624 — 632 [1974] ; Received January 9, 1974)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Powerful Framework for the Chemical Design of Molecular Nanomagnets Yan Duan†,1,2, Joana T
Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Yan Duan†,1,2, Joana T. Coutinho†,*,1,3, Lorena E. Rosaleny†,*,1, Salvador Cardona-Serra1, José J. Baldoví1, Alejandro Gaita-Ariño*,1 1 Instituto de Ciencia Molecular (ICMol), Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, Spain 2 Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel 3 Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal *e-mail: [email protected], [email protected], [email protected] Abstract Three decades of intensive research in molecular nanomagnets have brought the magnetic memory in molecules from liquid helium to liquid nitrogen temperature. The enhancement of this operational temperature relies on a wise choice of the magnetic ion and the coordination environment. However, serendipity, oversimplified theories and chemical intuition have played the main role. In order to establish a powerful framework for statistically driven chemical design, we collected chemical and physical data for lanthanide-based nanomagnets to create a catalogue of over 1400 published experiments, developed an interactive dashboard (SIMDAVIS) to visualise the dataset, and applied inferential statistical analysis to it. We found that the effective energy barrier derived from the Arrhenius equation displays an excellent correlation with the magnetic memory, and that among all chemical families studied, only terbium bis-phthalocyaninato sandwiches and dysprosium metallocenes consistently present magnetic memory up to high temperature, but that there are some promising strategies for improvement. -
Article Download
wjpls, 2018, Vol. 4, Issue 8, 153-159 Research Article ISSN 2454-2229 Sathyamurthy et al. World Journal of Pharmaceutical World Journal and Lifeof Pharmaceutical Sciences and Life Sciences WJPLS www.wjpls.org SJIF Impact Factor: 5.088 GCMS AND FTIR ANALYSIS ON THE METHANOLIC EXTRACT OF RED VITIS VINIFERA PULP 1Naresh S., 1Sunil K. S., 1Akki Suma, 1Ashika B. D., 1Chitrali Laha Roy, *2Dr. Balasubramanian Sathyamurthy 1Department of Biochemistry, Ramaiah College of Arts, Science and Commerce, Bangalore – 560054. *2Professor, Department of Biochemistry, Ramaiah College of Arts, Science and Commerce, Bangalore – 560054. *Corresponding Author: Dr. Balasubramanian Sathyamurthy Department of Biochemistry, Ramaiah College of Arts, Science and Commerce, Bangalore – 560054. Article Received on 12/06/2018 Article Revised on 02/07/2018 Article Accepted on 23/07/2018 ABSTRACT Red Vitis Vinifera pulp has major components such as Organic acids, Malate, Tartrate and Sugars and contains higher moisture content. Our work is designed to identify the possible phytochemicals compounds present in the methanolic extract of red grape pulp by using GCMS along with functional group analysis through FTIR. From the GCMS analysis of red Vitis Vinifera pulp nearly 61 compounds were identified. By FTIR analysis, strong absorption band was found at 3400 cm–1, which represents the amine groups and ketones at a frequency of –1 1066.02 cm gave maximum peaks. Hence, we can conclude that the red Vitis Vinifera pulp extract is rich in amines, ether and ester groups. KEYWORDS: GCMS, FTIR, spectral analysis, NIST. 1. INTRODUCTION biochemical and organic mixtures and it is also highly compatible.[4] Infrared spectroscopy is most powerful Red Grapes or Vitis vinifera is a Berry fruit and belongs technique for materials analysis and used in the to the group of versatile fruits which are used in a wide laboratories. -
