New Variety of Pyridine and Pyrazine-Based Arginine Mimics: Synthesis, Structural Study and Preliminary Biological Evaluation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Powerful Framework for the Chemical Design of Molecular Nanomagnets Yan Duan†,1,2, Joana T
Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Yan Duan†,1,2, Joana T. Coutinho†,*,1,3, Lorena E. Rosaleny†,*,1, Salvador Cardona-Serra1, José J. Baldoví1, Alejandro Gaita-Ariño*,1 1 Instituto de Ciencia Molecular (ICMol), Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, Spain 2 Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel 3 Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal *e-mail: [email protected], [email protected], [email protected] Abstract Three decades of intensive research in molecular nanomagnets have brought the magnetic memory in molecules from liquid helium to liquid nitrogen temperature. The enhancement of this operational temperature relies on a wise choice of the magnetic ion and the coordination environment. However, serendipity, oversimplified theories and chemical intuition have played the main role. In order to establish a powerful framework for statistically driven chemical design, we collected chemical and physical data for lanthanide-based nanomagnets to create a catalogue of over 1400 published experiments, developed an interactive dashboard (SIMDAVIS) to visualise the dataset, and applied inferential statistical analysis to it. We found that the effective energy barrier derived from the Arrhenius equation displays an excellent correlation with the magnetic memory, and that among all chemical families studied, only terbium bis-phthalocyaninato sandwiches and dysprosium metallocenes consistently present magnetic memory up to high temperature, but that there are some promising strategies for improvement. -
Synthesis of Mollugin and (3S,4R)-Trans-3,4-Dihydroxy-3,4-Dihydromollugin
Accepted Manuscript Asymmetric epoxidation of chromenes mediated by iminium salts: Synthesis of mollugin and (3S,4R)-trans-3,4-dihydroxy-3,4-dihydromollugin Philip C. Bulman Page, Yohan Chan, Abu Hassan Noor Armylisas, Mohammed Alahmdi PII: S0040-4020(16)31129-2 DOI: 10.1016/j.tet.2016.10.070 Reference: TET 28211 To appear in: Tetrahedron Received Date: 30 July 2016 Revised Date: 22 October 2016 Accepted Date: 31 October 2016 Please cite this article as: Page PCB, Chan Y, Noor Armylisas AH, Alahmdi M, Asymmetric epoxidation of chromenes mediated by iminium salts: Synthesis of mollugin and (3S,4R)-trans-3,4-dihydroxy-3,4- dihydromollugin, Tetrahedron (2016), doi: 10.1016/j.tet.2016.10.070. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. provided by University of East Anglia digital repository View metadata, citation and similar papers at core.ac.uk CORE brought to you by ACCEPTED MANUSCRIPT Graphical Abstract MANUSCRIPT ACCEPTED Asymmetric Epoxidation of Chromenes Mediated by Iminium Salts: Synthesis of Mollugin and (3 S,4 R)- ACCEPTED MANUSCRIPT trans -3,4-Dihydroxy-3,4-Dihydromollugin Philip C. Bulman Page, a* Yohan Chan, a Abu Hassan Noor Armylisas, b Mohammed Alahmdi c a School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, U.K. -
100011-1 Cesium (1000Μg/Ml in 1% HNO3)
100011-1 Cesium (1000μg/mL in 1% HNO3) High-Purity Standards Chemwatch Hazard Alert Code: 3 Catalogue number: 1000-11-1 Issue Date: 03/07/2017 Version No: 3.3 Print Date: 03/07/2017 Safety Data Sheet according to OSHA HazCom Standard (2012) requirements S.GHS.USA.EN SECTION 1 IDENTIFICATION Product Identifier Product name 100011-1 Cesium (1000μg/mL in 1% HNO3) Synonyms 1000μg/mL Cesium in 1% HNO3 Proper shipping name Corrosive liquid, acidic, inorganic, n.o.s. (contains nitric acid) Other means of 1000-11-1 identification Recommended use of the chemical and restrictions on use Relevant identified uses Use according to manufacturer's directions. Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party Registered company name High-Purity Standards Address PO Box 41727 SC 29423 United States Telephone 843-767-7900 Fax 843-767-7906 Website highpuritystandards.com Email Not Available Emergency phone number Association / Organisation INFOTRAC Emergency telephone 1-800-535-5053 numbers Other emergency telephone 1-352-323-3500 numbers SECTION 2 HAZARD(S) IDENTIFICATION Classification of the substance or mixture Classification Metal Corrosion Category 1, Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1 Label elements GHS label elements SIGNAL WORD DANGER Hazard statement(s) H290 May be corrosive to metals. H314 Causes severe skin burns and eye damage. Hazard(s) not otherwise specified Not Applicable Precautionary statement(s) Prevention Continued... Chemwatch: 9-245281 Page 2 of 10 Issue Date: 03/07/2017 Catalogue number: 1000-11-1 100011-1 Cesium (1000μg/mL in 1% HNO3) Print Date: 03/07/2017 Version No: 3.3 P260 Do not breathe dust/fume/gas/mist/vapours/spray. -
