Haloselectivity of Heterocycles Will Gutekunst

Total Page:16

File Type:pdf, Size:1020Kb

Haloselectivity of Heterocycles Will Gutekunst Baran Group Meeting Haloselectivity of Heterocycles Will Gutekunst Background SN(ANRORC) Addition of Nuclophile, Ring Opening, Ring Closure Polysubstituted heterocycles represent some of the most important compounds in the realm of pharmaceutical and material sciences. New and more efficient ways to selectively produce these Br Br molecules are of great importance and one approach is though the use of polyhalo heterocycles. Br NaNH2 N N Consider: Ar N 3 Ar2 NH3(l), 90% NH2 3 Halogenations H NH2 H N CO2Me Ar H 3 Suzuki Couplings 1 N CO2Me - Br H Ar 3 Ar2 1 Triple Halogenation NH2 NH CO Me N N 2 Ar1 H 1 Triple Suzuki Coupling N CO2Me N NH H NH2 Ar H 3 Ar2 1 Triple C-H activation? CO Me N 2 Ar1 H N CO2Me Cross Coupling H Virtually all types of cross coupling have been utilized in regioselective cross coupling reactions: Nucleophilic Substitution Kumada, Negishi, Sonogashira, Stille, Suzuki, Hiyama, etc. SNAr or SN(AE) In all of these examples, the oxidative addition of the metal to the heterocycle is the selectivity determining steps and is frequently considered to be irreversible. This addition highly resembles a nucleophilic substitution and it frequently follows similar regioselectivities in traditional S Ar reactions. Nu N The regioselectivity of cross coupling reaction in polyhalo heterocycles do not always follow the BDE's Nu of the corresponding C-X bonds. N X N X N Nu 2nd 2nd Meisenheimer Complex 1st Br Br 88.9 83.2 S (EA) Br 88.9 N 87.3 Br O O via: st OMe 1 Br NaNH , t-BuONa 2 N N pyrrolidine + Merlic and Houk have determined that the oxidative addition in palladium catalyzed cross coupling N N THF, 40ºC N reactions is determined by the distortion energy of the C-X bond (related to BDE) and the interaction of N the LUMO of the heterocycle to the HOMO of the Pd species. Tetrahedron 1982, 38, 427 SET Mechanism can also be operative (SRN1) OK HetX + Nu HetX + Nu N N O HetX Het + X N Cl h!, NH3(l) N Het + Nu HetNu 88% JOC 1981, 46, 294 HetNu + HetX HetNu + HetX JACS, 2007, 129, 12664; JACS, 2009, 131, 6632 Baran Group Meeting Haloselectivity of Heterocycles Will Gutekunst Predicting Reactivity Pyrroles can also be selectively monoarylated at C-2 under C-H activation conditions. The Handy Method Handy and coworkers disclosed an experimental method in 2006 for predicting the regiochemical + - 1 Ph2I BF4 outcome of multiply halogenated heterocycles using H-NMR of the dehalogenated substrate. The 5% IMesPd(OAc)2 proton that displays the largest chemical shift implies it is attached to the most electron deficient Ph N N carbon atom and, therefore, the preferred site of cross coupling. While this method is not foolproof Me rt, AcOH, 67% Me (it does not take into account sterics, directing groups, or interactions noted by Merlic), it is a good start for predicting regioselectivities of cross coupling reactions. JACS 2006, 128, 4972 Chem. Comm. 2006, 299 Indole Pyrroles 2nd 7.00 7.55 6.45 - Like pyrrole, SNAr is very difficult without strong EWG's nd - Due to the electron rich nature, SNAr reactions do not readily take place last 2 7.08 - Cross coupling occurs first at C-2, with C-4 to C-7 reacting 6.22 without strong