Synthesis, Molecular and Solid State Structures, and Magnetic Properties of Sandwich Lanthanide Phthalocyanines Lacking C-H Bonds

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis, Molecular and Solid State Structures, and Magnetic Properties of Sandwich Lanthanide Phthalocyanines Lacking C-H Bonds New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations Spring 5-31-2012 Synthesis, molecular and solid state structures, and magnetic properties of sandwich lanthanide phthalocyanines lacking C-H bonds Wycliffe A. Graham New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Materials Science and Engineering Commons Recommended Citation Graham, Wycliffe A., "Synthesis, molecular and solid state structures, and magnetic properties of sandwich lanthanide phthalocyanines lacking C-H bonds" (2012). Dissertations. 319. https://digitalcommons.njit.edu/dissertations/319 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. ABSTRACT SYNTHESIS, MOLECULAR AND SOLID STATE STRUCTURES, AND MAGNETIC PROPERTIES OF SANDWICH LANTHANIDE PHTHALOCYANINES LACKING C-H BONDS by Wycliffe A. Graham A new class of sandwich phthalocyanine (Pc) compounds without C-H bonds was synthesized and characterized. They are the bis[octakis(perfluoro i-C3F7) octakis(perfluoro)phthalocyaninato(2−)]M(III) complexes, formulated as (F64Pc)2MH, M = Tb, Dy, Lu, Y. Single molecular magnetic (SMM) behavior in the (F64Pc)2TbH and (F64Pc)2DyH complexes was confirmed through slowed relaxation response of their magnetization in an applied time varying magnetic field during alternating current (AC) magnetic testing in the range 2 - 50 K. The energy barrier to magnetic reversal, ∆ = 215 −1 −1 7 −1 cm and the pre-exponential factor, τ0 = 2.7 x 10 s were estimated for the undiluted (F64Pc)2TbH with direct current bias magnetic field (Hdc) of 1000 Oe applied. −1 −1 5 −1 Undiluted (F64Pc)2DyH gave estimated values of ∆ = 31 cm and τ0 = 1.6 x 10 s at Hdc = 500 Oe. These respective values are within the range observed for the unsubstituted Tb and Dy analogues. Magnetic hysteresis testing at 0.04 K exhibited hysteresis in both of these complexes. Magnetic circular dichroism (MCD) tests on (F64Pc)2Tb frozen in acetone at 1.8-1.9 K exhibited a “butterfly shaped” hysteresis which appeared to depend on the oxidation state of the complex and which also provided evidence of quantum tunneling of magnetization. The chemical tuning of the Pc macrocycle of these complexes through the replacement of the H atoms with the electron withdrawing fluorine atom and i-C3F7 group has created additional functionalities. Thermal analysis in the forms of thermogravimetric analysis and differential scanning calorimetry showed the complexes to be stable up to 450°C in air and N2. Cyclic voltammetry revealed four reduced and one oxidized states, the oxidized state occurring at > 1.2 V, showing the complexes’ resistance to oxidation. The (F64Pc)2MH compounds − derive their uniqueness as [(F64Pc)2M] sandwich phthalocyanine complexes with exceptional thermal and oxidative stability. SYNTHESIS, MOLECULA R AND SOLID STATE STRUCTURES, AND MAGNETIC PROPERTIES OF SANDWICH LANTHANIDE PHTHALOCYANINES LACKING C-H BONDS by Wycliffe A. Graham A Dissertation Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science and Engineering Interdisciplinary Program in Materials Science and Engineering May 2012 Copyright © 2012 by Wycliffe A. Graham ALL RIGHTS RESERVED APPROVAL PAGE SYNTHESIS, MOLECULAR AND SOLID STATE STRUCTURES, AND MAGNETIC PROPERTIES OF SANDWICH LANTHANIDE PHTHALOCYANINES LACKING C-H BONDS Wycliffe A. Graham Dr. Joseph Bozzelli, Dissertation Co-Advisor Date Distinguished Professor of Chemistry and Environmental Science, NJIT Dr. Trevor Tyson, Dissertation Co-Advisor Date Distinguished Professor of Physics, NJIT Dr. Nuggehalli Ravindra, Committee Chairman Date Professor of Physics, NJIT Dr. Steve Greenbaum, Committee Member Date Professor of Physics, Hunter College, CUNY, New York Dr. Keun Ahn, Committee Member Date Assistant Professor of Physics, NJIT Dr. Haidong