Synthesis and Consecutive Reactions of Α-Azido Ketones: a Review
Molecules 2015, 20, 14699-14745; doi:10.3390/molecules200814699 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis and Consecutive Reactions of α-Azido Ketones: A Review Sadia Faiz 1,†, Ameer Fawad Zahoor 1,*, Nasir Rasool 1,†, Muhammad Yousaf 1,†, Asim Mansha 1,†, Muhammad Zia-Ul-Haq 2,† and Hawa Z. E. Jaafar 3,* 1 Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan, E-Mails: [email protected] (S.F.); [email protected] (N.R.); [email protected] (M.Y.); [email protected] (A.M.) 2 Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore-54600, Pakistan; E-Mail: [email protected] 3 Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang-43400, Selangor, Malaysia † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.F.Z.); [email protected] (H.Z.E.J.); Tel.: +92-333-6729186 (A.F.Z.); Fax: +92-41-9201032 (A.F.Z.). Academic Editors: Richard A. Bunce, Philippe Belmont and Wim Dehaen Received: 20 April 2015 / Accepted: 3 June 2015 / Published: 13 August 2015 Abstract: This review paper covers the major synthetic approaches attempted towards the synthesis of α-azido ketones, as well as the synthetic applications/consecutive reactions of α-azido ketones. Keywords: α-azido ketones; synthetic applications; heterocycles; click reactions; drugs; azides 1. Introduction α-Azido ketones are very versatile and valuable synthetic intermediates, known for their wide variety of applications, such as in amine, imine, oxazole, pyrazole, triazole, pyrimidine, pyrazine, and amide alkaloid formation, etc. -
Heterocycles 2 Daniel Palleros
Heterocycles 2 Daniel Palleros Heterocycles 1. Structures 2. Aromaticity and Basicity 2.1 Pyrrole 2.2 Imidazole 2.3 Pyridine 2.4 Pyrimidine 2.5 Purine 3. Π-excessive and Π-deficient Heterocycles 4. Electrophilic Aromatic Substitution 5. Oxidation-Reduction 6. DNA and RNA Bases 7. Tautomers 8. H-bond Formation 9. Absorption of UV Radiation 10. Reactions and Mutations Heterocycles 3 Daniel Palleros Heterocycles Heterocycles are cyclic compounds in which one or more atoms of the ring are heteroatoms: O, N, S, P, etc. They are present in many biologically important molecules such as amino acids, nucleic acids and hormones. They are also indispensable components of pharmaceuticals and therapeutic drugs. Caffeine, sildenafil (the active ingredient in Viagra), acyclovir (an antiviral agent), clopidogrel (an antiplatelet agent) and nicotine, they all have heterocyclic systems. O CH3 N HN O O N O CH 3 N H3C N N HN N OH O S O H N N N 2 N O N N O CH3 N CH3 caffeine sildenafil acyclovir Cl S N CH3 N N H COOCH3 nicotine (S)-clopidogrel Here we will discuss the chemistry of this important group of compounds beginning with the simplest rings and continuing to more complex systems such as those present in nucleic acids. Heterocycles 4 Daniel Palleros 1. Structures Some of the most important heterocycles are shown below. Note that they have five or six-membered rings such as pyrrole and pyridine or polycyclic ring systems such as quinoline and purine. Imidazole, pyrimidine and purine play a very important role in the chemistry of nucleic acids and are highlighted. -
624 — 632 [1974] ; Received January 9, 1974)
Some ab Initio Calculations on Indole, Isoindole, Benzofuran, and Isobenzofuran J. Koller and A. Ažman Chemical Institute “Boris Kidric” and Department of Chemistry, University of Ljubljana, P.O.B. 537, 61001 Ljubljana, Slovenia, Yugoslavia N. Trinajstić Institute “Rugjer Boskovic”, Zagreb, Croatia, Yugoslavia (Z. Naturforsch. 29 a. 624 — 632 [1974] ; received January 9, 1974) Ab initio calculations in the framework of the methodology of Pople et al. have been performed on indole, isoindole, benzofuran. and isobenzofuran. Several molecular properties (dipole moments, n. m. r. chemical shifts, stabilities, and reactivities) correlate well with calculated indices (charge densities, HOMO-LUMO separation). The calculations failed to give magnitudes of first ionization potentials, although the correct trends are reproduced, i. e. giving higher values to more stable iso mers. Some of the obtained results (charge densities, dipole moments) parallel CNDO/2 values. Introduction as positional isomers 4 because they formally differ Indole (1), benzofuran (3) and their isoconju only in the position of a heteroatom. Their atomic gated isomers: isoindole (2) and isobenzofuran (4) skeletal structures and a numbering of atoms are are interesting heteroaromatic molecules1-3 denoted given in Figure 1. 13 1 HtKr^nL J J L / t hü H 15 U (3) U) Fig. 1. Atomic skeletal structures and numbering of atoms for indole (1), isoindole (2), benzofuran (3), and isobenzofuran (4). Reprint requests to Prof. Dr. N. Trinajstic, Rudjer Boskovic Institute, P.O.B. 1016, 41001 Zagreb I Croatia, Yugoslavia. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V. -