EWGs. 7.27 before electron rich C-3. A C-2 vs C-4/7 has not been reported. - Cross coupling reactions occur fastest at the 2/5 positions, in accord with 7.40 N 6.68 st chemical shift prediction. H 1st N 1 H - Monocoupling in 2,5 dihalo substrates is difficult, but 3,4 dihalo (Acetone) (CDCl3) substrates can be easily controlled on steric grounds. - B(OH) S 2 Br Br O O Br S H Cl 2.5 eq EtSH H Cl N 10% Pd(PPh ) N TBS 3 4 TBS TEA, DMSO Na2CO3, Tol/H2O H H reflux, 8 hrs Cl N 86% EtS N 78% Me Me O O Orthogonally, the 3-position could be selectively exchanged with t-BuLi. Tetrahedron 2005, 61, 5831 Br Br Br t-BuLi, MeI Br Br Br Br Cl B(OH) 2 -78º C, THF Br N N N TBS 81% TBS 6% Pd(PPh ) Me Br N Br 3 4 Me K3PO4, Tol/H2O Chem. Pharm. Bull. 1996, 44,1831 90ºC, 12 hrs Cl 71% Tet. Lett. 2009, 49, 1698 The C-H activation conditions for pyrrole are also successful on indole and tolerates aryl bromides MeO MeO OMOM MeO MeO OMe Br + - Br MeO B(OH)2 MeO B(OH)2 Ph2I BF4 TfO OTf MeO 5% IMesPd(OAc)2 2% Pd(PPh3)4 8% Pd(PPh3)4 OMOM Ph MeO C CO Me N 60º C, AcOH, 74% N 2 N 2 aq. Na CO , THF aq. Na CO , THF H H 2 3 2 3 MeO2C CO2Me R reflux, 4 hrs reflux, 20 hrs N 78% 58% R Tet. Lett. 2003, 44, 4443 Baran Group Meeting Haloselectivity of Heterocycles Will Gutekunst Furan Much like the dibromo indole, after the first Negishi coupling, the lithium halogen exchange at C-3 is favored. - Not as resistant as pyrrole, but SNAr reactions still do not readily take place 2nd 6.24 without strong EWGs. Br OMe t-BuLi, MeI OMe - Cross coupling reactions occur fastest at the 2/5 positions, in accord with Br -78ºC, THF Br 7.29 st chemical shift prediction. OMe OMe O 1 54% - Halogenated furans have general stability problems, making cross couplings O O (CDCl3) sometimes troublesome. Synthesis 2003, 6, 925 Br SnMe Br Bu3Sn 4 Thiophene 5% [PdCl (Po-Tol ) ] 2 3 2 - A better substrate for SNAr than furan and two orders of magnitude more nd reactive than benzene, but not many examples of haloselective reactions. MeO2C Br MeO2C 6.99 2 O 4% Pd(PPH3)4 O DMA, 90ºC, 70% - Cross coupling reactions occur fastest at the 2/5 positions and the 3/4 DMA, 90ºC, 79% 7.18 much slower. Selectivity on 2,5 dihalothiophenes is scarcely obtained st S 1 though some success has been seen with Sonogashira reaction and cases with substrate bias. 2 steps (CDCl3) 64% MeO2C O O Br Br NBnMe BnNHCH rosefuran 3 Synlett 1998, 11, 1185 O O + O Br BnMeN Br S 46% S S H H H Furfural can be selectively arylated in the 5- position directly. 4:1 Synlett 2000, 4, 459 OMe PhBr O O O 10% Pd(OH)2, K2CO3 O Ph Br Br H DMA, 130ºC, 75% H S ZnCl Two more Br Br Br cross-couplings S JOC 2005, 70, 7578 S 2.5% [PdCl2(dppf)] S S 54% S Et2O 63% S Eur. JOC 2008, 5, 801 Benzofuran nd 2 BnZnBr p-TolMgCl 7.23 7.63 - Like indole, SNAr is uncommon on benzofuran Br Br Pd(PPh ) NiCl2(dppp) 6.76 - Cross coupling also mimics indole first at C-2, with C-4 to C-7 reacting 3 4 Br last 7.30 before electron rich C-3. Seems to follow Handy rules, though selectivity 52 - 57% quant 7.78 among C-4 through C-7 is unknown. S 7.51 O S st S (acetone) 1 Tet. Lett. 1980, 21, 4017 ClZn OMe Again, Lithium Halogen Exchange shows a different regioselection Br OMe Br OMe Br Br MgBr MeZnCl nBuLi, Et2O OMe -78ºC; H2O Br 5% [PdCl2(PPh ) ] O Br Br O 3 2 10% [NiCl2(dppe)] 