Huang, Committee Member Date Assistant Professor of Chemistry and Environmental Science, NJIT iv BIOGRAPHICAL SKETCH Author: Wycliffe A. Graham Degree: Doctor of Philosophy Date: January 2012 Undergraduate and Graduate Education: • Doctor of Philosophy in Materials Science and Engineering, New Jersey Institute of Technology, Newark, NJ, 2012 • Master of Philosophy (M.Phil.) in Physics, University of the West Indies, Mona, Jamaica West Indies, 1989 • Bachelor of Science in Natural Sciences, University of the West Indies, Mona, Jamaica West Indies, 1983 Professional Education • Construction Technology and Management, The Chartered Institute of Building, Englemere, U.K., 1992 Major: Materials Science and Engineering Presentations and Publications: Pinnock, W.R.; Graham, W. A., Radioactivity in Jamaican Bauxite Waste, in Bauxite Tailings, Proceedings of an International Conference on Bauxite Waste, Kingston, Jamaica, Eds. Wagh, A.S.; Desai. P., 1986,113-117. Graham, W.A., Building Materials Standards in Jamaica Today, JB I Journal, 10 Graham, W.A., Aggregates for Concrete, Builder’s Magazine, Jamaica , 1995, 7, 13 – 17. v Graham, W.A., New Monitoring Procedures for Aggregates Used in Concrete, in Proceedings of the Quarry Operators Seminar, Kingston, Jamaica, 25-33. Graham, W.A., Phthalocyanine Synthesis, Poster presentation at th CUNY-AGEP 11 Annual CUNY Conference in Science and Engineering, New York, 2008 Graham, W.A.; Gorun, S.M. Synthesis, X-ray Structures and Magnetic Properties of the first fluorophthalocyanine sandwich complexes. Poster presentation at Targeted Fellowship Luncheon, NJIT. 2008. Graham, W.A.; Gorun, S.M. Magnetism in Some bis[octakis(perfluoro i-C3F7) (perfluoro)phthalocyninato] M(III) Complexes, Oral presentation at the CUNY-AGEP 13th Annual CUNY Conference in Science and Engineering, New York, 2010 Graham, W.A.; Gorun, S.M., Synthesis, X-ray Structures and Magnetism of Lanthanide Sandwich complexes with H-Free, Internally Stabilized Closed-Shell Ligands, Manuscript Submitted to Angewandte Chemie, 2011 Liao, M.-S.; Graham, W.; Gorun, S. M.; Huang, M.-J.; Watts, J. D., Electronic Structure, Bonding, And Optical Spectra Of Unsubstituted and Fluorinated Yttrium and Lutetium Bis(Phthalocyanines). 2011; Manuscript in Preparation. Gonidec, M.; Davies, S. E.; Graham, W.; McMaster, J.; Vidal-Gancedo, J.; Gorun, S. M., Slow Magnetic Relaxation Of Highly Reduced States Of A Double-Decker Phthalocyanine Terbium (III) Complex. Barcelona, 2011; Manuscript in Preparation. vi To my family, for their patience, love, support and encouragement. vii ACKNOWLEDGMENT I am indebted to my co-advisors Prof. Trevor Tyson and Prof. Joseph Bozzelli, and former co-advisor Prof. Sergiu Gorun for their guidance, support and mentorship. To the other members of my Ph.D. advisory committee, Prof. N.M. Ravindra, Prof. S. Greenbaum, Prof. K. Ahn and Prof. H. Huang; thank you for agreeing to serve. I wish to acknowledge the assistance of NSF-AGEP, the US Army and the Department of Energy through Argonne National Laboratory, (ANL) for financial support. Dr. R. Lalancette (Rutgers University) and X-M. Lin (ANL) are thanked for the raw X-ray and magnetic data, respectively. Dr. T. Duelks, Bremen University (Germany) is thanked for the Mass Spectroscopy data. My thanks to Dr. S. Greenbaum and Dr. P. Stallworth of the Physics Dept at CUNY for assistance with EPR and Dr. W. Wernsdorfer, Laboratoire de Magnétisme Louis Néel, C.N.R.S., Grenoble France, for magnetic tests and data. Prof. K. Ramanujachary of Rowan University, NJ is thanked for DC magnetism data. Dr. J. Howell of BASi, Indiana, USA is acknowledged for providing us with the initial CV data. The University of Dentistry and Medicine is thanked for the use of their DSC machine and Dr. Brukh at Rutgers University, Newark for the use of their NIR and MS machines. The author appreciates the significant assistance of collaborators Dr. J. D. Watts, Dr. M-S. Liao and co-workers at Jackson State University, Mississippi, on DFT/TDDFF; Dr. J. Veciana, Dr.
Recommended publications
  • A Powerful Framework for the Chemical Design of Molecular Nanomagnets Yan Duan†,1,2, Joana T
    Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Yan Duan†,1,2, Joana T. Coutinho†,*,1,3, Lorena E. Rosaleny†,*,1, Salvador Cardona-Serra1, José J. Baldoví1, Alejandro Gaita-Ariño*,1 1 Instituto de Ciencia Molecular (ICMol), Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, Spain 2 Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel 3 Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal *e-mail: [email protected], [email protected], [email protected] Abstract Three decades of intensive research in molecular nanomagnets have brought the magnetic memory in molecules from liquid helium to liquid nitrogen temperature. The enhancement of this operational temperature relies on a wise choice of the magnetic ion and the coordination environment. However, serendipity, oversimplified theories and chemical intuition have played the main role. In order to establish a powerful framework for statistically driven chemical design, we collected chemical and physical data for lanthanide-based nanomagnets to create a catalogue of over 1400 published experiments, developed an interactive dashboard (SIMDAVIS) to visualise the dataset, and applied inferential statistical analysis to it. We found that the effective energy barrier derived from the Arrhenius equation displays an excellent correlation with the magnetic memory, and that among all chemical families studied, only terbium bis-phthalocyaninato sandwiches and dysprosium metallocenes consistently present magnetic memory up to high temperature, but that there are some promising strategies for improvement.
    [Show full text]
  • 624 — 632 [1974] ; Received January 9, 1974)
    Some ab Initio Calculations on Indole, Isoindole, Benzofuran, and Isobenzofuran J. Koller and A. Ažman Chemical Institute “Boris Kidric” and Department of Chemistry, University of Ljubljana, P.O.B. 537, 61001 Ljubljana, Slovenia, Yugoslavia N. Trinajstić Institute “Rugjer Boskovic”, Zagreb, Croatia, Yugoslavia (Z. Naturforsch. 29 a. 624 — 632 [1974] ; received January 9, 1974) Ab initio calculations in the framework of the methodology of Pople et al. have been performed on indole, isoindole, benzofuran. and isobenzofuran. Several molecular properties (dipole moments, n. m. r. chemical shifts, stabilities, and reactivities) correlate well with calculated indices (charge densities, HOMO-LUMO separation). The calculations failed to give magnitudes of first ionization potentials, although the correct trends are reproduced, i. e. giving higher values to more stable iso­ mers. Some of the obtained results (charge densities, dipole moments) parallel CNDO/2 values. Introduction as positional isomers 4 because they formally differ Indole (1), benzofuran (3) and their isoconju­ only in the position of a heteroatom. Their atomic gated isomers: isoindole (2) and isobenzofuran (4) skeletal structures and a numbering of atoms are are interesting heteroaromatic molecules1-3 denoted given in Figure 1. 13 1 HtKr^nL J J L / t hü H 15 U (3) U) Fig. 1. Atomic skeletal structures and numbering of atoms for indole (1), isoindole (2), benzofuran (3), and isobenzofuran (4). Reprint requests to Prof. Dr. N. Trinajstic, Rudjer Boskovic Institute, P.O.B. 1016, 41001 Zagreb I Croatia, Yugoslavia. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V.
    [Show full text]
  • Lovely Professional University, Punjab, India
    Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents Project Report-1 Masters of Sciences In Chemistry (Hons.) By Kritika Chopra Registration No. 11615943 Under the guidance Of Dr. Gurpinder Singh Department of Chemistry Lovely Professional University, Punjab, India DECLARATION I hereby affirm that the dissertation entitled “Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents” submitted for the award of Master of Science in Chemistry and submitted to the Lovely Professional University is the original and authentic study that I have carried out from August 2017 to November 2017 under the supervision of Dr. Gurpinder Singh. It does not contain any unauthorized works of other scholars, those referred are properly cited. Name and Signature of the Student Kritika Chopra Reg. No.: 11615943 Certificate This is to certify that the pre-dissertation project entitled “Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents” submitted by Kritika Chopra to the Lovely Professional University, Punjab, India is a documentation of genuine literature review of coming research work approved under my guidance and is commendable of consideration for the honour of the degree of Master of Science in Chemistry of the University. Supervisor Dr. Gurpinder Singh Assistant Professor Acknowledgement This project report is the result of half of year of work whereby I have been accompanied and supported by many people. It is a pleasant aspect for me to express my gratitude for them all. I would like to thank my supervisor Dr. Gurpinder Singh, Department of Chemistry, Lovely Professional University. Madam guided me when ever, where ever it was needed.
    [Show full text]
  • Thioxopyrimidinecarbonitriles As Precursors for Linked and Fused
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2014, 6 (2):122-135 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Thioxopyrimidinecarbonitriles as precursors for linked and fused pyrimidine derivatives: synthesis of imidazo-, pyrazoloimidazo-, triazoloimidazopyrimidines and pyrimidoimidazotriazepines aAbdelmoneim A. Makhlouf, bRasha A. M. Faty* and aAsmaa K. Mourad aFayoum University, Faculty of Science, Fayoum, Egypt bChemistry Department, Faculty of Science, Cairo University, Giza, Egypt _____________________________________________________________________________________________ ABSTRACT Alkylation of 6-aryl-4-oxo-2-thioxopyrimidine-5-carbonitriles ( 1a-c) afforded the key intermediates 2a-e, which underwent further alkylation at N-3 nitrogen atom, upon treatment with α-halofunctionalized compounds, namely: ethyl bromoacetate, chloroacetone, chloroacetylacetone, chloroacetonirile, or monobromomalononitrile to perform 2-alkylthio-6-aryl-5-cyano-4-oxo-3-substituted-3,4-dihydropyrimidines 7-9. Heating 7-9 with hydrazine hydrate produced imidazo[1,2-a]pyrimidine derivatives 10-15. Treatment of 10a with each of ethyl cyanoacetate, ethyl acetoacetate, or acetylacetone gave pyrazoloimidazopyrimidine derivatives 18a,b, 19 , respectively. Compound 10a reacted with carbon disulphide to give oxazoloimidazopyrimidine 20 . Reaction of the imidazopyrimidine derivative 15a with glacial acetic acid or thiourea afforded triazoloimidazopyrimidines 21,22 . Also, compound 15a underwent cycloaddition reaction upon treatment with either of phthalic anhydride or acrylonitrile to give 2-phenyl-4,12- dioxopyrimidino[2``,1``:2`,3`]imidazo[1`,5`:2,3][1,2,4]triazolo[1,5-b]isoindole-3-carbonitrile ( 23 ) or 8-amino-2- phenyl-4-oxo-7H-pyrimido[2`,1`:2,3]imidazo[1,5-b][1,2,4]triazepine-3-carbonitrile (24 ), respectively.
    [Show full text]
  • Heterocyclic Compounds
    Lecture note- 3 Organic Chemistry CHE 502 HETEROCYCLIC COMPOUNDS Co-Coordinator – Dr. Shalini Singh DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY UNIT 4: HETEROCYCLIC COMPOUNDS- I CONTENTS 4.1 Objectives 4.2 Introduction 4.3 Classification of heterocyclic compounds 4.4 Nomenclature of heterocyclic compounds 4.5 Molecular orbital picture 4.6 Structure and aromaticity of pyrrole, furan, thiophene and pyridine 4.7 Methods of synthesis properties and chemical reactions of Pyrrole, Furan, Thiophene and Pyridine 4.8 Comparison of basicity of Pyridine, Piperidine and Pyrrole 4.9 Summary 4.10 Terminal Question 4.1 OBJECTIVES In this unit learner will be able to • Know about the most important simple heterocyclic ring systems containing heteroatom and their systems of nomenclature and numbering. • Understand and discuss the reactivity and stability of hetero aromatic compounds. • Study the important synthetic routes and reactivity for five and six member hetero aromatic compounds. • Understand the important physical and chemical properties of five and six member hetero aromatic compounds. • Know about the applications of these hetero aromatic compounds in the synthesis of important industrial and pharmaceutical compounds 4.2 INTRODUCTION Heterocyclic compound is the class of cyclic organic compounds those having at least one hetero atom (i.e. atom other than carbon) in the cyclic ring system. The most common heteroatoms are nitrogen (N), oxygen (O) and sulphur (S). Heterocyclic compounds are frequently abundant in plants and animal products; and they are one of the important constituent of almost one half of the natural organic compounds known. Alkaloids, natural dyes, drugs, proteins, enzymes etc. are the some important class of natural heterocyclic compounds.
    [Show full text]
  • Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
    Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position
    [Show full text]
  • IUPAC Nomenclature of Fused and Bridged Fused Ring Systems
    Pure &App/. Chern., Vol. 70, No. 1, pp. 143-216, 1998. Printed in Great Britain. Q 1998 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DIVISION COMMISSION ON NOMENCLATURE OF ORGANIC CHEMISTRY (111.1) NOMENCLATURE OF FUSED AND BRIDGED FUSED RING SYSTEMS (IUPAC Recommendations 1998) Prepared for publication by G. P. MOSS Department of Chemistry, Queen Mary and Westfield College, Mile End Road, London, El 4NS, UK Membership of the Working Party (1982-1997): A. T. Balaban (Romania), A. J. Boulton (UK), P. M. Giles, Jr. (USA), E. W. Godly (UK), H. Gutmann (Switzerland), A. K. Ikizler (Turkey), M. V. Kisakiirek (Switzerland), S. P. Klesney (USA), N. Lozac’h (France), A. D. McNaught (UK), G. P. Moss (UK), J. Nyitrai (Hungary), W. H. Powell (USA), Ch. Schmitz (France), 0. Weissbach (Federal Republic of Germany) Membership of the Commission on Nomenclature of Organic Chemistry during the preparation of this document was as follows: Titular Members: 0. Achmatowicz (Poland) 1979-1987; J. Blackwood (USA) 1996; H. J. T. Bos (Netherlands) 1987-1995, Vice-chairman, 1991- ; J. R. Bull (Republic of South Africa) 1987-1993; F. Cozzi (Italy) 1996- ; H. A. Favre (Canada) 1989-, Chairman, 1991- ; P. M. Giles, Jr. (USA) 1989-1995; E. W. Godly (UK) 1987-1993, Secretary, 1989-1993; D. Hellwinkel (Federal Republic of Germany) 1979-1987, Vice-Chainnan, 1981-1987; B. J. Herold (Portugal) 1994- ; K. Hirayama (Japan) 1975-1983; M. V. Kisakiirek (Switzerland) 1994, Vice-chairman, 1996- ; A. D. McNaught (UK) 1979-1987; G. P. Moss (UK) 1977-1987, Chairman, 1981-1987, Vice-chairman, 1979-1981; R.
    [Show full text]
  • Dr. James H. Reeves Dr. Pamela J. Seaton Dr. Paulo F. Almeida Dr
    COMPUTED NMR SHIELDING VALUES OF UNSATURATED FIVE-MEMBERED- HETEROCYCLIC RING COMPOUNDS AND THEIR BENZO-ANALOGS AS A MEASURE OF AROMATICITY Eddie LaReece Pittman A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemistry and Biochemistry University of North Carolina Wilmington 2008 Approved by Advisory Committee ______________________________Dr. James H. Reeves ______________________________ Dr. Pamela J. Seaton ______________________________ Dr. Paulo F. Almeida ______________________________ Dr. Ned H. Martin Chair Accepted by ______________________________ Dean, Graduate School TABLE OF CONTENTS ABSTRACT....................................................................................................................... iv ACKNOWLEDGEMENTS................................................................................................ v LIST OF TABLES...........................................................................................................viii LIST OF FIGURES ........................................................................................................... ix 1. INTRODUCTION .......................................................................................................... 1 2. OBJECTIVE ................................................................................................................... 8 3. EXPERIMENTAL METHODS...................................................................................
    [Show full text]
  • 2-Substituted Phenyl-4,5,6,7-Tetrahydro-2H-Isoindole-1,3 Diones, and Their Production and Use
    European Patent Office © Publication number: 0 142 648 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION © Application number: 84110304.7 © int. ci.4: C 07 D 209/48 A 01 N 43/38 © Date of filing: 29.08.84 © Priority: 31.08.83 JP 160855/83 © Inventor: Haga.Toru 2-40, Hirata 1-chome Ibaraki-shi Osaka-fu(JP) («) Date of publication of application: 29.05.85 Bulletin 85/22 © Inventor: Nagano, Eiki 1-401, Ryodo-cho 4-chome © Designated Contracting States: Nishinomiya-shi Hyogo-ken(JP) CH DE FR GB IT LI NL @ Inventor: Yoshida, Ryo © Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED 5-19, Aza-Jizoyama Higashiuneno 15 Kitahama 5-chome Higashi-ku Kawanishi-shi Hyogo-ken(JP) Osaka-shi Osaka 541 (JP) © Inventor: Hashimoto, Shunichi G-2, West Bend Apartments Leland Mississippi 38756IUS) © Representative: Vossius Vossius Tauchner Heunemann Rauh Siebertstrasse 4 P.O. Box 86 07 67 D-8000 Munchen 86(DE) © 2-Substituted phenyl-4,5,6,7-tetrahydro-2h-isoindole-1,3 diones, and their production and use. @ AA compound of the formula: O wherein R1Ri is a hydrogen atom, a fluorine atom or a methyl group and R2R* is a C1-C3Ci-Ca alkyl group, a C1-C5Ct-Cs alkoxy group, a chlorol(C2-C4)alkoxychloro(C*-C)alkoxy group, a dichloro(C2-C4)alkoxydichlorotCi-COalkoxy group, a cyclo(Cr-C7)alkoxycyclo(Cr-Or)alkoxy group, a phenoxy group, a C1-C5G-Cs alkylthio 00 group or a di(C1-C5)alkylaminodHG-Cslalkylamino group, which is useful as a <* herbicide. (0 CM D. HI Croydon Printing Company Ltd The present invention relates to 2-substituted phenyl-4,5,6,7-tetrahydro-2H-isoindole-l,3-diones (herein- after referred to as "isoindole(s)"), and their production and use.
    [Show full text]
  • Benzofuran Derivatives, Process for the Preparation of the Same and Uses Thereof
    Europäisches Patentamt *EP001136477B1* (19) European Patent Office Office européen des brevets (11) EP 1 136 477 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07D 307/79, C07D 405/04, of the grant of the patent: C07D 407/04, C07D 409/04, 10.03.2004 Bulletin 2004/11 C07D 491/056, C07D 491/107, (21) Application number: 99973289.4 A61K 31/343, A61K 31/36, A61K 31/381, A61K 31/4035, (22) Date of filing: 02.12.1999 A61K 31/407, A61K 31/438, A61K 31/443, A61P 25/28, A61P 25/16 (86) International application number: PCT/JP1999/006764 (87) International publication number: WO 2000/034262 (15.06.2000 Gazette 2000/24) (54) BENZOFURAN DERIVATIVES, PROCESS FOR THE PREPARATION OF THE SAME AND USES THEREOF BENZOFURANDERIVATE, VERFAHREN ZU IHRER HERSTELLUNG UND DEREN VERWENDUNGEN DERIVES DE BENZOFURANNE, LEUR PROCEDE DE PREPARATION ET LEURS UTILISATIONS (84) Designated Contracting States: (74) Representative: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU von Kreisler, Alek, Dipl.-Chem. et al MC NL PT SE Patentanwälte von Kreisler-Selting-Werner (30) Priority: 04.12.1998 JP 34535598 Postfach 10 22 41 04.12.1998 JP 34536598 50462 Köln (DE) (43) Date of publication of application: (56) References cited: 26.09.2001 Bulletin 2001/39 EP-A- 0 632 031 EP-A- 0 685 475 WO-A1-95/29907 JP-A- 5 194 466 (73) Proprietor: Takeda Chemical Industries, Ltd. JP-A- 9 124 633 Osaka-shi, Osaka 541-0045 (JP) • H. IIDA ET AL.: "One-step synthesis of (72) Inventors: 4-aminodihydrobenzofurans and • OHKAWA, Shigenori 4-hydroxyindoles via Takatsuki-shi Osaka 569-1121 (JP) dehydrogenation-heteromercuration of • ARIKAWA, Yasuyoshi 2-allyl-3-aminocyclohexenones using Hirakata-shi Osaka 573-0071 (JP) mercury(II) acetate" TETRAHEDRON LETTERS, • KATO, Kouki vol.
    [Show full text]
  • A Themed Issue of Functional Molecule-Based Magnets
    A Themed Issue of Functional Molecule-Based Magnets A Themed Issue of Functional • Keiichi Katoh • Keiichi Molecule-Based Magnets Dedicated to Professor Masahiro Yamashita on the Occasion of his 65th Birthday Edited by Keiichi Katoh Printed Edition of the Special Issue Published in Magnetochemistry www.mdpi.com/journal/magnetochemistry A Themed Issue of Functional Molecule-Based Magnets A Themed Issue of Functional Molecule-Based Magnets Dedicated to Professor Masahiro Yamashita on the Occasion of his 65th Birthday Special Issue Editor Keiichi Katoh MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Special Issue Editor Keiichi Katoh Tohoku University Japan Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Magnetochemistry (ISSN 2312-7481) (available at: https://www.mdpi.com/journal/ magnetochemistry/special issues/Molecule based Magnets). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-901-1 (Pbk) ISBN 978-3-03928-902-8 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Accessing Synthetically-Challenging Isoindole-Based Materials for Assessment in Organic Photovoltaics Via Chemical and Engineering Methodologies
    Accessing Synthetically-Challenging Isoindole-Based Materials for Assessment in Organic Photovoltaics via Chemical and Engineering Methodologies by Jeremy Dang A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Jeremy Dang 2016 Accessing Synthetically-Challenging Isoindole-Based Materials for Assessment in Organic Photovoltaics via Chemical and Engineering Methodologies Jeremy Dang Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto 2016 Abstract Isoindoles are a broad class of compounds that comprise a very small space within the domain of established photoactive materials for organic photovoltaics (OPVs). Given this scarcity, combined with the performance appeal of presently and well known isoindole-based compounds such as the phthalocyanines, it is a worthy undertaking to develop new materials in this domain. This thesis aims to bring to light the suitability of five novel, or underexplored, classes of isoindole-based materials for OPVs. These classes are the boron subphthalocyanine (BsubPc) polymers, oxygen-bridged dimers of BsubPcs (μ-oxo-(BsubPc) 2), boron subnaphthalocyanines (BsubNcs), group XIII metal complexes of 1,3-bis(2-pyridylimino)isodinoline (BPI), and the boron tribenzosubporphyrins (BsubPys). The synthesis of these materials was proven to be challenging as evident in their low isolated yields, lengthy synthetic and purification processes, and/or batch-to-batch variations. This outcome was not surprising given their undeveloped chemical nature. The photo- and electro- physical properties were characterized and shown to be desirable for all classes other than the ii group XIII metal complexes of BPI for OPVs.
    [Show full text]