Further Studies on the Synthesis Of
FURTHER STUDIES ON THE SYNTHESIS OF ARYLETHMOLMINES By Robert Simonoff in Thesis submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of the requirements for the degree of Doctor of Philosophy 1945 UMI Number: DP70015 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI DP70015 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENT The author wishes to express his appreciation for the encouragement and assistance given by Dr, Walter H. Hartung under whose direction this work has been carried out* TABLE OF CONTENTS Page INTRODUCTION.................................................... 1 REVIEW OF THE LITERATURE Previous Methods of Synthesis of Arylethanolamines Hydrogenolytic Debenzylation. ................. ......17 EXPERIMENTAL Synthesis of Ketones .................... .33 Synthesis of Amines.......... ........ ......... ....... ....... 38 Nitrosation of Ketones.• •«••••••.......... 40 Decomposition of Arylglyoxylohydroxamyl -
US2278550.Pdf
April 7, 1942. D. J. OER E. A. 2,278,550 PREPARATION OF ALKALI METAL ALKOXIDES Filed June 21, 1939 REACTION ------ REGENERATION OFMX FROM M-represents an alkali metal N-represents a number from 2 to 3 R-represents an alkyl group X-represents the anion of a weak acid Donald D. Lee Donald J. Loder NVENTOR BY 232 az - ATTORNEY Patented Apr. 7, 1942 2,278,550 UNITED STATES PATENT OFFICE 2,278,550 PREPARATION OF ALKALI METAL ALKOXDES Donald J. Loder and Donald D. Lee, Wilmington, Del, assignors to E. I. du Pont de Nemours & Company, Wilmington, Del., a corporation of Delaware Application June 21, 1939, Serial No. 280,308 16 Claims. (CI. 260-632) The invention relates to improvements in the and R is an alkyl, or aralkyl radical which may be manufacture of metal alkoxides and more particu Saturated, unsaturated, substituted or unsub larly to the preparation of alkali metal alkoxides stituted. by the interaction of alcohols with alkali metal In Reactions 1 and 2, an alkali metal salt of a salts of weak acids. weak acid is digested with an alcohol at an ap Alkali metal alkoxides have been prepared by propriate temperature, the digestion being Con. direct reaction of the alkali metal as such with tinued until equilibrium has been substantially an alcohol. or by action of an alkali metal hy reached. The equilibrium mixture is filtered for. droxide. upon an alcohol. The higher cost of the the separation of any undissolved (MX or M3X) first of these methods has limited somewhat the O salt and the resulting solution (or filtrate) is industrial use of the alkoxide thus prepared and found to contain an alkali metal alkoxide, or much effort has been expended in endeavors to aralkoxide, (MOR) hereinafter called 'al make the second more commercially practicable. -
NEW at ROTH June 2014 NEW Products and Programme Extensions in Chemicals
NEW at ROTH June 2014 NEW Products and Programme Extensions in Chemicals Content NEW Products Chemicals .................................... 2-14 NEW at ROTH | NEW at ROTH | NEW at ROTH | NEW at ROTH | NEW at ROTH | NEW at ROTH | NEW at ROTH | NEW at ROTH | NEW at ROTH | NEW at RO NEW Chemicals June 2014 Acids Nitric acid 40 % Biochemicals ® Nitric acid 40 % Cellpure Nitr Hydrochloric acid 37 % 40 %, pure HNO3 M 63,0 g/mol L-Alanyl-L-glutamine Hydrochloric acid 37 % D 1,25 Hydr 37 %, techn. [7697-37-2] O O Hydrogen chloride EC No 231-714-2 · UN No. 2031 HCl ADR 8 II · WGK 1 H2N OH M 36,46 g/mol h Danger H290-H314 HN O D ~1,19 Type analysis: [7647-01-0] Assay. ...................................................... 39,0-41,0 % H2N CH3 EC No 231-595-7 · UN No. 1789 Chloride (Cl). ................................................ b0,001 % ADR 8 II · WGK 1 Iron (Fe)...................................................... 0,0005 % L-Alanyl-L-glutamine Alan Danger H290-H314-H335 Heavy metals (as Pb). ................................ 