10% [PdCl2(dppf)] S Br THF, rt, 75% THF, rt, 86% THF, reflux, 93% 79% S Thiophenes, pg 693 Baran Group Meeting Haloselectivity of Heterocycles Will Gutekunst Benzothiophene Attempts to displace the second chloride leads to mixtures with ring opened products. nd 2 - SNAr occurs readily on benzothiophenes, but they have some strange 7.70 7.5 7.26 7.72 7.56 8.45 7.22 reactions with nucleophiles. last - Cross coupling also mimics indole: first at C-2, with C-4 to C-7 reacting Cl MeS 7.24 N before C-3. S 1) 2 eq Na2S S MeS SMe 7.58 7.33 + 7.79 S N 7.85 9.11 1st NC NC N 2) MeI NC CN Isoquinoline (CCl ) (CCl ) 4 4 Cl SMe JOC 1964, 29, 660 Br Br Pyrazole shows similar reactivity, with a bromide being displaces before an iodide. NH NH Br N N S 106ºC S 200ºC S Me Me 73% Br EtO2C S N N 1.2 eq Na2S, DMF, 100ºC; N JOC 1973, 88,1365 N Ethyl bromoacetate, rt EtO C MeO EtO2C 2 I 80% I MeO B(OH) B(OH)2 2 Syn. Comm. 2008, 38, 674 Br MeO OMe Ph Br 3% Pd(PPh ) 5% Pd(PPh ) S S 3 4 3 4 Br Na2CO3, EtOH/DME Ba(OH)2, H2O/DME Ph 95% 71% S Ph Ph N S Br 4% PdCl2(PPh3)2 N Synthesis 2002, 2, 213 Br CuI, TEA/MeCN, rt Br 56% Br The remaining two bromides were unreactive in further Sonogashira couplings, even at higher temps 1,2-Azoles st 1 MeO Ph Me 8.39 O 8.72 S 7.45 N I Ph N N rd S N 3 7.26 6.28 8.54 S 6.20 8.14 2nd N 2% PdCl2(PPh3)2 4% PdCl2(PPh3)2 7.31 I CuI, TEA/MeCN, rt CuI, TEA/MeCN, 50ºC N Br 45% (also 45% deiodo) 42% Isoxazole (CS ) Isothiazole (CCl4) MeO N-methyl pyrazole (CDCl3) 2 Br - Selective SNAr reactions are only known with EWGs on the 4-position, but strongly favors substitution Russ.
Recommended publications
  • Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
    Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc.
    [Show full text]
  • [1,2,5]Thiadiazolo[3,4-D]Pyridazine As an Internal Acceptor in the DA-Π-A
    Article [1,2,5]Thiadiazolo[3,4-d]Pyridazine as an Internal Acceptor in the D-A-π-A Organic Sensitizers for Dye- Sensitized Solar Cells Timofey N. Chmovzh 1, Ekaterina A. Knyazeva 1,2, Ellie Tanaka 3, Vadim V. Popov 2, Ludmila V. Mikhalchenko 1, Neil Robertson 3,* and Oleg A. Rakitin 1,2,* 1 N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; [email protected] (O.A.R.); [email protected] (T.N.C.); [email protected] (E.A.K.); [email protected] (L.V.M.) 2 Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia; [email protected] 3 EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK; [email protected] * Correspondence: Correspondence: [email protected] (N.R.); [email protected] (O.A.R.); Tel.: +44-131-650-4755 (N.R.); +7-499-135-5327(O.A.R.) Academic Editor: Panayiotis A. Koutentis Received: 4 April 2019; Accepted: 19 April 2019; Published: 22 April 2019 Abstract: Four new D-A-π-A metal-free organic sensitizers for dye-sensitized solar cells (DSSCs), with [1,2,5]thiadiazolo[3 ,4-d]pyridazine as internal acceptor, thiophene unit as π-spacer and cyanoacrylate as anchoring electron acceptor, have been synthesized. The donor moiety was introduced into [1,2,5]thiadiazolo[3,4-d]pyridazine by nucleophilic aromatic substitution and Suzuki cross-coupling reactions, allowing design of D-A-π-A sensitizers with the donor attached to the internal heterocyclic acceptor not only by the carbon atom, as it is in a majority of DSSCs, but by the nitrogen atom also.
    [Show full text]
  • 68 3 1 5"! Patent Request: Standard Patent/Patent of Addition
    Λ _ ___ _ KWU/lXHJIMI AUSTRALIA Patents Act 1990 68 3 1 5"! PATENT REQUEST: STANDARD PATENT/PATENT OF ADDITION We, being the persons identified below as the Applicant, request the grant of a patent to the person identified below as the Nominated Person, for an invention described in the accompanying standard complete specification. ,· Full application details follow. [71] Applicant: ADIR ET COMPAGNIE Address: 1 RUE cXrLE HEBERT, F-92415 COURBEVOIE CEDEX, FRANCE [70] Nominated Person: ADIR ET COMPAGNIE Address: 1 RUE CARLE HEBERT, F-92415 COURBEVOIE CEDEX, FRANCE [54] Invent»·* Title: NOVEL N-PYRIDYL CARBOXAMIDES AND DERIVATIVES, PROCESSES FOR THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS WHICH CONTAIN THEM Name(s) of actual inventor(s): JEAN-MICHEL ROBERT, ODILE RIDEAU, SYLVIE ROBERT-PIESSARD, JACQUELINE COURANT, GUILLAUME LE BAUT, DANIEL-HENRI CAIGNARD, PIERRE RENARD and GERARD ADAM Address for service in Australia: c/o WATERMARK PATENT & TRADEMARK ATTORNEYS, of 290 Burwood Road, Hawthorn, Victoria 3122, Australia Attorney Code: WM :,.··. BASIC CONVENTION APPLICATION(S) DETAILS .... [31] Application Number [33] Country Country [32] Date of Application : Code 9406412 FRANCE FR 27 MAY 1994 Basic Applicants): ADIR ET COMPAGNIE • · · · • · · *· Di awing number recommended to accompany the abstract ............................... By our Patent Attorneys, WATERMARK PATENT & TRADEMARK ATTORNEYS ...CM&/.VV2...... ....... DATED this 25th day of May 1995,. Carolyn J, Harris Registered Patent Attorney i P/00/008b 12/11/91 Section 29 (η Regulation 3.1 (2) AUSTRALIA Patents Act 1990 NOTICE OF ENTITLEMENT We, ADIR ET COMPAGNIE of, 1 Rue Carle Hebert, F-92415 Courbevoie Cedex, France, being the applicant in respect of Application No.
    [Show full text]
  • Heterocyclic Compounds with Biological Meaning
    Heterocyclic compounds with biological meaning 1 Heterocyclic compounds Cyclic, organic compounds which besides carbon atoms have one or more heteroatom (other elements than C). Heterocyclic atoms: – nitrogen, N – sulphur, S – oxygen, O – phosphorus, P – barium, Ba – zinc, Zn – silicon, Si. 2 Heterocyclic compounds From the biological point of view, the most important are heterocyclic compounds with 5- and 6-membered rings, containing: S, N, O. Most of the heterocyclic compounds have their common names. Substituent’s position in the ring is described by : – number – position of heteroatom – no. 1 – Greek letter – describes carbon atom the closest to heteroatom as a, then β and γ, respectively. 3 Heterocyclic compounds Heterocyclic compounds are: • widespread in nature • biologically active • some of them are toxic (e.g. coniine, coumarin and derivatives). Occurrence in: • natural dyes - heme, chlorophyll • alkaloids – atropine and nicotine • amino acids such as tryptophan and histidine • enzymes, nucleoproteins, antibiotics • vitamins • many synthetic pharmaceuticals. 4 Heterocyclic compounds Aromatic character of heteroatom-containing ring comes from aromatic sextet which consists of: • „not bound” electron pairs of heteroatoms • four electrons π from carbon atoms Pyrrole Furane Thiophen 5 5- membered ring heterocyclic compounds with one heteroatom 5-membered rings: • contain mostly oxygen, sulphur and nitrogen • are flat • are aromatic 6 5- membered ring heterocyclic compounds with two heteroatoms oxazole imidazole thiazole pyrazole 7 5- membered ring heterocyclic compounds With one heteroatom With two heteroatoms Condensation products with benzene 8 Pyrrole and derivatives • Pyrrole derivatives: • pyrroline • pyrrolidone • proline, • Hydroksyproline. • Condensation’s products of pyrrole with benzene: – indole, – tryptophan, – serotonin. • Condensation’s products of pyrrole with formaldehyde: – heme – hemoglobin – billirubin – porphyrins – Biliverdin.