Lovely Professional University, Punjab, India
Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents Project Report-1 Masters of Sciences In Chemistry (Hons.) By Kritika Chopra Registration No. 11615943 Under the guidance Of Dr. Gurpinder Singh Department of Chemistry Lovely Professional University, Punjab, India DECLARATION I hereby affirm that the dissertation entitled “Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents” submitted for the award of Master of Science in Chemistry and submitted to the Lovely Professional University is the original and authentic study that I have carried out from August 2017 to November 2017 under the supervision of Dr. Gurpinder Singh. It does not contain any unauthorized works of other scholars, those referred are properly cited. Name and Signature of the Student Kritika Chopra Reg. No.: 11615943 Certificate This is to certify that the pre-dissertation project entitled “Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents” submitted by Kritika Chopra to the Lovely Professional University, Punjab, India is a documentation of genuine literature review of coming research work approved under my guidance and is commendable of consideration for the honour of the degree of Master of Science in Chemistry of the University. Supervisor Dr. Gurpinder Singh Assistant Professor Acknowledgement This project report is the result of half of year of work whereby I have been accompanied and supported by many people. It is a pleasant aspect for me to express my gratitude for them all. I would like to thank my supervisor Dr. Gurpinder Singh, Department of Chemistry, Lovely Professional University. Madam guided me when ever, where ever it was needed. -
20210311 IAEG AD-DSL V5.0 for Pdf.Xlsx
IAEGTM AD-DSL Release Version 4.1 12-30-2020 Authority: IAEG Identity: AD-DSL Version number: 4.1 Issue Date: 2020-12-30 Key Yellow shading indicates AD-DSL family group entries, which can be expanded to display a non-exhaustive list of secondary CAS numbers belonging to the family group Substance Identification Change Log IAEG Regulatory Date First Parent Group IAEG ID CAS EC Name Synonyms Revision Date ECHA ID Entry Type Criteria Added IAEG ID IAEG000001 1327-53-3 215-481-4 Diarsenic trioxide Arsenic trioxide R1;R2;D1 2015-03-17 2015-03-17 100.014.075 Substance Direct Entry IAEG000002 1303-28-2 215-116-9 Diarsenic pentaoxide Arsenic pentoxide; Arsenic oxide R1;R2;D1 2015-03-17 2015-03-17 100.013.743 Substance Direct Entry IAEG000003 15606-95-8 427-700-2 Triethyl arsenate R1;R2;D1 2015-03-17 2017-08-14 100.102.611 Substance Direct Entry IAEG000004 7778-39-4 231-901-9 Arsenic acid R1;R2;D1 2015-03-17 2015-03-17 100.029.001 Substance Direct Entry IAEG000005 3687-31-8 222-979-5 Trilead diarsenate R1;R2;D1 2015-03-17 2017-08-14 100.020.890 Substance Direct Entry IAEG000006 7778-44-1 231-904-5 Calcium arsenate R1;R2;D1 2015-03-17 2017-08-14 100.029.003 Substance Direct Entry IAEG000009 12006-15-4 234-484-1 Cadmium arsenide Tricadmium diarsenide R1;R2;D1 2017-08-14 2017-08-14 Substance Direct Entry IAEG000021 7440-41-7 231-150-7 Beryllium (Be) R2 2015-03-17 2019-01-24 Substance Direct Entry IAEG000022 1306-19-0 215-146-2 Cadmium oxide R1;R2;D1 2015-03-17 2017-08-14 100.013.770 Substance Direct Entry IAEG000023 10108-64-2 233-296-7 Cadmium -