0,0001 % 99 %, CELLPURE® h g Ash............................................................... b0,001 % Type analysis: C8H15N3O4 Assay..............................................................36,5 % 6748.1 1 l glass 17,10 € M 217,22 g/mol Density (20 °C). ........................................1,183-1,187 Original pack 6 x 1 l 16,25/1 l mp 209 °C (dec.) Lead (Pb)....................................................0,0001 % 6748.2 5 l plastic 42,90 € Solubility: 450 g/l (H2O, 20 °C) 7476.1 1 l glass 13,85 € Original pack 2 x 5 l 40,76/5 l [39537-23-0] 6748.3 10 l plastic 53,65 € WGK 1 Original pack 6 x 1 l 13,16/1 l 7476.2 2,5 l glass 19,25 € 6748.4 25 l plastic 103,20 € Type analysis: Original pack 4 x 2,5 l 18,29/2,5 l Appearance. -
Enzyme and Lateral Flow Monoclonal Antibody-Based Immunoassays To
www.nature.com/scientificreports OPEN Enzyme and lateral fow monoclonal antibody‑based immunoassays to simultaneously determine spirotetramat and spirotetramat‑enol in foodstufs Ramón E. Cevallos‑Cedeño1,3, Consuelo Agulló2, Antonio Abad‑Fuentes1, Antonio Abad‑Somovilla2 & Josep V. Mercader1* Spirotetramat is employed worldwide to fght insect pests due to its high efciency. This chemical is quickly metabolized by plants into spirotetramat‑enol, so current regulations establish that both compounds must be determined in foodstufs for monitoring purposes. Nowadays, immunochemical methods constitute rapid and cost‑efective strategies for chemical contaminant analysis at trace levels. However, high‑afnity binders and suitable bioconjugates are required. In this study, haptens with opposite functionalisation sites were synthesized in order to generate high‑afnity monoclonal antibodies. A direct competitive enzyme‑linked immunosorbent assay with an IC50 value for the sum of spirotetramat and spirotetramat‑enol of 0.1 μg/L was developed using selected antibodies and a novel heterologous bioconjugate carrying a rationally‑designed hapten. Studies with fortifed grape, grape juice, and wine samples showed good precision and accuracy values, with limits of quantifcation well below the maximum residue limits. Excellent correlation of results was observed with a standard reference chromatographic method. As a step forward, a lateral fow immunoassay was developed for onsite screening analysis of spirotetramat in wine. This assay was successfully validated according to Regulation 519/2014/EU for semi‑quantitative methods at concentrations in line with the legal levels of spirotetramat and spirotetramat‑enol in grapes, with a satisfactory false suspect rate below 2%. Spirotetramat (SP), also known as BYI08330, was developed by Bayer CropScience a few years ago, and it was approved as a pesticide in the European Union and in the USA in 20141,2. -
Lovely Professional University, Punjab, India
Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents Project Report-1 Masters of Sciences In Chemistry (Hons.) By Kritika Chopra Registration No. 11615943 Under the guidance Of Dr. Gurpinder Singh Department of Chemistry Lovely Professional University, Punjab, India DECLARATION I hereby affirm that the dissertation entitled “Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents” submitted for the award of Master of Science in Chemistry and submitted to the Lovely Professional University is the original and authentic study that I have carried out from August 2017 to November 2017 under the supervision of Dr. Gurpinder Singh. It does not contain any unauthorized works of other scholars, those referred are properly cited. Name and Signature of the Student Kritika Chopra Reg. No.: 11615943 Certificate This is to certify that the pre-dissertation project entitled “Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents” submitted by Kritika Chopra to the Lovely Professional University, Punjab, India is a documentation of genuine literature review of coming research work approved under my guidance and is commendable of consideration for the honour of the degree of Master of Science in Chemistry of the University. Supervisor Dr. Gurpinder Singh Assistant Professor Acknowledgement This project report is the result of half of year of work whereby I have been accompanied and supported by many people. It is a pleasant aspect for me to express my gratitude for them all. I would like to thank my supervisor Dr. Gurpinder Singh, Department of Chemistry, Lovely Professional University. Madam guided me when ever, where ever it was needed. -
Heterocyclic Chemistrychemistry
HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics