.H.,Greaves,M.F.,and Weiss,R.A.(1984).TheCD4(T4)antigenisanessentialcomponentofthereceptorfor theAIDSretrovirus. Nature 312 ,763767.

DeClercq,E.(2002).Strategiesinthedesignofantiviraldrugs. Nat. Rev. Drug Discov. 1,1325.

Debnath,A.K.,Jiang,S.,Strick,N.,Lin,K.,Haberfield,P.,andNeurath,A.R.(1994). Threedimensionalstructureactivityanalysisofaseriesofporphyrinderivativeswith antiHIV1activitytargetedtotheV3loopofthegp120envelopeglycoproteinofthe humanimmunodeficiencyvirustype1. J. Med. Chem. 37 ,10991108.

Debnath,A.K.,Jiang,S.B.,Strick,N.,Lin,K.,Kahl,S.B.,andNeurath,A.R.(1999). AntiHIV1activityofcarboranederivativesofporphyrins. Med. Chem. Res. 9,267275.

DeCamp,D.L.,Babé,L.M.,Salto,R.,Lucich,J.L.,Koo,M.S.,Kahl,S.B.,andCraik, C.S.(1992).SpecificinhibitionofHIV1proteasebyboronatedporphyrins. J. Med. Chem. 35 ,34263428.

Dettin,M.,Ferranti,P.,Scarinci,C.,Picariello,G.,andDiBello,C.(2003).IstheV3 loopinvolvedinHIVbindingtoCD4? Biochemistry 42 ,90079012.

Dixon,D.W.,Gill,A.F.,Giribabu,L.,Vzorov,A.N.,Alam,A.B.,andCompans,R.W. (2005).SulfonatednaphthylporphyrinsasagentsagainstHIV. J. Inorg. Biochem. 99 , 813821.

Dixon,D.W.,Gill,A.F.,andSook,B.R.(2004).Characterizationofsulfonated phthalocyaninesbymassspectrometryandcapillaryelectrophoresis. J. Porph. Phthalo. 8,13001310.

Dixon,D.W.,Kim,M.S.,Kumar,V.,Obara,G.,Marzilli,L.G.,andSchinazi,R.F. (1992).Aminoandhydroxytetraphenylporphyrinswithactivityagainstthehuman immunodeficiencyvirus. Antiviral Chem. Chemother. 3,279282. 178

Dixon,D.W.,Marzilli,L.G.,andSchinazi,R.F.(1990).Porphyrinsasagentsagainst thehumanimmunodeficiencyvirus. Ann. N. Y. Acad. Sci. 616 ,511513.

Dixon,D.W.,Pu,G.M.,andWojtowicz,H.(1998).Capillaryelectrophoreticseparation ofcationicporphyrins. J. Chromatogr. A 802 ,367380.

Dolphin,D.(1978).Nomenclature. In "ThePorphyrins:StructureandSynthesis,PartA." pp.127.AcademicPressInc.,NewYork.

Dudic,M.,Lhoták,P.,Král,V.,Lang,K.,andStibor,I.(1999).Synthesisofnovel porphyrinbasedbiscalix[4]arenes. Tetrahedron Lett. 40 ,59495952.

ElHachemi,Z.,Farrera,J.A.,GarcíaOrtega,H.,RamirezGutierrez,O.,andRibó,J.M. (2001).Heteroassociationof meso sulfonatophenylporphyrinswith βand γcyclodextrin. J. Porph. Phthalo. 5,465473.

Este,J.A.,Schols,D.,DeVreese,K.,VanLaethem,K.,Vandamme,A.M.,Desmyter, J.,andDeClercq,E.(1997).Developmentofresistanceofhumanimmunodeficiency virustype1todextransulfateassociatedwiththeemergenceofspecificmutationsinthe envelopegp120glycoprotein. Mol. Pharmacol. 52 ,98104.

Falk,J.E.(1964).GeneralChemistry. In "Porphyrinsandmetalloporphyrins"Vol.2,pp. 329.Elsevier,Amsterdam.

Fischer,J.,Jandera,P.,Cesla,P.,andStanek,V.(2003).Separationofaromatic sulphonicacidsbyCZEincoatedandnoncoatedcapillaries. J. Sep. Sci. 26 ,10351044.

Fleischer,E.B.,Chapman,R.D.,andKrishnamurthy,M.(1979).Synthesisandoxidative demetalationoftwonewtungstenporphyrins. Inorg. Chem. 18 ,21562159.

Fleischer,E.B.,Palmer,J.M.,Srivastava,T.S.,andChatterjee,A.(1971). Thermodynamicandkineticpropertiesofanironporphyrinsystem. J. Am. Chem. Soc. 93 ,31623167.

Fonda,H.N.,Gilbert,J.V.,Cormier,R.A.,Sprague,J.R.,Kamioka,K.,andConnolly, J.S.(1993).Spectroscopic,photophysical,andredoxpropertiesofsome meso substituted freebaseporphyrins. J. Phys. Chem. 97 ,70247033.

Gallaher,W.R.,Ball,J.M.,Garry,R.F.,MartinAmedee,A.M.,andMontelaro,R.C. (1995).AgeneralmodelforthesurfaceglycoproteinsofHIVandotherretroviruses. AIDS Res. Hum. Retroviruses 11 ,191202.

GarciaCampana,A.M.,GamizGracia,L.,Baeyens,W.R.G.,andBarrero,F.A. (2003).Derivatizationofbiomoleculesforchemiluminescentdetectionincapillary electrophoresis. J Chromatogr. B. 793 ,4974. 179

George,R.G.andPadmanabhan,M.(2003).Studiesonsomenew meso arylsubstituted octabromoporphyrinsandtheirZn(II)derivatives.Polyhedron 22 ,31453154.

Gibbs,E.J.,Skowronek,W.R.,Jr.,Morgan,W.T.,MullerEberhard,U.,andPasternack, R.F.(1980).Reactionsofwatersolublemetalloporphyrinswiththeserumprotein, hemopexin. J. Am. Chem. Soc. 102 ,39393944.

Gubitz,G.andSchmid,M.G.(1997).Chiralseparationprinciplesincapillary electrophoresis.Review. J. Chromatogr. A 792 ,179225.

Hamai,S.andKoshiyama,T.(1999).Electronicabsorption,fluorescence,andcircular dichroismspectroscopicstudiesontheinclusioncomplexesoftetrakis(4 sulfonatophenyl)porphyrinwithcyclodextrinsinbasicaqueoussolutions. J. Photochem. Photobiol. A 127 ,135141.

Hamai,S.,Sasaki,Y.,Hori,T.,andTakahashi,A.(2006).Interactionsoftetrakis(4 sulfonatophenyl)porphyrinwithgammacyclodextrinandalkyltrimethylammonium bromidesinaqueoussolutions. J. Incl. Phen. Mac. Chem. 54 ,6776.

Hamai,S.andSatou,H.(2001).Effectsofcyclodextrinsonthecomplexationbetween MethyleneBlueandtetrakis(4sulfonatophenyl)porphyrininaqueoussolutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57 ,17451750.

Hambright,P.(2000).Chemistryofwatersolubleporphyrins. In "ThePorphyrin Handbook"(K.M.Kadish,K.M.Smith,andR.Guilard,Eds.),Vol.3,pp.129210. AcademicPress,SanDiego.

Hanyz,I.andWrobel,D.(2002).TheinfluenceofpHonchargedporphyrinsstudiedby fluorescenceandphotoacousticspectroscopy. Photochem. Photobiol. Sci. 1,126132.

Harrison,P.F.,Rosenberg,Z.,andBowcut,J.(2003).Topicalmicrobicidesfordisease prevention:Statusandchallenges. Clin. Infect. Dis. 36 ,12901294.

Herrmann,O.,Mehdi,S.H.,andCorsini,A.(1978).Heterogeneousmetalinsertion:A novelreactionwithporphyrins. Can. J. Chem. 56 ,10841087.

Ion,R.M.(1999).Spectralanalysisoftheporphyrinsincorporationintohumanblood. J. Biomed. Optics 4,319326.

Ion,R.M.,Planner,A.,Wiktorowicz,K.,andFrackowiak,D.(1998).Theincorporation ofvariousporphyrinsintobloodcellsmeasuredviaflowcytometry,absorptionand emissionspectroscopy. Acta Biochim. Pol. 45 ,833845.

Jimenez,H.R.,Julve,M.,andFaus,J.(1991).Asolutionstudyoftheprotonationand deprotonationequilibriaof5,10,15,20tetra( psulphonatophenyl)porphyrin.Stability 180

constantsofitsmagnesium(II),copper(II)andzinc(II)complexes. J. Chem. Soc. Dalton Trans. 19451949.

Kadish,K.M.,Maiya,G.B.,Araullo,C.,andGuilard,R.(1989).Micellareffectsonthe aggregationoftetraanionicporphyrins.Spectroscopiccharacterizationoffreebase meso tetrakis(4sulfonatophenyl)porphyrin,(TPPS)H2,and(TPPS)M(M=Zn(II),Cu(II), VO2+)inaqueousmicellarmedia. Inorg. Chem. 28 ,27252731.

Kalny,D.,AlbrechtGary,A.M.,andHavel,J.(2001).Highlysensitivemethodfor palladium(II)determinationasaporphyrinatocomplexbycapillaryzoneelectrophoresis. Analytica Chimica Acta 439 ,101105.

Kalyanasundaram,K.andNeumannSpallart,M.(1982).Photophysicalandredox propertiesofwatersolubleporphyrinsinaqueousmedia. J. Phys. Chem. 86 ,51635169.

Kiyohara,C.,Saito,K.,andSuzuki,N.(1993).Micellarelectrokineticcapillary chromatographyofhaematoporphyrin,protoporphyrinandtheircopperandzinc complexes. J. Chromatogr. 646 ,397403.

Langley,R.andHambright,P.(1985).Kineticsofthereductionofmanganese(III) porphyrinsbyhexaammineruthenium(II):Areductiveacidsolvolysismechanism. Inorg. Chem. 24 ,12671269.

Levere,R.D.,Gong,Y.F.,Kappas,A.,Bucher,D.J.,Wormser,G.P.,andAbraham,N. G.(1991).Hemeinhibitshumanimmunodeficiencyvirus1replicationincellcultures andenhancestheantiviraleffectofzidovudine. Proc. Natl. Acad. Sci. USA 88 ,1756 1759.

Li,Q.,Chang,C.K.,andHuie,C.W.(2005).Investigationofsolventeffectsincapillary electrophoresisfortheseparationofbiologicalporphyrinmethylesters. Electrophoresis. 26,33493359.

Lim,C.K.,Razzaque,M.A.,Luo,J.L.,andFarmer,P.B.(2000).Isolationand characterizationofprotoporphyringlycoconjugatesfromratHarderianglandbyHPLC, capillaryelectrophoresisandHPLC/electrosprayionizationMS. Biochem. J. 347 ,757 761.

Lindsey,J.S.,Schreiman,I.C.,Hsu,H.C.,Kearney,P.C.,andMarguerettaz,A.M. (1987).RothemundandAdlerLongoreactionsrevisited:Synthesisof tetraphenylporphyrinsunderequilibriumconditions. J. Org. Chem. 52 ,827836.

March,J.(1992).Reactivity. In "AdvancedorganicChemistry:reactions,mechanisms andstructures"(.,Ed.),pp.683733.WileyInterscience,NewYork. 181

Miller,J.R.,Taies,J.A.,andSilver,J.(1987).Mossbauerandspectroscopicstudieson substitutedtetraphenylporphyrinatoiron(III)complexesinaqueoussolutionsandthe formationofthemuoxobridgedspecies. Inorg. Chim. Acta 138 ,205214.

Mosinger,J.,Deumie,M.,Lang,K.,Kubát,P.,andWagnerová,D.M.(2000). Supramolecularsensitizer:Complexationof meso tetrakis(4sulfonatophenyl)porphyrin with2hydroxypropylcyclodextrins. J. Photochem. Photobiol. A 130 ,1320.

Neurath,A.R.,Haberfield,P.,Joshi,B.,Hewlett,I.K.,Strick,N.,andJiang,S.(1991). RapidprescreeningforantiviralagentsagainstHIV1basedontheirinhibitoryactivityin sitedirectedimmunoassays.I.TheV3loopofgp120astarget. Antiviral Chem. Chemother. 2,303312.

Neurath,A.R.,Strick,N.,andDebnath,A.K.(1995).Structuralrequirementsforand consequencesofanantiviralporphyrinbindingtotheV3loopofthehuman immunodeficiencyvirus(HIV1)envelopeglycoproteingp120. J. Mol. Recognition 8, 345357.

Neurath,A.R.,Strick,N.,Haberfield,P.,andJiang,S.(1992).Rapidprescreeningfor antiviralagentsagainstHIV1basedontheirinhibitoryactivityinsitedirected immunoassays.II.PorphyrinsreactingwiththeV3loopofgp120. Antiviral Chem. Chemother. 3,5563.

Neurath,A.R.,Strick,N.,andJiang,S.(1994a).Rapidprescreeningforantiviralagents againstHIV1basedontheirinhibitoryactivityinsitedirectedimmunoassays. ApproachesapplicabletoepidemicHIV1strains. Antiviral Chem. Chemother. 4,207 214.

Neurath,A.R.,Strick,N.,Lin,K.,Debnath,A.K.,andJiang,S.(1994b).Tin protoporphyrinIXusedincontrolofhememetabolisminhumanseffectivelyinhibits HIV1infection. Antiviral Chem. Chemother. 5,322330.

Ohno,O.,Kaizu,Y.,andKobayashi,H.(1993). Jaggregateformationofawatersoluble porphyrininacidicaqueousmedia. J. Chem. Phys. 99 ,41284139.

Pasternack,R.F.(1973).Aggregationpropertiesofwatersolubleporphyrins. Ann. N. Y. Acad. Sci. 206 ,614627.

Pauwels,R.,Balzarini,J.,Baba,M.,Snoeck,R.,Schols,D.,Herdewijn,P.,Desmyter,J., andDeClercq,E.(1988).Rapidandautomatedtetrazoliumbasedcolorimetricassayfor thedetectionofantiHIVcompounds. J. Virol. Methods 20 ,309321.

Peng,X.,Sternberg,E.,andDolphin,D.(2002).Chiralseparationofbenzoporphyrin derivativemonoanddiacidsbylaserinducedfluorescencecapillaryelectrophoresis. Electrophoresis 23 ,93101. 182

Peng,X.,Sternberg,E.,andDolphin,D.(2005).Separationofporphyrinbased photosensitizerisomersbylaserinducedfluorescencecapillaryelectrophoresis. Electrophoresis 26 ,38613868.

Pico,G.A.andHoussier,C.(1989).Bilesaltsbovineserumalbuminbinding: spectroscopicandthermodynamicstudies. Biochim. Biophys. Acta. 999 ,128134.

Pokric,B.,Allinson,N.M.,Bergström,E.T.,andGoodall,D.M.(1999).Dynamic analysisofcapillaryelectrophoresisdatausingrealtimeneuralnetworks. J. Chromatogr. A833 ,231244.

Rao,T.A.andMaiya,B.G.(1994).Spectroscopic,redoxandemissionpropertiesof2 nitrosubstitutedfreebaseandmetallotetraarylporphyrins. Polyhedron 13 ,18631873.

Ribo,J.M.,Crusats,J.,Farrera,J.A.,andValero,M.L.(1994).AggregationinWater SolutionsofTetrasodiumDiprotonatedMesoTetrakis(4Sulfonatophenyl)Porphyrin. J. Chem. Soc. Chem. Comm. 681682.

Ribó,J.M.,Farrera,J.A.,Valero,M.L.,andVirgili,A.(1995).Selfassemblyof cyclodextrinswith meso tetrakis(4sulfonatophenyl)porphyrininaqueoussolution. Tetrahedron 51 ,37053712.

Richeter,S.,Jeandon,C.,Gisselbrecht,J.P.,Graff,R.,Ruppert,R.,andCallot,H.J. (2004).Synthesisofnewporphyrinswithperipheralconjugatedchelatesandtheirusefor thepreparationofporphyrindimerslinkedbymetalions. Inorg. Chem. 43 ,251263.

Richeter,S.,Jeandon,C.,Kyritsakas,N.,Ruppert,R.,andCallot,H.J.(2003). Preparationofsixisomericbisacylporphyrinswithchromophoresreachingthenear infraredviaintramolecularFriedelCraftsreaction. J. Org. Chem. 68 ,92009208.

Richeter,S.,Jeandon,C.,Ruppert,R.,andCallot,H.J.(2001).Reactivityof oxonaphtoporphyrins.Efficientbetafunctionalizationoftheporphyrinringonreaction withnitrogenorcarbonnucleophiles. Tetrahedron Lett. 42 ,21032106.

Robert,J.M.andSpinks,C.D.(1997).Separationofmetallatedpetroporphyrinmodels usingmicellarelectrokineticcapillarychromatography. J. Liq. Chromatogr. Relat. Techno. 20 ,29792995.

RochaGonsalves,A.M.D.,Johnstone,R.A.W.,Pereira,M.M.,deSantAna,A.M.P., Serra,A.C.,Sobral,A.J.F.N.,andStocks,P.A.(1996).Newproceduresforthe synthesisandanalysisof5,10,15,20tetrakis(sulphophenyl)porphyrinsandderivatives throughchlorosulphonation. Heterocycles 43 ,829838.

Rothemund,P.(1939).PorphyrinStudies.III.TheStructureofthePorphineRing System. J. Am. Chem. Soc. 61 ,29122915. 183

Rubires,R.,Crusats,J.,ElHachemi,Z.,Jaramillo,T.,Lopez,M.,Valls,E.,Farrera,J. A.,andRibó,J.M.(1999).Selfassemblyinwaterofthesodiumsaltsof meso sulfonatophenylsubstitutedporphyrins. New J. Chem. 23 ,189198.

Sattentau,Q.J.andMoore,J.P.(1991).Conformationalchangesinducedinthehuman immunodeficiencyvirusenvelopeglycoproteinbysolubleCD4binding. J. Exp. Med. 174 ,407415.

Silver,J.andTaies,J.A.(1988).Moessbauerspectroscopicstudiesof tetrasulfonaphthyl)porphineiron(II)solutions. Inorg. Chim. Acta 151 ,6975.

So,T.S.K.,Jia,L.,andHuie,C.W.(2001).Stackingandseparationofcoproporphyrin isomersbyacetonitrilesaltmixturesinmicellarelectrokineticchromatography. Electrophoresis 22 ,21592166.

Song,R.,Witvrouw,M.,Schols,D.,Robert,A.,Balzarini,J.,DeClercq,E.,Bernadou, J.,andMeunier,B.(1997).AntiHIVactivitiesofanionicmetalloporphyrinsandrelated compounds. Antiviral Chem. Chemother. 8,8597.

Stone,A.(2002).Microbicides:AnewapproachtopreventingHIVandothersexually transmittedinfections. Nat. Rev. Drug Discov. 1,977985.

Sutter,T.P.G.,Rahimi,R.,Hambright,P.,Bommer,J.C.,Kumar,M.,andNeta,P. (1993).Stericandinductiveeffectonthebasicityofporphyrinsandonthesiteof protonationofporphyrindianions. J. Chem. Soc. Faraday Trans. 89 ,495502.

Treibs,A.andHaeberle,N.(1968).Uberdiesyntheseunddieelectronenspektren ms substituierterporphine. Justus Liebigs Ann. Chem. 183207.

Trujillo,J.R.,Goletiani,N.V.,Bosch,I.,Kendrick,C.,Rogers,R.A.,Trujillo,E.B., Essex,M.,andBrain,J.D.(2000).TtropicsequenceoftheV3loopiscriticalforHIV1 infectionofCXCR4positivecolonicHT29epithelialcells. J. Acquir. Immune Defic. Syndr. 25 ,110.

Turpin,J.A.(2002).Considerationsanddevelopmentoftopicalmicrobicidestoinhibit thesexualtransmissionofHIV. Expert Opin. Investig. Drugs 11 ,10771097.

Venema,F.,Nelissen,H.F.M.,Berthault,P.,Birlirakis,N.,Rowan,A.E.,Feiters,M.C., andNolte,R.J.M.(1998).Synthesis,conformation,andbindingpropertiesof cyclodextrinhomoandheterodimersconnectedthroughtheirsecondarysides. Chem. Eur. J. 4,22372250.

Vzorov,A.N.,Dixon,D.W.,Trommel,J.S.,Marzilli,L.G.,andCompans,R.W. (2002).Inactivationofhumanimmunodeficiencyvirustype1byporphyrins. Antimicrob. Agents Chemother. 46 ,39173925. 184

Vzorov,A.N.,Marzilli,L.G.,Compans,R.W.,andDixon,D.W.(2003).Preventionof HIV1infectionbyphthalocyanines. Antiviral Res. 59 ,99109.

Wang,X.P.,Pan,J.H.,andShuang,S.M.(2001).Studyonthesupramolecularsystem of meso tetrakis(4sulfonatophenyl)porphyrinandcyclodextrinsbyspectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc.57 ,27552762.

Wang,X.P.,Pan,J.H.,Shuang,S.M.,andZhang,Y.(2002).Determinationofthe inclusionconstantsfortheinclusioncomplexesbetween meso tetrakis(4 sulfonatophenyl)porphyrinandcyclodextrinsbythreemethods. Supramol. Chem. 14 , 419426.

Weinberger,R.,Sapp,E.,andMoring,S.(1990).Capillaryelectrophoresisofurinary porphyrinswithabsorbanceandfluorescencedetection. J. Chromatogr. 516 ,271285.

Wu,N.,Li,B.,andSweedler,J.V.(1994).Recentdevelopmentsinporphyrinseparations usingcapillaryelectrophoresiswithnativefluorescencedetection. J. Liq. Chromatogr. 17 ,19171927.

Zaider,E.andBickers,D.R.(1998).Clinicallaboratorymethodsfordiagnosisofthe porphyrias. Clin. Dermatol. 16 ,277293.

Zerbinati,O.andTrotta,F.(2003).pHdependentcyclodextrincapillaryelectrophoresis resolutionofatropisomers. Electrophoresis 24 ,24562461.

Zhang,Y.,Gong,Z.L.,Zhang,H.,andCheng,J.K.(1998).Animprovedapparatusfor onlinechemiluminescencedetectionwithcapillaryelectrophoresisanddetectionof metalporphyrins. Analytical Communications 35 ,293296.

Zhang,Y.H.,Chen,D.M.,He,T.,andLiu,F.C.(2003).Ramanandinfraredspectral studyof meso sulfonatophenylsubstitutedporphyrins(TPPSn,n=1,2A,2O,3,4). Spectrochim. Acta A Mol. Biomol. Spectrosc. 59 ,87101.

185

Chapter 3

Irradiation of Cationic Metalloporphyrins Bound to DNA

Radiationiswidelyusedincancerchemotherapy.Itisdesirabletoreducedamage beyond the tumor cells. One way of doing so is to use brachytherapy seeds, small

radioactiveseedswhichareimplantedinthetumorsandincreasinglyusedforlocalized

irradiationoftumors(Rivardetal.,2004;Murphyetal.,2004;Williamsonetal.,2005).

If the tumor could be sensitized to radiation, this would also be helpful. It has been proposed that sensitization might be achieved with photon activation therapy (PAT)

(Fairchildetal.,1982b).PATinvolvesirradiatingahighZatomnearthecellularDNA.

ThehighZatomfirstabsorbsaphoton,andthenreleasesanumberoflowenergyAuger

or KosterKronig electrons (TisljarLentulis et al., 1973). This is expected to induce

localized or clustered damage in the DNA. Clustered DNA damage may inhibit the

cellularrepairprocessesandslowtumorgrowth.

WehavestudiedaseriesofmetalsasPATcandidates.Themetalswerechosenon

thebasisthattheyhaveappropriateenergylevelsforirradiationbybrachytherapyseeds,

which commonly include 103 Pd (21 keV), 125 I (28 keV) and 131 Cs (29.5 36.5 keV).

Table 3.1 showstheenergylevelsofthemetalschosen,whichincludesilver,indium, molybdenum,palladium,platinum,rutheniumandzirconium.Toallowdirectcomparison ofthesemetals,thecationicporphyrin, meso tetrakis(4Nmethylpyridinium)porphyrin

(TMPyP4)waschosenasthescaffoldingtocarrythemetaltotheDNA.Toassessthe

role of the porphyrin skeleton in determining DNA binding, five indium porphyrins, 186

alkylated derivatives of tetrapyridyl porphyrin with methyl, ethyl, propyl, butyl and benzylsidechains,wereinvestigated.Plasmidcleavageassayswereruntoevaluatethe potential of these molecules to create clustered DNA damage on irradiation. Upon

irradiation,theamountofnickedplasmidDNA(OC)increasedsmoothlyasafunctionof

theirradiationtime;asmallamountoflinear(L)formoftheDNAwasalsoobserved.

SectionIIofthischapterdescribestheexperimentaldetailsandresults.

Section I.

Introduction.

i. Auger electrons

a. Background.

When a heavy metal is irradiated with an xray of a suitable energy, a core

electron can be ejected (Kassis, 2003; Kassis, 2004). The cascade of external shell

electrons towards the core vacancy releases both energy and electrons. The range of

Auger electrons in water is from a fraction of a nanometer to several hundreds of

micrometers (Kassis, 2004). Auger electrons have high LET (the average amount of

energylostperunitofdistancetraveled)duetotheirslowspeed,i.e.,~26keV/ matlow

energies of 35 55 eV (Cole, 1969). The dimensions of the mammalian DNA and proteinsresponsibleforthebiologicalfunctionsareallwithintherangeofthesehigh

LETAugerelectrons,i.e.,826keV/ m,lowenergy( ≤1.6keV),shortrange( ≤130

nm)electrons(Kassis,2004).

187

b. Auger electrons in radiobiology.

Fairchildetal.,intheearly1980’s,proposedPhotonActivationTherapy(PAT)

(Fairchild et al., 1982a). Their goal was to increase the radiation dose for malignant

tumorsbyincorporatingstableIdUrDintoDNAandinducingAugerelectronemission

viaexternalirradiation.Theydemonstratedanenhancementofradiationdosetousing

iododeoxyuridine(IdUrD)andbromodeoxyuridine(BrdUrd),andcomparingtheeffects

ofirradiatingabovetheiodineKedgeandbelowtheiodineKedge(Lasteretal.,1993).

c. The damage caused by radionuclides.

The biological effects could be due in part to the high positive charge of the resulting atom leading to the neutralization and deposition of highly localized energy aroundthedecaysite.Thedamagecouldbetheresultofradiationinducedionizations and excitations, nuclear recoil, chemical transmutations and local charge effects

(FrankenbergSchwager,1990).DoublestrandedDNAbreakage(dsb)canbeoneofthe usual consequences of the production of Auger electrons from radioactive metals

(Hafligeretal.,2005).Thedsbyieldis50to100foldlowerthanthatofthesinglestrand breaksinDNA(ssb)yieldforlowLETradiation(Stantonetal.,1993).

Kassishaspointedoutthatthedeleteriouseffectsoflowenergyelectronemitters in mammalian cells is not solely due to direct ionization of DNA, but caused mainly

(~90%) by indirect mechanism(s) (Kassis, 2004). Hydroxyl radicals play a significant role (Chatgilialoglu & O'Neill, 2001). Even in the presence of high concentrations of scavengers,itisdifficulttoestimatetheDNAdamageduetothedirecteffectofAuger electrons(Yokoyaetal.,2002).Alongwiththehydroxylradical,sugarradicals,formed 188

byionizationofDNAarethoughttocausestrandbreakage (Debije et al., 2001). The

nucleobasesarealsoeffectedbytheoveralldamageleadingtodamageofDNA(Swarts

etal.,1992;Swartsetal.,1996).AlongwiththeoxidationoftheDNAbases,andssband

dsb of the phosphate backbone, DNA damage can also occur by crosslinking with proteins.

ii. Metals used in PAT.

Maeda etal.studiedthedsbviaphotoabsorptionat Kshell of phosphorus and

LIII shell of platinum (Maeda et al., 2004). They irradiated free and platinumbound pBR322 plasmid DNA using synchrotron radiation, monochromatic Xrays, with

energiesaboveandbelowthephosphorusKandplatinumL III shell.Itwasreportedthat

theinnershellphotoabsorptionofphosphorusandplatinum significantly increased the

inductionofdsbbutnotthessbinduction.Sincethequantumyieldforthedsbinduction

ofplatinumwassignificantlylargerthanthatforthephosphorus,Maedaetal.proposed

thatmagnitudeoftheAugercascadedoesaffectthedsb.

Section II.

Thegoalofthisworkwastosurveymetalsthatmightbeconsideredaspossible

PATcandidatesinconjunctionwithbrachytherapyseeds.Giventheavailableenergies, thereareanumberofmetalsthatnightbeconsidered.Hereinarereportedthestudiesof

Ag II ,In II ,Mo V,Pd II ,Pt II ,Ru II andZr IV .DNAdamagewasassessedbyanickingplasmid assay.ClustereddamageintheDNAwasindicatedbydoublestrandedcleavageofthe plasmid, resulting in a linearized form. If the radiation damage leads to a ssb in the 189

phosphatebackbone,anopencircularformoftheplasmidresults.Ifthetwobreaksinthe phosphatebackboneoccurwithinaboutaturnoftheDNAhelix,theplasmidlinearizes.

ItisimportantthatthehighZnucleibepositionedclosetotheDNA.Wehave

chosenthecationicporphyrinTMPyP4asthemetalcarrier. A porphyrin scaffold is a

goodchoiceforstudyingtheeffectofvariousmetalsintheporphyrincore,becausethe bindingofthemetalloporphyrintotheDNAisprimarilydeterminedbythefourcationic

chargesontheperipheryofthemetal.Manyofthedetailsoftheseinteractionshavebeen

elucidated, particularly of TMPyP4 derivatives (Marzilli, 1990; Pasternack & Gibbs,

1996). A second advantage of using a cationic porphyrin as a scaffold is that it can

localize in cancer cells; in particular, studies with 111 InTMPyP4 have shown that this

compoundistakenupsomewhatselectivelyintumors(Fosteretal.,1985;Maricetal.,

1988).CationicporphyrinshavebeenshowntobindtochromosomalDNA(Izbickaet

al., 1999). Porphyrin localize subcellularly not only in the chromosomal DNA, but in

many structures, such as the cell membrane, nucleus, mitochondria and lysosomes

(Woodburnetal.,1991;Georgiouetal.,1994;Tobin&Greene,1999;Kessel&Poretz,

2000;Kesseletal.,2003;Ricchellietal.,2005).

ii. Experiments.

a. Materials and method.

Theplasmid(pUC19)DNAwaspurchased fromBayou Biolabs(Harahan, LA) andwasusedwithoutfurtherpurification.Plasmid(pUC19)DNAwasalsosynthesized in the lab with Ms. Beth Wilson’s assistance. Transformation of Escherichia coli 190

competentcells(Stratagene,XL1blue)withpUC19plasmidDNA(Sigma)andgrowth

of bacterial cultures in LauriaBertani broth were performed using standard laboratory protocols(Sambrooketal.,1989).TheplasmidDNAwaspurifiedwithaQiagenPlasmid

Mega Kit. Ethidium bromide (EtBr) and the gel electrophoresis buffers, TAE (Tris

AcetateEDTA) and TBE (TrisBorateEDTA), Tris base, glacial acetic acid, glycerol,

monobasicanddibasicsodiumphosphate,andEDTAdisodiumsaltwerepurchasedfrom

FischerScientific(FairLawn,NJ).MetalloporphyrinsusedincludedtheAg,In,Mo,Pd,

Pt,RuandZrchelatesofTMPyP4.Thealkylderivatives of InTPyP4 were purchased

from MidCentury Chemicals (Posen, IL) and the rest of the metalloderivatives were purchasedfromFrontierScientificInc.(Logan,UT).PuritywasestablishedbyCE(<5%

ofanotherporphyrin).

Thermal melting (T m) studies of the 10 mer duplex 5 ′ GCGAATTCGC3′

(Midland Certified Reagent Company, Inc., Midland, Texas) in the presence of alkyl derivativesofInTPyP4wereconductedonaCARY3Espectrophotometer(Varian,Palo

Alto,CA)attachedtoatemperaturecontroller.Experimentswereperformedina20mM phosphatebuffer(pH7.0)containing100mMNaCl.Theworkingconcentrationwas18

M,determinedusingtheextinctioncoefficient1.872x10 5 M1cm 1(Fasman,1975).

CE separations were performed with a 50 mM phosphate buffer (pH 3.0).

Separationswereconductedatnormalpolarityandtheinjectionsizewas6s.A11kV voltage was used for separation. The detailed CE setup is discussed in section IV of

Chapter1.Tocheckthestabilityofporphyrinsolutions, UVvis spectra were taken in 191

waterandin50mMphosphatebufferatpH3.2and8.0.Thespectrawererecordedon

ShimadzuUV1601spectrophotometer(Columbia,MD).

The irradiation of samples was performed by Dr. Tomasz Wasowicz in the

laboratoryofDr.WilliamH.Nelson(DepartmentofPhysicsandAstronomyatGeorgia

StateUniversity).Theirradiationbufferusedwas10mMphosphateatpH7.0with2mM

glycerol.ThesampleswereirradiatedusingaPhilipsPW2182/00Xraytubeconnected

to a Philips MCG 40 power supply with 50 kV voltage and 20 mA current settings

resultingina0.67Gy/sdoserateasmeasuredatthecenterpointofthesample.TheDose

rate was calibrated using two independent methods: alanine EPR dosimeters and a

Victoreen5506Aionizationchamberat250VwithKeithley487picoammeter/voltage

source (Bradshaw et al., 1962; Nette et al., 1993). The samples were placed for

irradiationatroomtemperatureinaJanisSVT300cryostat.Thexraybeamwas80mm

inlengthpassingthroughone0.3mmBewindowandtwoAlwindows,each0.3mm

thick.IrradiationwasperformedwithXraysfromatungstentargettubeoperatingfrom

a constantpotential supply. The plasmids were irradiated in Eppendorf tubes at room

temperature. Reactions were terminated by chilling on ice, where they remained until

theywereloadedonanagarosegel.

Thestockplasmid(pUC19)DNAwas1.00 g/ l.Theirradiatedplasmidsamples

were 20 M bp unless indicated otherwise. Reactions were conducted in a 10 mM phosphate buffer at pH 7.0 with 2 mM glycerol. The scavenging capacity of 2 mM

glycerol is about 3.8 x 10 6 s 1 (Klimczak et al., 1993). The irradiation dose was 40

Gy/min (0.667 Gy/s). The control and the irradiated samples were loaded on a 1.5% 192

agarosegelwith0.5g/mlEtBr.Electrophoresiswascarriedoutfor1.5hin1XTAE buffer(40mMTrisbase,20mMaceticacid,1mMEDTA, pH 8.0; the loading dye

contained0.25%bromophenolblue15% Ficoll)orTBE buffer (89 mM Trisborate, 2

mMEDTA,pH8.0;theloadingdyecontained3XTBEbuffer,60%glycerol,0.6%SDS,

0.06%bromophenolblue).

Gel images were quantified with a Biospectrum AC Imaging System (UVP,

Upland, CA). The background was calculated as the average background above and below each DNA band. The amount of SC form of plasmid DNA was corrected by a

factor of 1.4 for the lessefficient incorporation of EtBr (Milligan et al., 1993). The

relative amounts of the three DNA forms (OC, L and SC) were calculated for each

irradiation dose. The average number of nicks (cleavage) per plasmid was calculated

usingthePoissondistribution(Hertzberg&Dervan,1982).

The concentration of the porphyrin solutions was determined via UVvis

spectroscopy. The extinction coefficients ( ε) used for determining the concentrations were:2.33x10 5M 1cm 1inwaterforAg(II)TMPyP4at430nm(Harrimanetal.,1983),

7.40x10 4M 1cm 1inwaterforMo(V)TMPyP4at469nm(Masahikoetal.,1985),1.71x

10 5M 1cm 1inwaterforPd(II)TMPyP4at414nm(Harrimanetal.,1983),1.72x10 5M

1cm 1inwaterforPt(II)TMPyP4at402nm(Pasternacketal.,1990),1.47x10 5M 1cm 1 inwaterforRuTMPyP4at420nm(Hartmannetal.,1997),3.90x10 5M 1cm 1innitric

acid(pH2.0)forInTMPyP4(andassumedforInTBzPyP4)at424nm(Hambrightetal.,

1985),andassumedas2.0x10 5M 1cm 1inwaterforZrTMPyP4at419nm.Thespectra 193

were taken in the specified solvents and in water. The concentration in water was

determinedfromtheknownextinctioncoefficientsintherespectivesolvents.

b. Results and discussion.

1. Hydrophobicity.

XlogP values of the methyl, ethyl, propyl, butyl, and benzyl derivatives of pyridine were calculated using PCModel 9 (Serena Software, Bloomington, IN). The

XlogP values were in direct proportion to migration times of CE peaks of these

homologousderivatives (Table 3.2).

2. Thermal melting studies.

Theworkingconcentrationoftheduplexwas18 M,withadrug:duplexratioof

0.1. T m melting profiles were obtained by measuring the absorbance at 260 nm as a

o o functionoftemperature(595 C)ataramprateof0.5 C/min.TheduplexhadaT mof

o 46.9 C. The T m ofthemethyl,ethyl,propyl,butylandbenzylderivativesof InTPyP4

wasverysimilar,i.e.,59.0 ±1 o C (Figure 3.1).

3. Capillary electrophoresis separation of porphyrins.

The most effective method of characterization of cationic porphyrins is by CE

(Dixon et al., 1998). The organic impurities can be due to the presence of other porphyrins (often not fully alkylated). The separations were performed at low pH, 3.0 witha50mMsodiumphosphaterunningbuffer.Eachcompoundwaspureasshownbya singlepeak(datanotshown).TheCEpeaksfortheAg,Mo,Pd,RuandZrchelatesof 194

TMPyP4appearedat9.5min(421nm),10.9min(403nm),12.3min(467nm),11.2min

(416m),12.0min(415nm),and11.6min(419nm),respectively(datanotshown).

Figure 3.2 showstheseparationoffivealkylderivativesofInTRPyP4,methyl,

ethyl,propylandbutylandbenzylderivatives.Theseparationwasduetothedifference

inmolecularweightofthealkylsidechains.Thepeaksformethyl,ethyl,propyl,benzyl

andbenzylderivativesappearedat12.4,13.3,14.2,14.9and15.0min,respectively.

4. UV-vis spectra of cationic porphyrins.

FormostmetalloderivativesofTMPyP4therewasnodifferenceinspectrainthe

threesolvents,waterandinlow(3.2)andhighpH(8.1)buffers. Figure 3.3 showsthe

spectraofMo,andZrchelatesofTMPyP4inthethreesolvents.MoTMPyP4hada λmax of458nmasreportedbyMasahikoetal.(Masahikoetal.,1985).However,thespectrum was blueshifted at high pH and redshifted at low pH. This could be due to various ligationpatternsofMoindifferentsolvents.

5. Control experiments.

Experimentswereconductedtoevaluatetheeffectofthefollowingparameterson

the quantification of plasmid DNA cleavage via gel electrophoretic assay: gel

electrophoresisbuffer,concentrationofglycerol(.OHradicalscavenger)intheirradiation buffer,irradiationtime,ratiooftheplasmidtoporphyrinforirradiationstudy,agarosegel composition, use of SDS to prevent fluorescence quenching of EtBr by porphyrin, determinationofabasicsitesontheplasmidDNApriortoirradiationandthefreezethaw effectsontheplasmidDNA.

195

5.1. Electrophoresis buffer .

VariousgelelectrophoresisbuffershavebeenusedfortheplasmidDNAdamage

quantification,irrespectiveofthetypeofphotosensitizerandtheirradiationsource.Some

ofthecommonbuffersusedareTAE(Barry etal.,2002;HerguetaBravoetal.,2002;

Yangetal.,2004;Jin&Cowan,2005;Sissietal., 2005), TBE (Benimetskaya et al.,

1998; Benimetskaya et al., 1998; Leloup et al., 2005b) and Trisborate (Anzai et al.,

2006).BothTAEandTBEwereusedfortheDNAdamagequantification.Nosignificant

differenceintheDNAdamageessaywasobservedbetweenthetwobuffersystems.The

studywasthencarriedoutwithTAEbuffer.

5.2. Addition of scavengers .

DNA damage results from both direct (effect of the xrays themselves) and

indirect(resultingfrom .OHradicalsproducedbytheradiolysisofwatersurroundingthe

DNA)effects(Blok&Loman,1973).Avarietyof .OHradicalscavengershasbeenin radiation studies of plasmid DNA. The scavenging capacities of these scavengers at various concentrations have been reported (Klimczaketal.,1993).Themostcommon

OHradicalscavengersareDMSO(Povirketal.,1977;Wolfetal.,1993;Yamakawaet al.,2001;Laineetal.,2004;Lobachevskyetal.,2004;Maedaetal.,2004)andglycerol

(Klimczaketal.,1993;Blaisdelletal.,2001;Laineetal.,2004;Leloupetal.,2005a).

Other scavengers include methanol (Klimczak et al., 1993; Laine et al., 2004), Tris

(Klimczak et al., 1993; Gulston et al., 2002), sodium formate (Milligan et al., 2000), sodiumazide(Jiaetal.,2006)andsodiumthiosulfate(Banfietal.,2003).Inthisstudy, theeffectof2and200mMglyceroland200mMTris buffer on DNA damage were 196

evaluated(SectionII).Thelattertwoconditionswerechosentomimictheinteriorofthe

cell (Leloup et al., 2005c). The cleavage patterns with the two scavengers were very

similartothatobservedwithoutscavengers.However,tentimesmoreirradiationtime

wasneededwith200mMglycerolorwith200mMTrisbufferthanwith2mMglycerol

asscavengerintheirradiationbuffer,togivethesameextentofcleavage.Tominimize

irradiationtime,thusitwasdecidedtoperformthestudywith2mMglycerol.

5.3. Irradiation time .

DNAdamagebyssbincreaseslinearlywithradiationdose(Freifelder&Trumbo,

1969;Bopp&Hagen,1970;Siddiqi&Bothe,1987;Krischetal.,1991;Klimczaketal.,

1993).Inthisstudyamixtureofplasmidandbufferalone(noporphyrin)wasirradiated

up to 1000 s (Figure 3.4) . After ~ 300 s significant fragmentation of plasmid was

observed.Therefore,toavoidsignificantdoublestrandedcleavagefromtheirradiation

alone,themaximumirradiationtimefortherestofthestudywas100150s.

5.4. Gel concentration.

DependingonthesizeoftheDNA,theagarosegelconcentrationwasadjustedfor

thebestseparationofthethreeformsoftheplasmidDNA,OC,LandSC.Inourhands,

a significant effect of the concentration of the agarose was observed. Higher

concentrationsofagarose(1.5%and2%)gaveabetterseparationofthebandsthanlower

concentrations(1%).Thestudywasperformedata1.5%agaroseconcentration.

5.5. Porphyrin:plasmid ratio .

A control experiment was conducted to determine the appropriate porphyrin:plasmidratio(R)tobeusedforthestudy.Inthefirstpartoftheexperiment, 197

using10 Mplasmid,workingwithlowerconcentrationsofZrTMPyP4(0.1,0.5,1.0,3.0

and5.0 M),with4sirradiation,significantshiftingofthebandswasobserved (Figure

3.5) .However, atconcentrationshigherthan1 Mof ZrTMPyP4,banddimmingwas

alsoobserved.At5 MconcentrationofZrTMPyP4bandsweresignificantly dimmed

andshifted.

Inthesecondpartoftheexperiment,theeffectofmuchhigherconcentrationsof bothZrTMPyP4andMoTMPyP4werestudied(datanotshown).Themixturescontained

10 Mplasmidandvaryingconcentrationoftheporphyrin(ZrTMPyP4orMoTMPyP4;

1,5,10,50,1.0,and100 M).ForbothZrTMPyP4andMoTMPyP4,with4sirradiation, band shifting as well as band dimming was observed in the gel assay. At 1 M

concentrationofthebothporphyrins,about50%SC and OC forms were observed. In

case of ZrTMPyP4, no DNA bands were seen at 50 and 100 M concentration of the porphyrin.HenceitwasconcludedthatthemostappropriateRvaluewas0.05,i.e.,1 M porphyrinand20 Mplasmid.

5.6. Band “dimming.”

Aspointedoutabove,theDNAbandsinthepresenceofhigherconcentrationsof

metalloporphyrin were sometimes dim (Figure 3.5) . This might be due to the tight binding of the metalloporphyrin, and hence the inability of the EtBr to completely

displace the metalloporphyrin in the gel. Alternatively, in the case of diamagnetic porphyrins,itmightpartlybeduetothefluorescencequenchingoftheporphyrinbythe

EtBr as has been shown previously (Pasternack et al., 1991). The absorption and

emissionofEtBroverlapstheabsorptionregionofregularporphyrins(390500nm). 198

The λmax forabsorptionofEtBris480nmandthatforemissionis~620nm(Patel&

Canuel,1976).SDS(upto2%)wasaddedtotheloadingdyeofthegelassaystotryto

remove the porphyrin from the DNA and sequester it sothatitwouldnotquenchthe

EtBr. However, it was observed that the presence of SDS did not enhance EtBr

fluorescence.Onthecontrary,insomecasesthebandsweredimmerinthepresenceof

SDS;reasonsforwhicharenotknowntousatthispoint.Wethereforequantitatedthe

effectofthedimmingofthebands,andperformedtheappropriatecorrections(datataken byMs.DijanaPiljakandgiveninherreports).

5.7. Abasic sites in the DNA .

Control experiments were conducted to determine presence of abasic sites

(apurinicorapyrimidinic,APsites)ontheplasmidtobeirradiated.Formationofabasic

sites on the DNA is the most common form of DNA lesions in mammalian cells

(Lhommeetal.,1999).Theabasicsitesareformedwhenthe Nglycosidicbondthatexits between a nucleic acid base and the deoxyribose sugar moiety is cleaved, creating a

“baseless” site (Sugiyama et al., 1994). The abasic sites on the plasmid can cause

significant background cleavage in nonirradiated DNA (Steullet et al., 1999). The presenceofabasicsitesontheplasmidwascheckedbytheadditionofvariableamounts

ofamine(3,3’diaminoNmethyldipropylamine),whichhadbeenshownpreviously by

ourgrouptobeaveryeffectivecleaverofabasicsites(Steulletetal.,1999;McKnightet

al.,2002).

Aspartofthisstudytodeterminethepresenceofabasicsites,inthefirstpartof

thisexperiment,20 Mplasmidwasincubatedat37 oCfor30minwith50,150,250,350 199

and400 Mamine.TheSCformdecreasedandtheOCformincreasedby15%inthe presenceof50 Mamine.Astheconcentrationoftheamineincreased,theOCandSC

forms remained the same within experimental error. In a second experiment, 20 M plasmidwasincubatedat37 oCwith300 Mamineforvariableincubationtimes(0120 min).TheSCformdecreasedandOCformincreasedby14%whenincubatedfor10min.

IncreasingtheincubationtimedidnotseemtoincreasetheOCformordecreasetheSC form.Thesetwoexperimentsindicatedthattherewerenosignificantabasicsitesonthe plasmid(pUC19)DNAthatwasusedforthisstudy.

5.8. Freeze-thaw cycles .

Insomeexperiments,particularlyintimecourseexperiments,reactionmixtures werefrozenforatimebeforethegelelectrophoresiswasperformed.Anexperimentwas conductedtodetermineiftheprocessoffreezingandthawingofthereactionmixtures priortoirradiationinducedanyDNAdamage.Asamplewaspreparedwith20 Mbp plasmidand1 MInTBzPyP4intheirradiationbuffer.Thereactionmixturewasstored at80 oC.Aliquotsweretakenfromthisreactionmixtureeveryhourforfivehours,after thawing the frozen reaction mixture. The aliquots were then stored at 4 oC. It was observedthattheextentofOCformdidnotchangesignificantlyevenwhenthereaction mixturewasthawedafter5hofincubationat80 oC.ThechangeinOCformwasfrom

20to24%from0to5hafterincubationat80 oC.

After conducting the control experiments and optimizing the experimental parameters,itwasdecidedthattheworkingplasmidconcentrationwouldbe20 Mbp

andthatofporphyrinwouldbe1 M.Theporphyrinsolutionsweremadein100 M 200

EDTAtopreventtheinterferenceofanyfreemetalintheporphyrinsolution.Thefinal

irradiationmixturecontained20 Mbpplasmid(pUC19)DNA,1 Mporphyrinin10

mMphosphate (pH 7.0) with 2 mM glycerol. Multiple irradiation times were chosen,

from5150s.

6. Control experiments with InTBzPyP4.

Asoutlinedintheintroduction,studieswith 111 InTMPyP4haveshownthatthis compoundistakenupsomewhatselectivelyintumors(Fosteretal.,1985;Maricetal.,

1988).AnindiumcationicporphyrinhasalsobeenshowntobindtochromosomalDNA inwholecells(Izbickaetal.,1999).Initially,therefore,indiumchelatesseemedexcellent candidatesforPAT.StudiesinDr.BrendaLaster’slaboratory(unpublished)showedthat thebenzylderivativewastakenupintothetrichloroaceticacidinsolublefraction(DNA andhighmolecularweightproteins)ofcellsthemosteffectivelyofanyofthederivatives studied (including also Me, Et, Pr, and Bu). Therefore a number of studies were performedonInTBzPyP4,withaparticularfocusofunderstandinghowthebenzylgroup mightaffecttheDNAbinding,sothatthisunderstandingcouldbeappliedinthefutureto otherbenzylmetalloporphyrinderivatives.

6.1. Cleavage of plasmid DNA with increased contact time with porphyrin followed by irradiation.

Anexperimentwasconductedusingthereactionmixtureof20 Mbpplasmid,1

MInTBzPyP4intheirradiationbuffer(10mMphosphate,pH7.0with2mMglycerol).

Thereactionmixturewasirradiatedsoonafterpreparationforvariableirradiationtimes,

0150s.Inthefirstpartofthisexperiment,anoldbatchofplasmidDNA,whichwas 201

already 33% OC, was used. Upon contact InTBzPyP4, prior to irradiation, the OC

contentincreasedto66%ssb.

Inthesecondpartofthisexperimentarelativelynewerbatchofplasmidwasused

with only 19% OC form originally. With this batch of plasmid the OC form did not

increase in the absence of irradiation. However, upon irradiation up to100 s, the OC

increased from 19% to 72% upon irradiation for 100 s. Thus, it was apparent that

InTBzPyP4 was somehow able to cleave the phosphate backbone in plasmid that had

alreadysustainedsometypeofdamage.

Inthesecondexperimentinthisseries,areactionmixture(20 Mbpplasmid,1

Mporphyrinintheirradiationbuffer)wasirradiated(upto100s)after24hincubation at4 oC.ItwasobservedthattheOCformchangedfrom19%to72%whenirradiatedup to100s.However,thesameeffectwasseenwithreactionmixtureswhichwereprepared just before irradiation. Thus, storage of a plasmid (pUC19) DNA in the presence of porphyrinat4 oCforashortertime(e.g.,24h)didnotresultinplasmiddamage.Inthe absenceofirradiation,theporphyrinalonedidnotseemtoincreasessbordsb,atleast aftera24hperiod.

Inthethirdexperimentinthisseries,thereactionmixture(20 Mbpplasmid,1

Mporphyrinintheirradiationbuffer)wasirradiated(upto100s)aftertwoweeksof incubationat20 oC.Itwasobservedthatpriortoirradiation,theOCformhadchanged from19%to41%.Therefore,contactwiththeporphyrinforextendedperiodsoftime, eveninafrozensolution,resultsinsignificantssb.Uponirradiationaftertwoweeksof incubtion,theplasmidhad70%OCwhenirradiatedfor100s. 202

6.2. Cleavage of plasmid DNA due to presence of abasic sites on the plasmid due to

prolonged contact time with InTBzPyP4 (30 days); checked by addition of variable

amounts of amine (3,3’-diamino-N-methyldipropylamine); no irradiation.

The reaction mixture (20 M bp plasmid, 1 M porphyrin in the irradiation buffer)wasincubatedfor30daysat20 oC.Aftertheincubationperiod,thepresenceof

abasicsitesonplasmidDNAwascheckedbytheadditionof05000 M3,3’diamino

Nmethyldipropylamine.Thereactionmixturecontainingthetriaminewasthenincubated

for30minat37 oC;allsampleswerepreparedandstoredonice.Anincreasedfractionof

OCinthepresenceofthetriamineindicatedthatabasic sites had been created on the

DNAbytheporphyrin, eveninfrozensolution (Figure 3.6) . It was observed that the

OC/SCoftheplasmidbeforeincubationwiththeporphyrinfor30dayswas24/76with nolinearform.Incubationalone,withtheporphyrin,changedtheOCandSCto53%and

46%with~1%linearform.SubsequentadditionoftheaminefurtherincreasedtheOC andSCto77%and19%with4%linearfor50 Mamine.With5000 MtheOCandSC were83%and8%with~10%linearform.

6.3. Cleavage of plasmid DNA due to incubation time (0 - 120 min; 37 oC; no

irradiation).

Additional experiments were performed to evaluate DNA damage induced by

InTBzPyP4priortoirradiation.Aseriesofreactionmixtures(20 Mbpplasmid,1 M porphyrinintheirradiationbuffer)wereincubatedfor0120minat37 oC;allsamples werepreparedandstoredonice.ItwasconcludedthatincubationofplasmidDNAwith1

M InTBzPyP4 up to 120 min did not show significant increase in cleavage. This 203

indicatedthatrelativelylongincubationtimesoftheDNAwiththeporphyrinwasneeded

fortheinductionofsignificantssb.

Overall,itwasconcludedthat InTBzPyP4couldinduce DNA damage, at least partlyduetotheformationofabasicsites,uponprolonged storage in frozen solution.

Themechanismoftheprocessisnotknowntous.However,becausetheeffectdoesnot seemtobesignificantontheusuallaboratorytimescaleofafewhours,thisstudywas not pursued. It should be noted that the irradiated mixture of plasmid (pUC19) DNA shouldbeanalyzedshortlyafterirradiation,andshouldnotbestored,evenfrozen,for lengthyperiodsoftime.

7. Irradiation of plasmid DNA with metalloderivatives of TPyP4.

As an example of the experiments performed, that forRu(CO)TMPyP4willbe discussed (Figure 3.7) . The plasmid alone was irradiated up to 250 sec. A reaction mixture with 20 M plasmid and 1 M Ru(CO)TMPyP4 in irradiation buffer was irradiatedupto150s. Figure 3.7 showsthatthepresenceofporphyrinenhancedDNA damage.DatawerefittothePoissondistribution,usingtheFreifelderTrumboequations

(Freifelder&Trumbo,1969):

fSC =supercoiledform=exp[(n ss +n ds )]

fL=linearform=n ds exp(nds )

fSC +f OC +f L=1

where n ss = average number of single stranded cuts per unit time and n ds = average numberofdoublestrandedcutsperunittime.Rateswereobtainedbymultiplyingn ss and nds by the irradiation time. The data for the fSC and fL were fit simultaneously using 204

2 4 Mathematica;n ss was1.82x10 and nds was1.47x10 .Thus,ssbwere124timesmore

likelytobeformedthandsbforRu(CO)TMPyP4.Forthesamplewithoutporphyrin,nss

2 4 was1.02x10 and nds was3.20x10 ;thus,ssbwere32timesmorelikelytobeformed

thandsb.ItwasclearthattheadditionoftheRu(CO)TMPyP4didnotincreasetheextent

of dsb. However, the extent of ssb is increased by about 80%, indicating that the

rutheniumporphyrinservedasaneffectiveradiosensitizingagent.

Experimentswiththeothermetalloporphyrinswererun analogously. Table 3.3 and Figure 3.8 summarize the results of DNA cleavage in the presence of the

metalloderivativesofTMPyP4.Significantdsbwasnotobservedwithanyofthemetals.

However, substantial ssb was observed. As discussed above, platinum compounds are beinginvestigatedbyothergroupsaspotentialPATcandidates.OurworkshowsthatRu,

andparticularlyZr,arefarmoreeffectiveradiosensitizersthanPt.Thus,theseareworth pursuingaspossiblePATclinicalagents.

Conclusions.

A combination of few metalloderivatives of TMPyP4 (Pd, Ru, and Zr) and radiation was more effective than either by itself in changing the plasmid from predominantly SC to mainly open circular. Zr caused the highest extent of ssb. A combinationofrestofthemetalloderivativesofTMPyP4studied(Ag,InMe,InBzand

Pt)andradiation,wasnoteffectiveinchangingtheplasmidfrompredominantlySCto mainlyopencircular.TheFreifelderTrumboequationsareanappropriatemodelforthe data.TheextenttowhichtheAugereffectcontributestothecellkillingisnotyetknown. 205

Significant prompt double stranded damage was not observed. It was observed that incubationwithInBzPyP4leadupto10%linearform(dsb)cleavingwiththeamineat theinducedabasicsitesduetoprolongedincubation(noirradiationinvolved).

206

Table3.1.Theinnershellenergies(keV)ofthemetalschosenfor irradiation.AllhaveLorKedgeenergiessuitableforirradiation byclinicallyusedbrachytherapyseeds. Edge Transition energies K metals shell (keV)

Pt (L 1) 13.89 Zr 18.00 Mo 20.00 Ru 22.12 Pd 24.35 Ag 25.51 In 27.94

from data at http://www.csrri.iit.edu/periodictable.html

207

Table3.2.RelationshipbetweenXlogPand capillaryelectrophoresismigrationtimes. CE migration R XlogP time (min)

Me 14.99 12.4 Et 17.27 13.3 Pr 19.07 14.2 Bu 20.87 15.1 Bz 20.82 15.3

208

Table3.3.Summaryoftheresultsofplasmid(pUC19)DNAcleavage whenirradiatedinthepresenceofthemetalloderivativesofTMPyP4.

nss nds ratio no metal 1.02E-02 3.20E-04 32 Pt 1.18E-02 2.57E-04 46

Ru 1.82E-02 1.47E-04 124

InMe 7.96E-03 2.05E-04 39

InBz 8.63E-03 2.60E-04 33

Ag 1.10E-02 3.14E-04 35 Pd 1.56E-02 2.88E-04 54 Zr 5.16E-02 1.91E-04 270

209

1.0 duplex InTMPyP4 InTEtPyP4 0.8 InTPrPyP4 InTBuPyP4

0.6

absorbance 0.4

0.2 0.0 5 15 25 35 45 55 65 75 85 95 temperature ( oC) Figure3.1.Thermalmeltingprofilesof10merduplexDNA(5 ′ GCGAATTCGC3′)alone(46.9 oC)andaftercomplexationwiththe alkylderivativesofInTRPyP4(59.0±1 oC).

210

10 propyl ethyl butyl 8

6 methyl

4 benzyl absorbance (mAU) absorbance 2

0 10 12 14 16 18 20 time (min)

Figure3.2.Capillaryelectrophoresisseparationoftheindiumderivatives ofInTRPyP4.Separationconditionsarediscussedintheexperimental.

211

1.0 (a) 0.8

0.5

0.3

0.0 300 400 500 600 700

0.6 (b) absorbance

0.4

0.2 0 300 400 500 600 700 wavelength (nm)

Figure.3.3.UVvisspectraof(a)Zrand(b)ModerivativesofTMPyP4. Theporphyrinsolutionsareinwater(_____)andinpH3.2(______)and 8.1()buffers.

212

Irradiation time (s) 0 EcoRI 5 50 100 300 600 1000

OC L SC

100 OC 80 L SC 60

40 absorbance 20

0 0 100 200 300 400 500 600 irradiation time (s)

Figure3.4.EnhancementofpUC19cleavagewasobservedduetolonger irradiationtimes.Experimentalconditions:20 MpUC19in10mMphosphate buffer(pH7.0)+2mMglycerol;Rhtargettube,50kV,20mA,40Gy/min.

213

[ZrTMPyP4] M 0 0.1 0.5 1.0 3.0 5.0

OC L

SC

Figure3.5.IncreasingporphyrinconcentrationenhancedpUC19Cleavage. “Dimming”ofthebandswasalsoobserved.Experimentalconditions:10 MpUC19in10mMphosphatebuffer(pH7.0)+2mMglycerol;4s irradiation;Rhtargettube,50kV,20mA,40Gy/min.

214

100% 90%

80% 70% OC 60% 50% L

40% form pUC19 SC 30% 20% 10% 0% pUC 0 50 150 250 350 450 1000 2000 3000 4000 5000

[amine] M

Figure3.6.AnincreasedfractionofOCwasobservedbytheadditionof 3,3’diaminoNmethyldipropylaminetoamixtureofplasmid(pUC19) DNAandInTBzPyP4thatwasincubatedfor30days.Thisindicatedthe formationofabasicsitesontheDNAduetotheprolongedincubationwith theporphyrin,eveninafrozensolution(20 oC).Experimentalconditions: 10 MpUC19and1 MInTBzPyP4in10mMphosphatebuffer(pH7.0) +2mMglycerol.

215

a b 1.00 1.00 0.80 0.80 SC SC OC OC 0.60 0.60 L L Exp SC Exp SC fraction fraction 0.40 0.40 Exp OC Exp OC Exp L Exp L 0.20 0.20 0.00 0.00 0 100 200 0 100 200 irradiation time (s) irradiation time (s)

Figure3.7.ExtentsofSC,OCandLformsofpUC19asafunctionof irradiationtime,noporphyrinadded.Reactionswererunin10mM phosphatebufferatpH7.0with2mMglycerol.Linesareglobalfitsofthe datatotheFreifelderTrumboequationsusingMathematica.(a)no porphyrin,(b)1 MRu(CO)TMPyP4.

216

6.0E-02 5.0E-02 DS 4.0E-02 SS 3.0E-02 2.0E-02 1.0E-02 extentof cleavage 0.0E+00 no Pt Ru InMe InBz Ag Pd Zr metal

Figure3.8.Theextentofsinglestrandcutting(ssb)anddouble strandcutting(dsb)andthenss/ndsratioasafunctionofthemetal chelatedintheporphyrin.Unlessotherwisenoted,allporphyrinsare TMPyP4.Experimentalconditionsanddataanalysisaredescribed inthetext.

217

References

Abraham,R.J.,Hawkes,G.H.,Hudson,M.F.,andSmith,K.M.(1975).Thenuclear magneticresonancespectraofporphyrins.PartX.Carbon13nuclearmagnetic resonancespectraofsome meso-tetraarylporphyrinsandtheirmetalchelates. J. Chem. Soc. Perkin Trans. 2 204211.

Ackley,K.L.,Day,J.A.,andCaruso,J.A.(2000).Separationofmetalloporphyrinsby capillaryelectrophoresiswithUVdetectionandinductivelycoupledplasmamass spectrometricdetection. J. Chromatogr. A 888 ,293298.

Adler,A.D.,Longo,F.R.,Finarelli,J.D.,Goldmacher,J.,Assour,J.,andKorsakoff,L. (1967).Asimplifiedsynthesisfor meso tetraphenylporphyrins. J. Org. Chem. 32 ,476.

Akins,D.L.,Ozcelik,S.,Zhu,H.R.,andGuo,C.(1996a).Fluorescencedecaykinetics andstructureofaggregatedtetrakis(psulfonatophenyl)porphyrin. J. Phys. Chem. 100 , 1439014396.

Akins,D.L.,Zhu,H.R.,andGuo,C.(1996b).Aggregationoftetraarylsubstituted porphyrinsinhomogeneoussolution. J. Phys. Chem. 100 ,54205425.

Alla,V.andBonkovsky,H.L.(2005).Ironinnonhemochromatoticliverdisorders. Semin. Liver Dis. 25 ,461472.

Allen,C.M.,Sharman,W.M.,andvanLier,J.E.(2001).Currentstatusof phthalocyaninesinthephotodynamictherapyofcancer. J. Porph. Phthalo. 5,161169.

Alonso,M.C.,Castillo,M.,andBarceló,D.(1999).Solidphaseextractionprocedureof polarbenzeneandnaphthalenesulfonatesinindustrialeffluentsfollowedbyunequivocal determinationwithionpairchromatography/electrospraymassspectrometry. Anal. Chem. 71 ,25862593.

Amaral,C.L.C.andPoliti,M.J.(1997).Effectofureaonthedimerizationequilibrium ofnickeltetrasulfonatedphthalocyanineinbulkandinthehydrophiliccompartmentof AOTreversedmicelles. Langmuir 13 ,42194222.

Ambroz,M.,Beeby,A.,MacRobert,A.J.,Simpson,M.S.,Svensen,R.K.,andPhillips, D.(1991).Preparative,analyticalandfluorescencespectroscopicstudiesofsulphonated aluminiumphthalocyaninephotosensitizers. J. Photochem. Photobiol. B 9,8795. 218

Andrighetto,P.,Carofiglio,T.,Fornasier,R.,andTonellato,U.(2000).Capillary electrophoresisbehaviorofwatersolubleanionicporphyrinsinthepresenceof β cyclodextrinanditsOmethylatedderivatives. Electrophoresis 21 ,619626.

Anzai,K.,Ueno,M.,Yoshida,A.,Furuse,M.,Aung,W.,Nakanishi,I.,Moritake,T., Takeshita,K.,andIkota,N.(2006).Comparisonofstablenitroxide,3substituted2,2,5,5 tetramethylpyrrolidineNoxyls,withrespecttoprotectionfromradiation,preventionof DNAdamage,anddistributioninmice. Free Radic. Biol. Med. 40 ,11701178.

Arnold,K.,Balaban,T.S.,Blom,M.N.,Ehrler,O.T.,Gilb,S.,Hampe,O.,vanLier,J. E.,Weber,J.M.,andKappes,M.M.(2003).Electronautodetachmentfromisolated nickelandcopperphthalocyaninetetrasulfonatetetraanions:Isomerspecificrates. J. Phys. Chem. A 107 ,794803.

Asanaka,M.,Kurimura,T.,Toya,H.,Ogaki,J.,andKato,Y.(1989).AntiHIVactivity ofprotoporphyrin. AIDS 3,403404.

Banfi,S.,Cassani,E.,Caruso,E.,andCazzaro,M.(2003).Oxidativecleavageofplasmid bluescriptbywatersolubleMnporphyrinsandartificialoxidantsormolecularoxygen. Bioorg. Med. Chem. 11 ,35953605.

Barbosa,C.A.S.,Constantino,V.R.L.,andTavares,M.F.M.(1997).Useofcapillary electrophoresisinthecharacterizationofsulfonatedmetallophthalocyanines:A comparativeevaluationofpurificationproceduresfollowingsynthesisbythe condensationmethod. J. Capillary Electrophor. 4,157166.

Barry,C.G.,Turney,E.C.,Day,C.S.,Saluta,G.,Kucera,G.L.,andBierbach,U. (2002).ThermallyinertmetalamminesaslightinducibleDNAtargetedagents. Synthesis,photochemistry,andphotobiologyofaprototypicalrhodium(III)intercalator conjugate. Inorg. Chem. 41 ,71597169.

Beeby,A.,Bishop,S.M.,Khoo,B.J.,MacRobert,A.J.,andPhillips,D.(1992). Chemicalandspectroscopiccharacterizationofdisulphonatedaluminumphthalocyanine. In "PhotodynamicTherapyandBiomedicalLasers:ProceedingsoftheInternational ConferenceonPhotodynamicTherapyandMedicalLaserApplications"(P.Spinelli,M. DalFante,andR.Marchesini,Eds.),pp.845850.ElsevierScience,Amsterdam.

Beeby,A.,FitzGerald,S.,andStanley,C.F.(2001).Protonationoftetrasulfonatedzinc phthalocyanineinaqueousacetonitrilesolution. Photochem. Photobiol. 74 ,566569.

BenHur,E.,Barshtein,G.,Chen,S.,andYedgar,S.(1997).Photodynamictreatmentof redbloodcellconcentratesforvirusinactivationenhancesredbloodcellaggregation: Protectionwithantioxidants. Photochem. Photobiol. 66 ,509512. 219

Benimetskaya,L.,Takle,G.B.,Vilenchik,M.,Lebedeva,I.,Miller,P.,andStein,C.A. (1998).Cationicporphyrins:noveldeliveryvehiclesforantisenseoligodeoxynucleotides. Nucleic Acids Res. 26 ,53105317.

Blaisdell,J.O.,Harrison,L.,andWallace,S.S.(2001).Baseexcisionrepairprocessing ofradiationinducedclusteredDNAlesions. Radiat. Prot. Dosimetry 97 ,2531.

Blok,J.andLoman,H.(1973).TheeffectsofgammaradiationinDNA. Curr. Top. Radiat. Res. Q. 9,165245.

Bopp,A.andHagen,U.(1970).EndgroupdeterminationingammairradiatedDNA. Biochim. Biophys. Acta. 209 ,320326.

Bowser,M.T.,Sternberg,E.D.,andChen,D.D.Y.(1996).Developmentand applicationofanonaqueouscapillaryelectrophoresissystemfortheanlysisofporphyrins andtheiroligomers(PHOTOFRIN). Anal. Biochem. 241 ,143150.

Bradshaw,W.W.,Cadena,D.G.,Jr.,Crawford,G.W.,andSpetzler,H.A.(1962).The useofalanineasasoliddosimeter. Radiat. Res. 17:11-21. ,1121.

Brasseur,N.,Ali,H.,Langlois,R.,andvanLier,J.E.(1988).Biologicalactivitiesof phthalocyaninesIX.PhotosensitizationofV79chinesehamstercellsandEMT6mouse mammarytumorbyselectivelysulfonatedzincphthalocyanines. Photochem. Photobiol. 47 ,705711.

Brasseur,N.,Ali,H.,Langlois,R.,Wagner,J.R.,Rousseau,J.,andvanLier,J.E. (1987a).BiologicalactivitiesofphthalocyaninesV.PhotodynamictherapyofEMT6 mammarytumorsinmicewithsulfonatedphthalocyanines.Photochem. Photobiol. 45 , 581586.

Brasseur,N.,Ali,H.,Langlois,R.,Wagner,J.R.,Rousseau,J.,andvanLier,J.E. (1987b).BiologicalactivitiesofphthalocyaninesV.PhotodynamictherapyofEMT6 mammarytumorsinmicewithsulfonatedphthalocyanines. Photochem. Photobiol. 45 , 581586.

Brasseur,N.,Ali,H.,Langlois,R.,Wagner,J.R.,Rousseau,J.,andvanLier,J.E. (1987c).BiologicalactivitiesofphthalocyaninesV.PhotodynamictherapyofEMT6 mammarytumorsinmicewithsulfonatedphthalocyanines. Photochem. Photobiol. 45 , 581586.

Brasseur,N.,Ali,H.,Langlois,R.,Wagner,J.R.,Rousseau,J.,andvanLier,J.E. (1987d).BiologicalactivitiesofphthalocyaninesV.PhotodynamictherapyofEMT6 mammarytumorsinmicewithsulfonatedphthalocyanines. Photochem. Photobiol. 45 , 581586. 220

Bressan,M.,Celli,N.,d'Alessandro,N.,Liberatore,L.,Morvillo,A.,andTonucci,L. (2000).Rutheniumsulfophthalocyaninecatalystfortheoxidationofchlorinatedolefins withhydrogenperoxide. J. Organometal. Chem. 594 ,416420.

Buchler,J.W.(1975).Staticcoordinationchemistryofmetalloporphyrins. In "Porphyrins andMetalloporphyrins"(K.M.Smith,Ed.),pp.157231.Elsevier,NewYork.

Cabrera,C.,Witvrouw,M.,Gutierrez,A.,Clotet,B.,Kuipers,M.E.,Swart,P.J.,Meijer, D.K.,Desmyter,J.,DeClercq,E.,andEste,J.A.(1999).Resistanceofthehuman immunodeficiencyvirustotheinhibitoryactionofnegativelychargedalbuminsonvirus bindingtoCD4. AIDS Res. Hum. Retroviruses 20 ,15351543.

Cerfontain,H.,KoebergTelder,A.,Laali,K.,Lambrechts,H.J.A.,anddeWit,P. (1982).Aromaticsulfonation85.Halogendirectingandstericeffectsinthesulfonation ofthetwelvehalogenotoluenesandsomerelatedcompounds. Rec. Trav. Chim. Pays-Bas 101 ,390392.

Cerfontain,H.,KoebergTelder,A.,vanLindert,H.C.A.,andBakker,B.H.(1997). Aromaticsulfonation131.Formationofsulfonicacidsandsulfonicanhydridesinthe sulfurtrioxidesulfonationofsomedialkylbenzenesand1,omegadiarylalkanes. Liebigs Ann. /Recl. 22272233.

Cerfontain,H.,Zou,Y.S.,andBakker,B.H.(1994a).Onthepositionalreactivityorder inthesulfonationofphenylsubstitutedandnaphthylsubstitutednaphthaleneswithSO 3. Rec. Trav. Chim. Pays-Bas 113,517523.

Cerfontain,H.,Zou,Y.S.,andBakker,B.H.(1994b).Thepositionalreactivityorderin thesulfurtrioxidesulfonationofbenzeneandnaphthalenederivativescontainingan electronwithdrawingsubstituent. Rec. Trav. Chim. Pays-Bas 113 ,403410.

Chackerian,B.,Long,E.M.,Luciw,P.A.,andOverbaugh,J.(1997).Human immunodeficiencyvirustype1coreceptorsparticipateinpostentrystagesinthevirus replicationcycleandfunctioninsimianimmunodeficiencyvirusinfection. J. Virol. 71 , 39323939.

Chatgilialoglu,C.andO'Neill,P.(2001).FreeradicalsassociatedwithDNAdamage. Exp. Gerontol. 36 ,14591471.

Chen,M.H.andDing,W.H.(2004).Separationandmigrationbehaviorofpositional andstructuralnaphthalenesulfonateisomersbycyclodextrinmediatedcapillary electrophoresis. J. Chromatogr. A 1033 ,167172.

ChenCollins,A.R.M.,Dixon,D.W.,Vzorov,A.N.,Marzilli,L.G.,andCompans,R. W.(2003).Preventionofpoxvirusinfectionbytetrapyrroles. BMC Infect. Dis. 3,9. 221

Chiang,S.C.C.andLi,S.F.Y.(1997).Separationofporphyrinsbycapillary electrophoresisinfusedsilicaandethylenevinylacetatecopolymercapillarieswith visibleabsorbancedetection. Biomed. Chromatogr. 11 ,366370.

Christensen,N.H.(1966).Kineticstudiesofthehydrolysisofaromaticsulfonic anhydrides. Acta Chem. Scand. 20 ,19551964.

Cole,A.(1969).Absorptionof20eVto50,000eVelectronbeamsinairandplastic. Radiat. Res. 38 ,733.

Conneely,A.,McClean,S.,Smyth,W.F.,andMcMullan,G.(2001).Studyofthemass spectrometricbehaviourofphthalocyanineandazodyesusingelectrosprayionisationand matrixassistedlaserdesorption/ionisation. Rapid Commun. Mass Spectrom. 15 ,2076 2084.

Conneely,A.,Smyth,W.F.,andMcMullan,G.(2002).Studyofthewhiterotfungal degradationofselectedphthalocyaninedyesbycapillaryelectrophoresisandliquid chromatography. Anal. Chim. Acta 451 ,259270.

Cormier,E.G.andDragic,T.(2002).ThecrownandstemoftheV3loopplaydistinct rolesinhumanimmunodeficiencyvirustype1envelopeglycoproteininteractionswith theCCR5coreceptor. J. Virol. 76 ,89538957.

Corsini,A.andHerrmann,O.(1986).Aggregationof meso tetra( p sulphonatophenyl)porphineanditsCu(II)andZn(II)complexesinaqueoussolution. Talanta 33 ,335339.

D'Cruz,O.J.andUckun,F.M.(2004).Clinicaldevelopmentofmicrobicidesforthe preventionofHIVinfection. Curr. Pharm. Des. 10 ,315336.

Dairou,J.,VeverBizet,C.,andBrault,D.(2004).Interactionofsulfonatedanionic porphyrinswithHIVglycoproteingp120:Photodamagesrevealedbyinhibitionof antibodybindingtoV3andC5domains. Antiviral Res. 61 ,3747.

Dalgleish,A.G.,Beverley,P.C.,Clapham,P.R.,Crawford,D.H.,Greaves,M.F.,and Weiss,R.A.(1984).TheCD4(T4)antigenisanessentialcomponentofthereceptorfor theAIDSretrovirus. Nature 312 ,763767.

DeClercq,E.(2002).Strategiesinthedesignofantiviraldrugs. Nat. Rev. Drug Discov. 1,1325.

Debije,M.G.,Razskazovskiy,Y.,andBernhard,W.A.(2001).Theyieldofstrand breaksresultingfromdirecttypeeffectsincrystallineDNAXirradiatedat4Kandroom temperature. J. Am. Chem. Soc. 123 ,29172918. 222

Debnath,A.K.,Jiang,S.,Strick,N.,Lin,K.,Haberfield,P.,andNeurath,A.R.(1994). Threedimensionalstructureactivityanalysisofaseriesofporphyrinderivativeswith antiHIV1activitytargetedtotheV3loopofthegp120envelopeglycoproteinofthe humanimmunodeficiencyvirustype1. J. Med. Chem. 37 ,10991108.

Debnath,A.K.,Jiang,S.B.,Strick,N.,Lin,K.,Kahl,S.B.,andNeurath,A.R.(1999). AntiHIV1activityofcarboranederivativesofporphyrins. Med. Chem. Res. 9,267275.

DeCamp,D.L.,Babé,L.M.,Salto,R.,Lucich,J.L.,Koo,M.S.,Kahl,S.B.,andCraik, C.S.(1992).SpecificinhibitionofHIV1proteasebyboronatedporphyrins. J. Med. Chem. 35 ,34263428.

Dettin,M.,Ferranti,P.,Scarinci,C.,Picariello,G.,andDiBello,C.(2003).IstheV3 loopinvolvedinHIVbindingtoCD4? Biochemistry 42 ,90079012.

Dixon,D.W.,Gill,A.F.,Giribabu,L.,Vzorov,A.N.,Alam,A.B.,andCompans,R.W. (2005).SulfonatednaphthylporphyrinsasagentsagainstHIV. J. Inorg. Biochem. 99 , 813821.

Dixon,D.W.,Gill,A.F.,andSook,B.R.(2004).Characterizationofsulfonated phthalocyaninesbymassspectrometryandcapillaryelectrophoresis. J. Porph. Phthalo. 8,13001310.

Dixon,D.W.,Kim,M.S.,Kumar,V.,Obara,G.,Marzilli,L.G.,andSchinazi,R.F. (1992).Aminoandhydroxytetraphenylporphyrinswithactivityagainstthehuman immunodeficiencyvirus. Antiviral Chem. Chemother. 3,279282.

Dixon,D.W.,Marzilli,L.G.,andSchinazi,R.F.(1990).Porphyrinsasagentsagainst thehumanimmunodeficiencyvirus. Ann. N. Y. Acad. Sci. 616 ,511513.

Dixon,D.W.,Pu,G.M.,andWojtowicz,H.(1998).Capillaryelectrophoreticseparation ofcationicporphyrins. J. Chromatogr. A 802 ,367380.

Dolphin,D.(1978).Nomenclature. In "ThePorphyrins:StructureandSynthesis,PartA." pp.127.AcademicPressInc.,NewYork.

Dudic,M.,Lhoták,P.,Král,V.,Lang,K.,andStibor,I.(1999).Synthesisofnovel porphyrinbasedbiscalix[4]arenes. Tetrahedron Lett. 40 ,59495952.

ElHachemi,Z.,Farrera,J.A.,GarcíaOrtega,H.,RamirezGutierrez,O.,andRibó,J.M. (2001).Heteroassociationof meso sulfonatophenylporphyrinswith βand γcyclodextrin. J. Porph. Phthalo. 5,465473.

Este,J.A.,Schols,D.,DeVreese,K.,VanLaethem,K.,Vandamme,A.M.,Desmyter, J.,andDeClercq,E.(1997).Developmentofresistanceofhumanimmunodeficiency 223

virustype1todextransulfateassociatedwiththeemergenceofspecificmutationsinthe envelopegp120glycoprotein. Mol. Pharmacol. 52 ,98104.

Fairchild,R.G.,Brill,A.B.,andEttinger,K.V.(1982a).Radiationenhancementwith iodinateddeoxyuridine. Invest Radiol. 17 ,407416.

Fairchild,R.G.,Brill,A.B.,andEttinger,K.V.(1982b).Radiationenhancementwith iodinateddeoxyuridine. Invest Radiol. 17 ,407416.

Falk,J.E.(1964).GeneralChemistry. In "Porphyrinsandmetalloporphyrins"Vol.2,pp. 329.Elsevier,Amsterdam.

Fasman,G.D.(1975)."HandbookofBiochemistryandMolecularBiology:Nucleic Acids."CRCPress,BocaRaton.

Fingar,V.H.,Wieman,J.T.,Karavolos,P.S.,WeberDoak,K.,Ouellet,R.,andvan Lier,J.E.(1993).Theeffectsofphotodynamictherapyusingdifferentlysubstitutedzinc phthalocyaninesonvesselconstriction,vesselleakageandtumorresponse. Photochem. Photobiol. 58 ,251258.

Fischer,J.,Jandera,P.,Cesla,P.,andStanek,V.(2003).Separationofaromatic sulphonicacidsbyCZEincoatedandnoncoatedcapillaries. J. Sep. Sci. 26 ,10351044.

Fleischer,E.B.,Chapman,R.D.,andKrishnamurthy,M.(1979).Synthesisandoxidative demetalationoftwonewtungstenporphyrins. Inorg. Chem. 18 ,21562159.

Fleischer,E.B.,Palmer,J.M.,Srivastava,T.S.,andChatterjee,A.(1971). Thermodynamicandkineticpropertiesofanironporphyrinsystem. J. Am. Chem. Soc. 93 ,31623167.

Fonda,H.N.,Gilbert,J.V.,Cormier,R.A.,Sprague,J.R.,Kamioka,K.,andConnolly, J.S.(1993).Spectroscopic,photophysical,andredoxpropertiesofsome meso substituted freebaseporphyrins. J. Phys. Chem. 97 ,70247033.

Foster,N.,Woo,D.V.,Kaltovich,F.,Emrich,J.,andLjungquist,C.(1985).Delineation oftransplantedmalignantmelanomawithindium111labeledporphyrin. J. Nucl. Med. 26 ,756760.

FrankenbergSchwager,M.(1990).Induction,repairandbiologicalrelevanceof radiationinducedDNAlesionsineukaryoticcells.Radiat. Environ. Biophys. 29 ,273 292.

Freifelder,D.andTrumbo,B.(1969).Matchingofsinglestrandbreakstoformdouble strandbreaksinDNA. Biopolymers 7,681. 224

Gallaher,W.R.,Ball,J.M.,Garry,R.F.,MartinAmedee,A.M.,andMontelaro,R.C. (1995).AgeneralmodelforthesurfaceglycoproteinsofHIVandotherretroviruses. AIDS Res. Hum. Retroviruses 11 ,191202.

GarciaCampana,A.M.,GamizGracia,L.,Baeyens,W.R.G.,andBarrero,F.A. (2003).Derivatizationofbiomoleculesforchemiluminescentdetectionincapillary electrophoresis. J Chromatogr. B. 793 ,4974.

George,R.G.andPadmanabhan,M.(2003).Studiesonsomenew meso arylsubstituted octabromoporphyrinsandtheirZn(II)derivatives.Polyhedron 22 ,31453154.

Georgiou,G.N.,Ahmet,M.T.,Houlton,A.,Silver,J.,andCherry,R.J.(1994). Measurementoftherateofuptakeandsubcellularlocalizationofporphyrinsincells usingfluorescencedigitalimagingmicroscopy. Photochem. Photobiol. 59 ,419422.

Gibbs,E.J.,Skowronek,W.R.,Jr.,Morgan,W.T.,MullerEberhard,U.,andPasternack, R.F.(1980).Reactionsofwatersolublemetalloporphyrinswiththeserumprotein, hemopexin. J. Am. Chem. Soc. 102 ,39393944.

Gubitz,G.andSchmid,M.G.(1997).Chiralseparationprinciplesincapillary electrophoresis.Review. J. Chromatogr. A 792 ,179225.

Gulston,M.,Fulford,J.,Jenner,T.,deLara,C.,andO'Neill,P.(2002).ClusteredDNA damageinducedbyradiationinhumanfibroblasts(HF19),hamster(V794)cellsand plasmidDNAisrevealedasFpgandNthsensitivesites. Nucleic Acids Res. 30 ,3464 3472.

Hafliger,P.,Agorastos,N.,Spingler,B.,Georgiev,O.,Viola,G.,andAlberto,R.(2005). InductionofDNAdoublestrandbreaksbyaugerelectronsfrom99mTccomplexeswith DNAbindingligands. Chembiochem. 6,414421.

Halkiotis,K.,Yova,D.,andPantelias,G.(1999).Invitroevaluationofthegenotoxicand clastogenicpotentialofphotodynamictherapy. Mutagenesis 14 ,193198.

Hamai,S.andKoshiyama,T.(1999).Electronicabsorption,fluorescence,andcircular dichroismspectroscopicstudiesontheinclusioncomplexesoftetrakis(4 sulfonatophenyl)porphyrinwithcyclodextrinsinbasicaqueoussolutions. J. Photochem. Photobiol. A 127 ,135141.

Hamai,S.,Sasaki,Y.,Hori,T.,andTakahashi,A.(2006).Interactionsoftetrakis(4 sulfonatophenyl)porphyrinwithgammacyclodextrinandalkyltrimethylammonium bromidesinaqueoussolutions. J. Incl. Phen. Mac. Chem. 54 ,6776. 225

Hamai,S.andSatou,H.(2001).Effectsofcyclodextrinsonthecomplexationbetween MethyleneBlueandtetrakis(4sulfonatophenyl)porphyrininaqueoussolutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57 ,17451750.

Hambright,P.(2000).Chemistryofwatersolubleporphyrins. In "ThePorphyrin Handbook"(K.M.Kadish,K.M.Smith,andR.Guilard,Eds.),Vol.3,pp.129210. AcademicPress,SanDiego.

Hambright,P.,Adeyemo,A.,Shamim,A.,andLemelle,S.(1985).[[4,4',4'',4''' Porphyrin5,10,15,20tetrayltetrakis(1methylpyridiniumato(2)]indium(III) pentaperchlorate. Inorg. Synth. 23 ,5559.

Hanyz,I.andWrobel,D.(2002).TheinfluenceofpHonchargedporphyrinsstudiedby fluorescenceandphotoacousticspectroscopy. Photochem. Photobiol. Sci. 1,126132.

Harriman,A.,Richoux,M.C.,andNeta,P.(1983).Redoxchemistryof metalloporphyrinsinaqueoussolution. J. Phys. Chem. 87 ,49574965.

Harrison,P.F.,Rosenberg,Z.,andBowcut,J.(2003).Topicalmicrobicidesfordisease prevention:Statusandchallenges. Clin. Infect. Dis. 36 ,12901294.

Hartmann,M.,Robert,A.,Duarte,V.,Keppler,B.K.,andMeunier,B.(1997).Synthesis ofwatersolublerutheniumporphyrinsasDNAcleaversandpotentialcytotoxicagents. J. Biol. Inorg. Chem. 2,427432.

HerguetaBravo,A.,JimenezHernandez,M.E.,Montero,F.,Oliveros,E.,andOrellana, G.(2002).SingletoxygenmediatedDNAphotocleavagewithRu(II)polypyridyl complexes. J. Phys. Chem. B 106 ,40104017.

Herrmann,O.,Mehdi,S.H.,andCorsini,A.(1978).Heterogeneousmetalinsertion:A novelreactionwithporphyrins. Can. J. Chem. 56 ,10841087.

Hertzberg,R.P.andDervan,P.B.(1982).CleavageofdoublehelicalDNAby (methidiumpropylEDTA)iron(II). J. Am. Chem. Soc. 104 ,313315.

Hoffmann,P.,Labat,G.,Robert,A.,andMeunier,B.(1990).Highlyselective brominationoftetramesitylporphyrin:Aneasyaccesstorobustmetalloporphyrins,M Br 8TMPandMBr 8TMPS.Examplesofapplicationincatalyticoxygenationand oxidationreactions. Tetrahedron Lett. 31 ,19911994.

Howe,L.andZhang,J.Z.(1997).Ultrafaststudiesofexcitedstatedynamicsof phthalocyanineandzincphthalocyaninetetrasulfonateinsolution. J. Phys. Chem. A 101 , 32073213. 226

Howe,L.andZhang,J.Z.(1998).Theeffectofbiologicalsubstratesontheultrafast excitedstatedynamicsofzincphthalocyaninetetrasulfonateinsolution. Photochem. Photobiol. 67 ,9096.

Ion,R.M.(1999).Spectralanalysisoftheporphyrinsincorporationintohumanblood. J. Biomed. Optics 4,319326.

Ion,R.M.,Planner,A.,Wiktorowicz,K.,andFrackowiak,D.(1998).Theincorporation ofvariousporphyrinsintobloodcellsmeasuredviaflowcytometry,absorptionand emissionspectroscopy. Acta Biochim. Pol. 45 ,833845.

Izbicka,E.,Wheelhouse,R.T.,Raymond,E.,Davidson,K.K.,Lawrence,R.A.,Sun,D., Windle,B.E.,Hurley,L.H.,andVonHoff,D.D.(1999).Effectsofcationicporphyrins asGquadruplexinteractiveagentsinhumantumorcells. Cancer Res. 59 ,639644.

Jia,T.,Jiang,Z.X.,Wang,K.,andLi,Z.Y.(2006).Bindingandphotocleavageof cationicporphyrinphenylpiperazinehybridstoDNA. Biophys. Chem. 119 ,295302.

Jimenez,H.R.,Julve,M.,andFaus,J.(1991).Asolutionstudyoftheprotonationand deprotonationequilibriaof5,10,15,20tetra( psulphonatophenyl)porphyrin.Stability constantsofitsmagnesium(II),copper(II)andzinc(II)complexes. J. Chem. Soc. Dalton Trans. 19451949.

Jin,Y.andCowan,J.A.(2005).DNAcleavagebycopperATCUNcomplexes.Factors influencingcleavagemechanismandlinearizationofdsDNA. J. Am. Chem. Soc. 127 , 84088415.

Kadish,K.M.,Maiya,G.B.,Araullo,C.,andGuilard,R.(1989).Micellareffectsonthe aggregationoftetraanionicporphyrins.Spectroscopiccharacterizationoffreebase meso tetrakis(4sulfonatophenyl)porphyrin,(TPPS)H2,and(TPPS)M(M=Zn(II),Cu(II), VO2+)inaqueousmicellarmedia. Inorg. Chem. 28 ,27252731.

Kalny,D.,AlbrechtGary,A.M.,andHavel,J.(2001).Highlysensitivemethodfor palladium(II)determinationasaporphyrinatocomplexbycapillaryzoneelectrophoresis. Analytica Chimica Acta 439 ,101105.

Kalyanasundaram,K.andNeumannSpallart,M.(1982).Photophysicalandredox propertiesofwatersolubleporphyrinsinaqueousmedia. J. Phys. Chem. 86 ,51635169.

Kassis,A.I.(2003).CancertherapywithAugerelectrons:Arewealmostthere? J. Nucl. Med. 44 ,14791481.

Kassis,A.I.(2004).TheamazingworldofAugerelectrons. Int. J. Radiat. Biol. 80 ,789 803. 227

Kessel,D.,Luguya,R.,andVicente,M.G.(2003).Localizationandphotodynamic efficacyoftwocationicporphyrinsvaryinginchargedistributions. Photochem. Photobiol. 78 ,431435.

Kessel,D.andPoretz,R.D.(2000).Sitesofphotodamageinducedbyphotodynamic therapywithachlorine6triacetoxymethylester(CAME). Photochem. Photobiol. 71 ,94 96.

Kiyohara,C.,Saito,K.,andSuzuki,N.(1993).Micellarelectrokineticcapillary chromatographyofhaematoporphyrin,protoporphyrinandtheircopperandzinc complexes. J. Chromatogr. 646 ,397403.

Klimczak,U.,Ludwig,D.C.,Mark,F.,Rettberg,P.,andSchulteFrohlinde,D.(1993). IrradiationofplasmidandphageDNAinwateralcoholmixtures.Strandbreaksand lethaldamageasafunctionofscavengerconcentration. Int. J. Radiat. Biol. 64 ,497510.

Krisch,R.E.,Flick,M.B.,andTrumbore,C.N.(1991).Radiationchemicalmechanisms ofsingleanddoublestrandbreakformationinirradiatedSV40DNA. Radiat. Res. 126 , 251259.

Kudrevich,S.V.,Brasseur,N.,LaMadeleine,C.,Gilbert,S.,andvanLier,J.E.(1997). Synthesesandphotodynamicactivitiesofnoveltrisulfonatedzincphthalocyanine derivatives. J. Med. Chem. 40 ,38973904.

Kuznetsova,N.A.,Gretsova,N.S.,Derkacheva,V.M.,Kaliya,O.L.,andLuk'yanets,E. A.(2003).Sulfonatedphthalocyanines:Aggregationandsingletoxygenquantumyieldin aqueoussolutions. J. Porph. Phthalo. 7,147154.

Laine,M.,Richard,F.,Tarnaud,E.,BiedCharreton,C.,andVerchereBeaur,C.(2004). Synthesisofnoveltypesofcopperbipyridylporphyrinsandcharacterizationoftheir interactionsandreactivitywithDNA.J Biol. Inorg. Chem. 9,550562.

Langley,R.andHambright,P.(1985).Kineticsofthereductionofmanganese(III) porphyrinsbyhexaammineruthenium(II):Areductiveacidsolvolysismechanism. Inorg. Chem. 24 ,12671269.

Laster,B.H.,Thomlinson,W.C.,andFairchild,R.G.(1993).Photonactivationof iododeoxyuridine:biologicalefficacyofAugerelectrons. Radiat. Res. 133 ,219224.

Leloup,C.,Garty,G.,Assaf,G.,Cristovao,A.,Breskin,A.,Chechik,R.,Shchemelinin, S.,PazElizur,T.,Livneh,Z.,Schulte,R.W.,Bashkirov,V.,Milligan,J.R.,and Grosswendt,B.(2005c).EvaluationoflesionclusteringinirradiatedplasmidDNA. Int. J. Radiat. Biol. 81 ,4154. 228

Leloup,C.,Garty,G.,Assaf,G.,Cristovao,A.,Breskin,A.,Chechik,R.,Shchemelinin, S.,PazElizur,T.,Livneh,Z.,Schulte,R.W.,Bashkirov,V.,Milligan,J.R.,and Grosswendt,B.(2005a).EvaluationoflesionclusteringinirradiatedplasmidDNA. Int. J. Radiat. Biol. 81 ,4154.

Leloup,C.,Garty,G.,Assaf,G.,Cristovao,A.,Breskin,A.,Chechik,R.,Shchemelinin, S.,PazElizur,T.,Livneh,Z.,Schulte,R.W.,Bashkirov,V.,Milligan,J.R.,and Grosswendt,B.(2005b).EvaluationoflesionclusteringinirradiatedplasmidDNA. Int. J. Radiat. Biol. 81 ,4154.

Levere,R.D.,Gong,Y.F.,Kappas,A.,Bucher,D.J.,Wormser,G.P.,andAbraham,N. G.(1991).Hemeinhibitshumanimmunodeficiencyvirus1replicationincellcultures andenhancestheantiviraleffectofzidovudine. Proc. Natl. Acad. Sci. USA 88 ,1756 1759.

Leznoff,C.C.andLever,A.B.P.(1989)."Phthalocyanines:PropertiesandApplications VolI."NewYork,NY.

Leznoff,C.C.andLever,A.B.P.(1993)."Phthalocyanines:PropertiesandApplications VolIII."VCH,NewNork.

Lhomme,J.,Constant,J.F.,andDemeunynck,M.(1999).AbasicDNAstructure, reactivity,andrecognition. Biopolymers 52 ,6583.

Li,Q.,Chang,C.K.,andHuie,C.W.(2005).Investigationofsolventeffectsincapillary electrophoresisfortheseparationofbiologicalporphyrinmethylesters. Electrophoresis. 26 ,33493359.

Lim,C.K.,Razzaque,M.A.,Luo,J.L.,andFarmer,P.B.(2000).Isolationand characterizationofprotoporphyringlycoconjugatesfromratHarderianglandbyHPLC, capillaryelectrophoresisandHPLC/electrosprayionizationMS. Biochem. J. 347 ,757 761.

Lindsey,J.S.,Schreiman,I.C.,Hsu,H.C.,Kearney,P.C.,andMarguerettaz,A.M. (1987).RothemundandAdlerLongoreactionsrevisited:Synthesisof tetraphenylporphyrinsunderequilibriumconditions. J. Org. Chem. 52 ,827836.

Lobachevsky,P.N.,Karagiannis,T.C.,andMartin,R.F.(2004).PlasmidDNA breakagebydecayofDNAassociatedAugerelectronemitters:Approachestoanalysisof experimentaldata. Radiat. Res. 162 ,8495.

Maeda,M.,Kobayashi,K.,andHieda,K.(2004).EfficienciesofinductionofDNA doublestrandbreaksinsolutionbyphotoabsorptionatphosphorusandplatinum. Int. J. Radiat. Biol. 80 ,841847. 229

March,J.(1992).Reactivity. In "AdvancedorganicChemistry:reactions,mechanisms andstructures"(.,Ed.),pp.683733.WileyInterscience,NewYork.

Margaron,P.,Grégoire,M.J.,Šcasnár,V.,Ali,H.,andvanLier,J.E.(1996).Structure photodynamicactivityrelationshipsofaseriesof4substitutedzincphthalocyanines. Photochem. Photobiol. 63 ,217223.

Maric,N.,Chan,S.M.,Hoffer,P.B.,andDuray,P.(1988).Radiolabeledporphyrinvs gallium67citrateforthedetectionofhumanmelanomainathymicmice. Int. J. Rad. Appl. Instrum. B 15 ,543551.

Martin,P.C.,Gouterman,M.,Pepich,B.V.,Renzoni,G.E.,andSchindele,D.C. (1991).Effectsofligands,solvent,andvariablesulfonationofdimerformationon aluminumandzincphthalocyaninesulfonates. Inorg. Chem. 30 ,33053309.

Marzilli,L.G.(1990).MedicalaspectsofDNAporphyrininteractions. New J. Chem. 140 ,40904200.

Masahiko,I.,ShigenobuF.,YoshioI.,YoshikiH.,andMotoharuT(1985).Reactionsof hydrogenperoxidewithmetalcomplexes.8.Equilibriaandkineticsofthereactionsof watersolublemolybdenum(V)porphyrinswithhydrogenperoxideinaqueoussolutions. Inorg. Chem. 24 ,24682478.

McKnight,R.E.,SantanaJorgenson,W.,Alam,A.B.,andDixon,D.W.Bindingof metalloporphyrinstobovineandhumanserumalbumin.JournalofBiologicalInorganic Chemistry.2002. RefType:InPress

Miller,J.R.,Taies,J.A.,andSilver,J.(1987).Mossbauerandspectroscopicstudieson substitutedtetraphenylporphyrinatoiron(III)complexesinaqueoussolutionsandthe formationofthemuoxobridgedspecies. Inorg. Chim. Acta 138 ,205214.

Milligan,J.R.,Aguilera,J.A.,Nguyen,T.T.D.,Paglinawan,R.A.,andWard,J.F. (2000).DNAstrandbreakyieldsafterpostirradiationincubationwithbaseexcision repairendonucleasesimplicatehydroxylradicalpairsindoublestrandbreakformation. Int. J. Radiat. Biol. 76 ,14751483.

Milligan,J.R.,Aguilera,J.A.,andWard,J.F.(1993).Variationofsinglestrandbreak yieldwithscavengerconcentrationforplasmidDNAirradiatedinaqueoussolution. Radiat. Res. 133 ,151157.

Mosinger,J.,Deumie,M.,Lang,K.,Kubát,P.,andWagnerová,D.M.(2000). Supramolecularsensitizer:Complexationof meso tetrakis(4sulfonatophenyl)porphyrin with2hydroxypropylcyclodextrins. J. Photochem. Photobiol. A 130 ,1320. 230

Murphy,M.K.,Piper,R.K.,Greenwood,L.R.,Mitch,M.G.,Lamperti,P.J.,Seltzer,S. M.,Bales,M.J.,andPhillips,M.H.(2004).Evaluationofthenewcesium131seedfor useinlowenergyxraybrachytherapy. Med. Phys. 31 ,15291538.

Nette,H.P.,Onori,S.,Fattibene,P.,Regulla,D.,andWieser,A.(1993).Coordinated researcheffortsforestablishinganinternationalradiotherapydoseintercomparison servicebasedonthealanineESRsystem. Applied Radiation and Isotopes 44 ,711.

Neurath,A.R.,Haberfield,P.,Joshi,B.,Hewlett,I.K.,Strick,N.,andJiang,S.(1991). RapidprescreeningforantiviralagentsagainstHIV1basedontheirinhibitoryactivityin sitedirectedimmunoassays.I.TheV3loopofgp120astarget. Antiviral Chem. Chemother. 2,303312.

Neurath,A.R.,Strick,N.,andDebnath,A.K.(1995).Structuralrequirementsforand consequencesofanantiviralporphyrinbindingtotheV3loopofthehuman immunodeficiencyvirus(HIV1)envelopeglycoproteingp120. J. Mol. Recognition 8, 345357.

Neurath,A.R.,Strick,N.,Haberfield,P.,andJiang,S.(1992).Rapidprescreeningfor antiviralagentsagainstHIV1basedontheirinhibitoryactivityinsitedirected immunoassays.II.PorphyrinsreactingwiththeV3loopofgp120. Antiviral Chem. Chemother. 3,5563.

Neurath,A.R.,Strick,N.,andJiang,S.(1994a).Rapidprescreeningforantiviralagents againstHIV1basedontheirinhibitoryactivityinsitedirectedimmunoassays. ApproachesapplicabletoepidemicHIV1strains. Antiviral Chem. Chemother. 4,207 214.

Neurath,A.R.,Strick,N.,Lin,K.,Debnath,A.K.,andJiang,S.(1994b).Tin protoporphyrinIXusedincontrolofhememetabolisminhumanseffectivelyinhibits HIV1infection. Antiviral Chem. Chemother. 5,322330.

Ohno,O.,Kaizu,Y.,andKobayashi,H.(1993). Jaggregateformationofawatersoluble porphyrininacidicaqueousmedia. J. Chem. Phys. 99 ,41284139.

Oppenheimer,L.E.(1981).Ionpairchromatographyofsulfonatedcopper phthalocyanine. J. Chrom. Sci. 19 ,266269.

Pasternack,R.F.(1973).Aggregationpropertiesofwatersolubleporphyrins. Ann. N. Y. Acad. Sci. 206 ,614627.

Pasternack,R.F.,Brigandi,R.A.,Abrams,M.J.,Williams,A.P.,andGibbs,E.J. (1990).Interactionsofporphyrinsandmetalloporphyrinswithsinglestrandedpoly(dA). Inorg. Chem. 29 ,44834486. 231

Pasternack,R.F.,Caccam,M.,Keogh,B.,Stephenson,T.A.,Williams,A.P.,andGibbs, E.J.(1991).Longrangefluorescencequenchingofethidiumionbycationicporphyrins inthepresenceofDNA. J. Am. Chem. Soc. 113 ,68356840.

Pasternack,R.F.andGibbs,E.J.(1996).Porphyrinandmetalloporphyrininteractions withnucleicacids. Metal Ions Biol. Syst. 33 ,367397.

Patel,D.J.andCanuel,L.L.(1976).Ethidiumbromide(dCdGdCdG)2complexin solution:intercalationandsequencespecificityofdrugbindingatthetetranucleotide duplexlevel. Proc. Natl. Acad. Sci. U. S. A. 73 ,33433347.

Pauwels,R.,Balzarini,J.,Baba,M.,Snoeck,R.,Schols,D.,Herdewijn,P.,Desmyter,J., andDeClercq,E.(1988).Rapidandautomatedtetrazoliumbasedcolorimetricassayfor thedetectionofantiHIVcompounds. J. Virol. Methods 20 ,309321.

Peng,X.,Sternberg,E.,andDolphin,D.(2002).Chiralseparationofbenzoporphyrin derivativemonoanddiacidsbylaserinducedfluorescencecapillaryelectrophoresis. Electrophoresis 23 ,93101.

Peng,X.,Sternberg,E.,andDolphin,D.(2005).Separationofporphyrinbased photosensitizerisomersbylaserinducedfluorescencecapillaryelectrophoresis. Electrophoresis 26 ,38613868.

Phillips,D.(1997).Chemicalmechanismsinphotodynamictherapywith phthalocyanines. Prog. React. Kinet. 22 ,175300.

Pico,G.A.andHoussier,C.(1989).Bilesaltsbovineserumalbuminbinding: spectroscopicandthermodynamicstudies. Biochim. Biophys. Acta. 999 ,128134.

Pokric,B.,Allinson,N.M.,Bergström,E.T.,andGoodall,D.M.(1999).Dynamic analysisofcapillaryelectrophoresisdatausingrealtimeneuralnetworks. J. Chromatogr. A833 ,231244.

Povirk,L.F.,Wubter,W.,Kohnlein,W.,andHutchinson,F.(1977).DNAdoublestrand breaksandalkalilabilebondsproducedbybleomycin. Nucleic Acids Res. 4,35733580.

Priola,S.A.,Raines,A.,andCaughey,W.S.(2000).Porphyrinandphthalocyanine antiscrapiecompounds. Science 287 ,15031506.

Rajendiran,N.andSanthanalakshmi,J.(2002).Interactionofsulfurdioxidewithzinc(II) tetrasulfophthalocyanineinaqueousmedium:steadystatefluorescencequenching studies. Polyhedron 21 ,951957.

Rao,T.A.andMaiya,B.G.(1994).Spectroscopic,redoxandemissionpropertiesof2 nitrosubstitutedfreebaseandmetallotetraarylporphyrins. Polyhedron 13 ,18631873. 232

Reynolds,W.L.andKolstad,J.J.(1976).Aggregationof4,4',4'',4''' tetrasulfophthalocyanineinelectrolytesolutions.J. Inorg. Nucl. Chem. 38 ,18351838.

Ribo,J.M.,Crusats,J.,Farrera,J.A.,andValero,M.L.(1994).AggregationinWater SolutionsofTetrasodiumDiprotonatedMesoTetrakis(4Sulfonatophenyl)Porphyrin. J. Chem. Soc. Chem. Comm. 681682.

Ribó,J.M.,Farrera,J.A.,Valero,M.L.,andVirgili,A.(1995).Selfassemblyof cyclodextrinswith meso tetrakis(4sulfonatophenyl)porphyrininaqueoussolution. Tetrahedron 51 ,37053712.

Ricchelli,F.,Franchi,L.,Miotto,G.,Borsetto,L.,Gobbo,S.,Nikolov,P.,Bommer,J.C., andReddi,E.(2005). Meso substitutedtetracationicporphyrinsphotosensitizethedeath ofhumanfibrosarcomacellsvialysosomaltargeting. Int. J. Biochem. Cell Biol. 37 ,306 319.

Richeter,S.,Jeandon,C.,Gisselbrecht,J.P.,Graff,R.,Ruppert,R.,andCallot,H.J. (2004).Synthesisofnewporphyrinswithperipheralconjugatedchelatesandtheirusefor thepreparationofporphyrindimerslinkedbymetalions. Inorg. Chem. 43 ,251263.

Richeter,S.,Jeandon,C.,Kyritsakas,N.,Ruppert,R.,andCallot,H.J.(2003). Preparationofsixisomericbisacylporphyrinswithchromophoresreachingthenear infraredviaintramolecularFriedelCraftsreaction. J. Org. Chem. 68 ,92009208.

Richeter,S.,Jeandon,C.,Ruppert,R.,andCallot,H.J.(2001).Reactivityof oxonaphtoporphyrins.Efficientbetafunctionalizationoftheporphyrinringonreaction withnitrogenorcarbonnucleophiles. Tetrahedron Lett. 42 ,21032106.

Rivard,M.J.,Coursey,B.M.,DeWerd,L.A.,Hanson,W.F.,Huq,M.S.,Ibbott,G.S., Mitch,M.G.,Nath,R.,andWilliamson,J.F.(2004).UpdateofAAPMTaskGroupNo. 43Report:ArevisedAAPMprotocolforbrachytherapydosecalculations. Med. Phys. 31 ,633674.

Robert,J.M.andSpinks,C.D.(1997).Separationofmetallatedpetroporphyrinmodels usingmicellarelectrokineticcapillarychromatography. J. Liq. Chromatogr. Relat. Techno. 20 ,29792995.

RochaGonsalves,A.M.D.,Johnstone,R.A.W.,Pereira,M.M.,deSantAna,A.M.P., Serra,A.C.,Sobral,A.J.F.N.,andStocks,P.A.(1996).Newproceduresforthe synthesisandanalysisof5,10,15,20tetrakis(sulphophenyl)porphyrinsandderivatives throughchlorosulphonation. Heterocycles 43 ,829838.

RochaGonsalves,A.M.D.,Varejao,J.M.T.B.,andPereira,M.M.(1991).Somenew aspectsrelatedtothesynthesisof meso substitutedporphyrins. J. Heterocycl. Chem. 28 , 635640. 233

Rothemund,P.(1939).PorphyrinStudies.III.TheStructureofthePorphineRing System. J. Am. Chem. Soc. 61 ,29122915.

Rubires,R.,Crusats,J.,ElHachemi,Z.,Jaramillo,T.,Lopez,M.,Valls,E.,Farrera,J. A.,andRibó,J.M.(1999).Selfassemblyinwaterofthesodiumsaltsof meso sulfonatophenylsubstitutedporphyrins. New J. Chem. 23 ,189198.

Sambrook,J.,Fritsch,E.F.,andManiatis,T.(1989)."MolecularCloningALaboratory Manual."ColdSpringHarborPress,NewYork.

Sanchez,M.,Fache,E.,Bonnet,D.,andMeunier,B.(2001).Synthesisoforganosoluble metallophthalocyaninesbearingelectronwithdrawingsubstituents. J. Porph. Phthalo. 5, 867872.

Sanderson,W.A.(2000).Di&octasulphophthalocyanine&naphthalocyaninedye derivativesforuseintissuedemarcation,imaging&diagnosisoftumourcells&diseased lymphnodes. UK Patent Application GB 2,343,187A .

Sattentau,Q.J.andMoore,J.P.(1991).Conformationalchangesinducedinthehuman immunodeficiencyvirusenvelopeglycoproteinbysolubleCD4binding. J. Exp. Med. 174 ,407415.

Schofield,J.andAsaf,M.(1997).Analysisofsulphonatedphthalocyaninedyesby capillaryelectrophoresis. J. Chromatogr. A 770 ,345348.

Siddiqi,M.A.andBothe,E.(1987).SingleanddoublestrandbreakformationinDNA irradiatedinaqueoussolution:dependenceondoseandOHradicalscavenger concentration. Radiat. Res. 112 ,449463.

Silver,J.andTaies,J.A.(1988).Moessbauerspectroscopicstudiesof tetrasulfonaphthyl)porphineiron(II)solutions. Inorg. Chim. Acta 151 ,6975.

Sissi,C.,Mancin,F.,Gatos,M.,Palumbo,M.,Tecilla,P.,andTonellato,U.(2005). EfficientplasmidDNAcleavagebyamononuclearcopper(II)complex. Inorg. Chem. 44 , 23102317.

So,T.S.K.,Jia,L.,andHuie,C.W.(2001).Stackingandseparationofcoproporphyrin isomersbyacetonitrilesaltmixturesinmicellarelectrokineticchromatography. Electrophoresis 22 ,21592166.

Sobolev,A.S.,Jans,D.A.,andRosenkranz,A.A.(2000).Targetedintracellulardelivery ofphotosensitizers. Prog. Biophys. Mol. Biol. 73 ,5190. 234

Song,R.,Witvrouw,M.,Schols,D.,Robert,A.,Balzarini,J.,DeClercq,E.,Bernadou, J.,andMeunier,B.(1997).AntiHIVactivitiesofanionicmetalloporphyrinsandrelated compounds. Antiviral Chem. Chemother. 8,8597.

Spikes,J.D.,vanLier,J.E.,andBommer,J.C.(1995).Acomparisonofthe photopropertiesofzincphthalocyanineandzincnaphthalocyaninetetrasulfonatesmodel sensitizersforthephotodynamictherapyoftumors. J. Photochem. Photobiol. A 91 ,193 198.

Stanton,J.,TaucherScholz,G.,Schneider,M.,Heilmann,J.,andKraft,G.(1993). ProtectionofDNAfromhighLETradiationbytwoOHradicalscavengers,tris (hydroxymethyl)aminomethaneand2mercaptoethanol. Radiat. Environ. Biophys. 32 , 2132.

Steullet,V.,EdwardsBennett,S.,andDixon,D.W.(1999).Cleavageofabasicsitesin DNAwithintercalatoramines. Bioorg. Med. Chem. 7,110.

Stone,A.(2002).Microbicides:AnewapproachtopreventingHIVandothersexually transmittedinfections. Nat. Rev. Drug Discov. 1,977985.

Stranadko,E.F.,Meshkov,V.M.,Koraboyev,U.M.,andRiabov,M.V.(1999).Clinical photodynamictherapyusingRussianphotosensitizersPhotohemeandPhotosense:six yearexperience. Proc. SPIE 4059 ,2531.

Sugiyama,H.,Fujiwara,T.,Ura,A.,Tashiro,T.,Yamamoto,K.,Kawanishi,S.,and Saito,I.(1994).ChemistryofthermaldegradationofabasicsitesinDNA.Mechanistic investigationonthermalDNAstrandcleavageofalkylatedDNA. Chem. Res. Toxicol. 7, 673683.

Sutter,T.P.G.,Rahimi,R.,Hambright,P.,Bommer,J.C.,Kumar,M.,andNeta,P. (1993).Stericandinductiveeffectonthebasicityofporphyrinsandonthesiteof protonationofporphyrindianions. J. Chem. Soc. Faraday Trans. 89 ,495502.

Swarts,S.G.,Becker,D.,Sevilla,M.,andWheeler,K.T.(1996).Radiationinduced DNAdamageasafunctionofhydration.II.Basedamagefromelectronlosscenters. Radiat. Res. 145 ,304314.

Swarts,S.G.,Sevilla,M.D.,Becker,D.,Tokar,C.J.,andWheeler,K.T.(1992). RadiationinducedDNAdamageasafunctionofhydration.I.Releaseofunalteredbases. Radiat. Res. 129 ,333344.

Tabata,K.,Fukushima,K.,Oda,K.,andOkura,I.(2000).Selectiveaggregationofzinc phthalocyaninesintheskin. J. Porph. Phthalo. 4,278284. 235

Tapley,K.N.(1995).Capillaryelectrophoreticanalysisofthereactionsofbifunctional reactivedyesundervariousconditionsincludingastudyoftheanalysisofthe traditionallydifficulttoanalyzephthalocyaninedyes. J. Chromatogr. A 706 ,555562.

Tedesco,A.C.,Rotta,J.C.G.,andLunardi,C.N.(2003).Synthesis,photophysicaland photochemicalaspectsofphthalocyaninesforphotodynamictherapy. Curr. Org. Chem. 7,187196.

TisljarLentulis,G.,Feinendegen,L.E.,andBond,V.P.(1973).[Biologicalradiation effectsofinclusionofmoderatelyheavynucleiintothetissueanduseofsoftroentgen rays]. Strahlentherapie. 145 ,656662.

Tobin,W.R.andGreene,R.S.(1999).Mesosubstitutedcationicporphyrinsinteract withdsDNAandexhibitdifferentlocalizationpatternsinradiationinducedfibrosarcoma cells. Anticancer Res. 19 ,29532958.

Treibs,A.andHaeberle,N.(1968).Uberdiesyntheseunddieelectronenspektren ms substituierterporphine. Justus Liebigs Ann. Chem. 183207.

Trujillo,J.R.,Goletiani,N.V.,Bosch,I.,Kendrick,C.,Rogers,R.A.,Trujillo,E.B., Essex,M.,andBrain,J.D.(2000).TtropicsequenceoftheV3loopiscriticalforHIV1 infectionofCXCR4positivecolonicHT29epithelialcells. J. Acquir. Immune Defic. Syndr. 25 ,110.

Turpin,J.A.(2002).Considerationsanddevelopmentoftopicalmicrobicidestoinhibit thesexualtransmissionofHIV. Expert Opin. Investig. Drugs 11 ,10771097.

Venema,F.,Nelissen,H.F.M.,Berthault,P.,Birlirakis,N.,Rowan,A.E.,Feiters,M.C., andNolte,R.J.M.(1998).Synthesis,conformation,andbindingpropertiesof cyclodextrinhomoandheterodimersconnectedthroughtheirsecondarysides. Chem. Eur. J. 4,22372250.

Vzorov,A.N.,Dixon,D.W.,Trommel,J.S.,Marzilli,L.G.,andCompans,R.W. (2002).Inactivationofhumanimmunodeficiencyvirustype1byporphyrins. Antimicrob. Agents Chemother. 46 ,39173925.

Vzorov,A.N.,Marzilli,L.G.,Compans,R.W.,andDixon,D.W.(2003).Preventionof HIV1infectionbyphthalocyanines. Antiviral Res. 59 ,99109.

Wainwright,M.(1996).Nonporphyrinphotosensitizersinbiomedicine. Chem. Soc. Rev. 25 ,351359.

Wainwright,M.(2002).Theemergingchemistryofbloodproductdisinfection. Chem. Soc. Rev. 31 ,128136. 236

Wang,X.P.,Pan,J.H.,andShuang,S.M.(2001b).Studyonthesupramolecularsystem of meso tetrakis(4sulfonatophenyl)porphyrinandcyclodextrinsbyspectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57 ,27552762.

Wang,X.P.,Pan,J.H.,andShuang,S.M.(2001c).Studyonthesupramolecularsystem of meso tetrakis(4sulfonatophenyl)porphyrinandcyclodextrinsbyspectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57 ,27552762.

Wang,X.P.,Pan,J.H.,andShuang,S.M.(2001a).Studyonthesupramolecularsystem of meso tetrakis(4sulfonatophenyl)porphyrinandcyclodextrinsbyspectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57 ,27552762.

Wang,X.P.,Pan,J.H.,Shuang,S.M.,andZhang,Y.(2002).Determinationofthe inclusionconstantsfortheinclusioncomplexesbetween meso tetrakis(4 sulfonatophenyl)porphyrinandcyclodextrinsbythreemethods. Supramol. Chem. 14 , 419426.

Weber,J.H.andBusch,D.H.(1965).Complexesderivedfromstrongfieldligands. XIX.Magneticpropertiesoftransitionmetalderivativesof4,4',4'',4''' tetrasulfophthalocyanine. Inorg. Chem. 4,469471.

Weinberger,R.,Sapp,E.,andMoring,S.(1990).Capillaryelectrophoresisofurinary porphyrinswithabsorbanceandfluorescencedetection. J. Chromatogr. 516 ,271285.

Williamson,J.F.,Butler,W.,DeWerd,L.A.,Huq,M.S.,Ibbott,G.S.,Mitch,M.G., Nath,R.,Rivard,M.J.,andTodor,D.(2005).RecommendationsoftheAmerican AssociationofPhysicistsinMedicineregardingtheimpactofimplementingthe2004 taskgroup43reportondosespecificationfor 103 Pdand 125 Iinterstitialbrachytherapy. Med. Phys. 32 ,14241439.

Winkelman,J.,Slater,G.,andGrossman,J.(1967).Theconcentrationintumorandother tissuesofparenterallyadministeredtritiumand 14 Clabeledtetraphenylporphinesulfonate. Cancer Res. 27 ,20602064.

Wolf,P.,Jones,G.D.D.,Candeias,L.P.,andO'Neill,P.(1993).Inductionofstrand breaksinpolyribonucleotidesandDNAbythesulphateradicalanion:Roleofelectron losscentresasprecursorsofstrandbreakage. Int. J. Radiat. Biol. 64 ,718.

Woodburn,K.W.,Vardaxis,N.J.,Hill,J.S.,Kaye,A.H.,andPhillips,D.R.(1991). Subcellularlocalizationofporphyrinsusingconfocallaserscanningmicroscopy. Photochem. Photobiol. 54 ,725732.

Wu,N.,Li,B.,andSweedler,J.V.(1994).Recentdevelopmentsinporphyrinseparations usingcapillaryelectrophoresiswithnativefluorescencedetection. J. Liq. Chromatogr. 17 ,19171927. 237

Yamakawa,N.,Ishikawa,Y.,andUno,T.(2001).Solutionpropertiesandphotonuclease activityofcationicbisporphyrinslinkedwithaseriesofaliphaticdiamines. Chem. Pharm. Bull. (Tokyo) 49 ,15311540.

Yang,P.,Ren,R.,Guo,M.L.,Song,A.X.,Meng,X.L.,Yuan,C.X.,Zhou,Q.H., Chen,H.L.,Xiong,Z.H.,andGao,X.L.(2004).DoublestrandhydrolysisofDNAbya magnesium(II)complexwithdiethylenetriamine. J. Biol. Inorg. Chem. 9,495506.

Yokoya,A.,Cunniffe,S.M.T.,andO'Neill,P.(2002).Effectofhydrationonthe inductionofstrandbreaksandbaselesionsinplasmidDNAfilmsbygammaradiation. J. Am. Chem. Soc. 124 ,88598866.

Zaider,E.andBickers,D.R.(1998).Clinicallaboratorymethodsfordiagnosisofthe porphyrias. Clin. Dermatol. 16 ,277293.

Zelina,J.P.,Njue,C.K.,Rusling,J.F.,Kamau,G.N.,Masila,M.,andKibugu,J. (1999).Influenceofsurfactantbasedmicroheterogeneousfluidsonaggregationofcopper phthalocyaninetetrasulfonate. J. Porph. Phthalo. 3,188195.

Zelina,J.P.andRusling,J.F.(1995).Molecularorientationinselfassembledfilmsof copperphthalocyaninetetrasulfonateandacationicsurfactant. Microporous Materials 5, 203210.

Zerbinati,O.andTrotta,F.(2003).pHdependentcyclodextrincapillaryelectrophoresis resolutionofatropisomers. Electrophoresis 24 ,24562461.

Zhang,Y.,Gong,Z.L.,Zhang,H.,andCheng,J.K.(1998).Animprovedapparatusfor onlinechemiluminescencedetectionwithcapillaryelectrophoresisanddetectionof metalporphyrins. Analytical Communications 35 ,293296.

Zhang,Y.H.,Chen,D.M.,He,T.,andLiu,F.C.(2003b).Ramanandinfraredspectral studyof meso sulfonatophenylsubstitutedporphyrins(TPPSn,n=1,2A,2O,3,4). Spectrochim. Acta A Mol. Biomol. Spectrosc. 59 ,87101.

Zhang,Y.H.,Chen,D.M.,He,T.,andLiu,F.C.(2003c).Ramanandinfraredspectral studyof meso sulfonatophenylsubstitutedporphyrins(TPPSn,n=1,2A,2O,3,4). Spectrochim. Acta A Mol. Biomol. Spectrosc. 59 ,87101.

Zhang,Y.H.,Chen,D.M.,He,T.,andLiu,F.C.(2003a).Ramanandinfraredspectral studyof meso sulfonatophenylsubstitutedporphyrins(TPPSn,n=1,2A,2O,3,4). Spectrochim. Acta A Mol. Biomol. Spectrosc. 59 ,87101.