Novel Architectures in Cavitand Chemistry: Shaping Molecular Inner Space
Novel Architectures in Cavitand Chemistry: Shaping Molecular Inner Space DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Keith Robert Hermann Graduate Program in Chemistry The Ohio State University 2014 Dissertation Committee: Professor Jovica D. Badjić, Advisor Professor T.V. RajanBabu Professor Psaras L. McGrier Copyright by Keith Robert Hermann 2014 Abstract As long as chemists have marveled at the specificity of interactions in enzymes, nucleic acids, and other biological motifs that contain an inner cavity, there has been much desire to construct molecules that mimic these in function. Inspired by work performed by Charles J. Pederson on crown ethers, Donald J. Cram conducted seminal research into the construction and the host-guest interactions of a number of molecular architectures, specifically with his work on carcerands and hemicarcerands. Since Cram’s early work, the field of cavitand chemistry has taken off, providing endless examples in architecture capable of enclosing the space around a guest molecule. Some common examples of artificial hosts are cryptophanes, cucurbit[n]urils, and calixaranes. Function and application vary as much as structure, and range from stabilizing reactive intermediates and probing fundamental questions in physical organic chemistry, to drug delivery and chiral separations. Meanwhile, in the Badjić Group, the development of cavitands functionalized with dynamic apertures, or gates, has allowed us to probe fundamental questions in the kinetics of encapsulation. These studies, however, have relied upon a single C3v symmetric host. As a result, the group has taken on the challenge of constructing new architectures giving consideration toward the inner space geometry to allow for installation of “gate” moieties onto these architectures. -
Thioxopyrimidinecarbonitriles As Precursors for Linked and Fused
Available online a t www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2014, 6 (2):122-135 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Thioxopyrimidinecarbonitriles as precursors for linked and fused pyrimidine derivatives: synthesis of imidazo-, pyrazoloimidazo-, triazoloimidazopyrimidines and pyrimidoimidazotriazepines aAbdelmoneim A. Makhlouf, bRasha A. M. Faty* and aAsmaa K. Mourad aFayoum University, Faculty of Science, Fayoum, Egypt bChemistry Department, Faculty of Science, Cairo University, Giza, Egypt _____________________________________________________________________________________________ ABSTRACT Alkylation of 6-aryl-4-oxo-2-thioxopyrimidine-5-carbonitriles ( 1a-c) afforded the key intermediates 2a-e, which underwent further alkylation at N-3 nitrogen atom, upon treatment with α-halofunctionalized compounds, namely: ethyl bromoacetate, chloroacetone, chloroacetylacetone, chloroacetonirile, or monobromomalononitrile to perform 2-alkylthio-6-aryl-5-cyano-4-oxo-3-substituted-3,4-dihydropyrimidines 7-9. Heating 7-9 with hydrazine hydrate produced imidazo[1,2-a]pyrimidine derivatives 10-15. Treatment of 10a with each of ethyl cyanoacetate, ethyl acetoacetate, or acetylacetone gave pyrazoloimidazopyrimidine derivatives 18a,b, 19 , respectively. Compound 10a reacted with carbon disulphide to give oxazoloimidazopyrimidine 20 . Reaction of the imidazopyrimidine derivative 15a with glacial acetic acid or thiourea afforded triazoloimidazopyrimidines 21,22 . Also, compound 15a underwent cycloaddition reaction upon treatment with either of phthalic anhydride or acrylonitrile to give 2-phenyl-4,12- dioxopyrimidino[2``,1``:2`,3`]imidazo[1`,5`:2,3][1,2,4]triazolo[1,5-b]isoindole-3-carbonitrile ( 23 ) or 8-amino-2- phenyl-4-oxo-7H-pyrimido[2`,1`:2,3]imidazo[1,5-b][1,2,4]triazepine-3-carbonitrile (24 ), respectively. -
Heterocyclic Compounds
Lecture note- 3 Organic Chemistry CHE 502 HETEROCYCLIC COMPOUNDS Co-Coordinator – Dr. Shalini Singh DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY UNIT 4: HETEROCYCLIC COMPOUNDS- I CONTENTS 4.1 Objectives 4.2 Introduction 4.3 Classification of heterocyclic compounds 4.4 Nomenclature of heterocyclic compounds 4.5 Molecular orbital picture 4.6 Structure and aromaticity of pyrrole, furan, thiophene and pyridine 4.7 Methods of synthesis properties and chemical reactions of Pyrrole, Furan, Thiophene and Pyridine 4.8 Comparison of basicity of Pyridine, Piperidine and Pyrrole 4.9 Summary 4.10 Terminal Question 4.1 OBJECTIVES In this unit learner will be able to • Know about the most important simple heterocyclic ring systems containing heteroatom and their systems of nomenclature and numbering. • Understand and discuss the reactivity and stability of hetero aromatic compounds. • Study the important synthetic routes and reactivity for five and six member hetero aromatic compounds. • Understand the important physical and chemical properties of five and six member hetero aromatic compounds. • Know about the applications of these hetero aromatic compounds in the synthesis of important industrial and pharmaceutical compounds 4.2 INTRODUCTION Heterocyclic compound is the class of cyclic organic compounds those having at least one hetero atom (i.e. atom other than carbon) in the cyclic ring system. The most common heteroatoms are nitrogen (N), oxygen (O) and sulphur (S). Heterocyclic compounds are frequently abundant in plants and animal products; and they are one of the important constituent of almost one half of the natural organic compounds known. Alkaloids, natural dyes, drugs, proteins, enzymes etc. are the some important class of natural heterocyclic compounds. -
Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry
Baran, Richter Essentials of Heterocyclic Chemistry-I Heterocyclic Chemistry 5 4 Deprotonation of N–H, Deprotonation of C–H, Deprotonation of Conjugate Acid 3 4 3 4 5 4 3 5 6 6 3 3 4 6 2 2 N 4 4 3 4 3 4 3 3 5 5 2 3 5 4 N HN 5 2 N N 7 2 7 N N 5 2 5 2 7 2 2 1 1 N NH H H 8 1 8 N 6 4 N 5 1 2 6 3 4 N 1 6 3 1 8 N 2-Pyrazoline Pyrazolidine H N 9 1 1 5 N 1 Quinazoline N 7 7 H Cinnoline 1 Pyrrolidine H 2 5 2 5 4 5 4 4 Isoindole 3H-Indole 6 Pyrazole N 3 4 Pyrimidine N pK : 11.3,44 Carbazole N 1 6 6 3 N 3 5 1 a N N 3 5 H 4 7 H pKa: 19.8, 35.9 N N pKa: 1.3 pKa: 19.9 8 3 Pyrrole 1 5 7 2 7 N 2 3 4 3 4 3 4 7 Indole 2 N 6 2 6 2 N N pK : 23.0, 39.5 2 8 1 8 1 N N a 6 pKa: 21.0, 38.1 1 1 2 5 2 5 2 5 6 N N 1 4 Pteridine 4 4 7 Phthalazine 1,2,4-Triazine 1,3,5-Triazine N 1 N 1 N 1 5 3 H N H H 3 5 pK : <0 pK : <0 3 5 Indoline H a a 3-Pyrroline 2H-Pyrrole 2-Pyrroline Indolizine 4 5 4 4 pKa: 4.9 2 6 N N 4 5 6 3 N 6 N 3 5 6 3 N 5 2 N 1 3 7 2 1 4 4 3 4 3 4 3 4 3 3 N 4 4 2 6 5 5 5 Pyrazine 7 2 6 Pyridazine 2 3 5 3 5 N 2 8 N 1 2 2 1 8 N 2 5 O 2 5 pKa: 0.6 H 1 1 N10 9 7 H pKa: 2.3 O 6 6 2 6 2 6 6 S Piperazine 1 O 1 O S 1 1 Quinoxaline 1H-Indazole 7 7 1 1 O1 7 Phenazine Furan Thiophene Benzofuran Isobenzofuran 2H-Pyran 4H-Pyran Benzo[b]thiophene Effects of Substitution on Pyridine Basicity: pKa: 35.6 pKa: 33.0 pKa: 33.2 pKa: 32.4 t 4 Me Bu NH2 NHAc OMe SMe Cl Ph vinyl CN NO2 CH(OH)2 4 8 5 4 9 1 3 2-position 6.0 5.8 6.9 4.1 3.3 3.6 0.7 4.5 4.8 –0.3 –2.6 3.8 6 3 3 5 7 4 8 2 3 5 2 3-position 5.7 5.9 6.1 4.5 4.9 4.4 2.8 4.8 4.8 1.4 0.6 3.8 4 2 6 7 7 3 N2 N 1 4-position -
IUPAC Nomenclature of Fused and Bridged Fused Ring Systems
Pure &App/. Chern., Vol. 70, No. 1, pp. 143-216, 1998. Printed in Great Britain. Q 1998 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DIVISION COMMISSION ON NOMENCLATURE OF ORGANIC CHEMISTRY (111.1) NOMENCLATURE OF FUSED AND BRIDGED FUSED RING SYSTEMS (IUPAC Recommendations 1998) Prepared for publication by G. P. MOSS Department of Chemistry, Queen Mary and Westfield College, Mile End Road, London, El 4NS, UK Membership of the Working Party (1982-1997): A. T. Balaban (Romania), A. J. Boulton (UK), P. M. Giles, Jr. (USA), E. W. Godly (UK), H. Gutmann (Switzerland), A. K. Ikizler (Turkey), M. V. Kisakiirek (Switzerland), S. P. Klesney (USA), N. Lozac’h (France), A. D. McNaught (UK), G. P. Moss (UK), J. Nyitrai (Hungary), W. H. Powell (USA), Ch. Schmitz (France), 0. Weissbach (Federal Republic of Germany) Membership of the Commission on Nomenclature of Organic Chemistry during the preparation of this document was as follows: Titular Members: 0. Achmatowicz (Poland) 1979-1987; J. Blackwood (USA) 1996; H. J. T. Bos (Netherlands) 1987-1995, Vice-chairman, 1991- ; J. R. Bull (Republic of South Africa) 1987-1993; F. Cozzi (Italy) 1996- ; H. A. Favre (Canada) 1989-, Chairman, 1991- ; P. M. Giles, Jr. (USA) 1989-1995; E. W. Godly (UK) 1987-1993, Secretary, 1989-1993; D. Hellwinkel (Federal Republic of Germany) 1979-1987, Vice-Chainnan, 1981-1987; B. J. Herold (Portugal) 1994- ; K. Hirayama (Japan) 1975-1983; M. V. Kisakiirek (Switzerland) 1994, Vice-chairman, 1996- ; A. D. McNaught (UK) 1979-1987; G. P. Moss (UK) 1977-1987, Chairman, 1981-1987, Vice-chairman, 1979-1981; R. -
Dr. James H. Reeves Dr. Pamela J. Seaton Dr. Paulo F. Almeida Dr
COMPUTED NMR SHIELDING VALUES OF UNSATURATED FIVE-MEMBERED- HETEROCYCLIC RING COMPOUNDS AND THEIR BENZO-ANALOGS AS A MEASURE OF AROMATICITY Eddie LaReece Pittman A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Chemistry and Biochemistry University of North Carolina Wilmington 2008 Approved by Advisory Committee ______________________________Dr. James H. Reeves ______________________________ Dr. Pamela J. Seaton ______________________________ Dr. Paulo F. Almeida ______________________________ Dr. Ned H. Martin Chair Accepted by ______________________________ Dean, Graduate School TABLE OF CONTENTS ABSTRACT....................................................................................................................... iv ACKNOWLEDGEMENTS................................................................................................ v LIST OF TABLES...........................................................................................................viii LIST OF FIGURES ........................................................................................................... ix 1. INTRODUCTION .......................................................................................................... 1 2. OBJECTIVE ................................................................................................................... 8 3. EXPERIMENTAL METHODS................................................................................... -
2-Substituted Phenyl-4,5,6,7-Tetrahydro-2H-Isoindole-1,3 Diones, and Their Production and Use
European Patent Office © Publication number: 0 142 648 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION © Application number: 84110304.7 © int. ci.4: C 07 D 209/48 A 01 N 43/38 © Date of filing: 29.08.84 © Priority: 31.08.83 JP 160855/83 © Inventor: Haga.Toru 2-40, Hirata 1-chome Ibaraki-shi Osaka-fu(JP) («) Date of publication of application: 29.05.85 Bulletin 85/22 © Inventor: Nagano, Eiki 1-401, Ryodo-cho 4-chome © Designated Contracting States: Nishinomiya-shi Hyogo-ken(JP) CH DE FR GB IT LI NL @ Inventor: Yoshida, Ryo © Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED 5-19, Aza-Jizoyama Higashiuneno 15 Kitahama 5-chome Higashi-ku Kawanishi-shi Hyogo-ken(JP) Osaka-shi Osaka 541 (JP) © Inventor: Hashimoto, Shunichi G-2, West Bend Apartments Leland Mississippi 38756IUS) © Representative: Vossius Vossius Tauchner Heunemann Rauh Siebertstrasse 4 P.O. Box 86 07 67 D-8000 Munchen 86(DE) © 2-Substituted phenyl-4,5,6,7-tetrahydro-2h-isoindole-1,3 diones, and their production and use. @ AA compound of the formula: O wherein R1Ri is a hydrogen atom, a fluorine atom or a methyl group and R2R* is a C1-C3Ci-Ca alkyl group, a C1-C5Ct-Cs alkoxy group, a chlorol(C2-C4)alkoxychloro(C*-C)alkoxy group, a dichloro(C2-C4)alkoxydichlorotCi-COalkoxy group, a cyclo(Cr-C7)alkoxycyclo(Cr-Or)alkoxy group, a phenoxy group, a C1-C5G-Cs alkylthio 00 group or a di(C1-C5)alkylaminodHG-Cslalkylamino group, which is useful as a <* herbicide. (0 CM D. HI Croydon Printing Company Ltd The present invention relates to 2-substituted phenyl-4,5,6,7-tetrahydro-2H-isoindole-l,3-diones (herein- after referred to as "isoindole(s)"), and their production and use. -
Benzofuran Derivatives, Process for the Preparation of the Same and Uses Thereof
Europäisches Patentamt *EP001136477B1* (19) European Patent Office Office européen des brevets (11) EP 1 136 477 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07D 307/79, C07D 405/04, of the grant of the patent: C07D 407/04, C07D 409/04, 10.03.2004 Bulletin 2004/11 C07D 491/056, C07D 491/107, (21) Application number: 99973289.4 A61K 31/343, A61K 31/36, A61K 31/381, A61K 31/4035, (22) Date of filing: 02.12.1999 A61K 31/407, A61K 31/438, A61K 31/443, A61P 25/28, A61P 25/16 (86) International application number: PCT/JP1999/006764 (87) International publication number: WO 2000/034262 (15.06.2000 Gazette 2000/24) (54) BENZOFURAN DERIVATIVES, PROCESS FOR THE PREPARATION OF THE SAME AND USES THEREOF BENZOFURANDERIVATE, VERFAHREN ZU IHRER HERSTELLUNG UND DEREN VERWENDUNGEN DERIVES DE BENZOFURANNE, LEUR PROCEDE DE PREPARATION ET LEURS UTILISATIONS (84) Designated Contracting States: (74) Representative: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU von Kreisler, Alek, Dipl.-Chem. et al MC NL PT SE Patentanwälte von Kreisler-Selting-Werner (30) Priority: 04.12.1998 JP 34535598 Postfach 10 22 41 04.12.1998 JP 34536598 50462 Köln (DE) (43) Date of publication of application: (56) References cited: 26.09.2001 Bulletin 2001/39 EP-A- 0 632 031 EP-A- 0 685 475 WO-A1-95/29907 JP-A- 5 194 466 (73) Proprietor: Takeda Chemical Industries, Ltd. JP-A- 9 124 633 Osaka-shi, Osaka 541-0045 (JP) • H. IIDA ET AL.: "One-step synthesis of (72) Inventors: 4-aminodihydrobenzofurans and • OHKAWA, Shigenori 4-hydroxyindoles via Takatsuki-shi Osaka 569-1121 (JP) dehydrogenation-heteromercuration of • ARIKAWA, Yasuyoshi 2-allyl-3-aminocyclohexenones using Hirakata-shi Osaka 573-0071 (JP) mercury(II) acetate" TETRAHEDRON LETTERS, • KATO, Kouki vol.