    [Show full text]
  • Heterocyclic Compounds
    Gábor Krajsovszky Heterocyclic compounds ISBN: 978-615-5722-01-1 © Gábor Krajsovszky Responsible editor: Gábor Krajsovszky Publisher’s reader: István Mándity Translated by Péter Tétényi Department of Organic Chemistry Pharmaceutical Faculty Semmelweis University Budapest, 2018 Acknowledgements The editor wants to express many thanks to Dr. István Mándity, who is Associate Professor and Director of Department of Organic Chemistry, for the careful proofreading service of the current manuscript, as well as to Dr. Péter Tétényi, who is Assistant Professor, for the translation to English language. Moreover, the editor renders many thanks to Mrs. Ferenc Juhász and Ms. Nikoletta Zlatzky laboratory assistants for drawing material of the figures. Dr. Gábor Krajsovszky Associate Professor Department of Organic Chemistry Literature used Alan R. Katritzky, Charles W. Rees: Comprehensive Heterocyclic Chemistry Parts 2-3, 4-6, 7 Pergamon Press 1984 Oxford • New York • Toronto • Sydney • Paris • Frankfurt T. Eicher, S. Hauptmann, A. Speicher: The Chemistry of Heterocycles Structure, Reactions, Syntheses, and Applications Wiley-VCH GmbH 2003 Weinheim E. Breitmaier, G. Jung: Organische Chemie Grundlagen, Stoffklassen, Reaktionen, Konzepte, Molekülstruktur Georg Thieme Verlag 1978, 2005 Stuttgart • New York Clauder Ottó: Szerves kémia II/2. Egyetemi jegyzet Semmelweis OTE Budapest, 1980 Bruckner Győző: Szerves kémia III−1. Tankönyvkiadó, Budapest, 1964 Természettudományi Lexikon − Harmadik kötet Clauder Ottó: 'Heterociklusos vegyületek' címszó, 155-161.
    [Show full text]
  • Synthesis and Consecutive Reactions of Α-Azido Ketones: a Review
    Molecules 2015, 20, 14699-14745; doi:10.3390/molecules200814699 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Synthesis and Consecutive Reactions of α-Azido Ketones: A Review Sadia Faiz 1,†, Ameer Fawad Zahoor 1,*, Nasir Rasool 1,†, Muhammad Yousaf 1,†, Asim Mansha 1,†, Muhammad Zia-Ul-Haq 2,† and Hawa Z. E. Jaafar 3,* 1 Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan, E-Mails: [email protected] (S.F.); [email protected] (N.R.); [email protected] (M.Y.); [email protected] (A.M.) 2 Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore-54600, Pakistan; E-Mail: [email protected] 3 Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang-43400, Selangor, Malaysia † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.F.Z.); [email protected] (H.Z.E.J.); Tel.: +92-333-6729186 (A.F.Z.); Fax: +92-41-9201032 (A.F.Z.). Academic Editors: Richard A. Bunce, Philippe Belmont and Wim Dehaen Received: 20 April 2015 / Accepted: 3 June 2015 / Published: 13 August 2015 Abstract: This review paper covers the major synthetic approaches attempted towards the synthesis of α-azido ketones, as well as the synthetic applications/consecutive reactions of α-azido ketones. Keywords: α-azido ketones; synthetic applications; heterocycles; click reactions; drugs; azides 1. Introduction α-Azido ketones are very versatile and valuable synthetic intermediates, known for their wide variety of applications, such as in amine, imine, oxazole, pyrazole, triazole, pyrimidine, pyrazine, and amide alkaloid formation, etc.
    [Show full text]
  • Heterocycles 2 Daniel Palleros
    Heterocycles 2 Daniel Palleros Heterocycles 1. Structures 2. Aromaticity and Basicity 2.1 Pyrrole 2.2 Imidazole 2.3 Pyridine 2.4 Pyrimidine 2.5 Purine 3. Π-excessive and Π-deficient Heterocycles 4. Electrophilic Aromatic Substitution 5. Oxidation-Reduction 6. DNA and RNA Bases 7. Tautomers 8. H-bond Formation 9. Absorption of UV Radiation 10. Reactions and Mutations Heterocycles 3 Daniel Palleros Heterocycles Heterocycles are cyclic compounds in which one or more atoms of the ring are heteroatoms: O, N, S, P, etc. They are present in many biologically important molecules such as amino acids, nucleic acids and hormones. They are also indispensable components of pharmaceuticals and therapeutic drugs. Caffeine, sildenafil (the active ingredient in Viagra), acyclovir (an antiviral agent), clopidogrel (an antiplatelet agent) and nicotine, they all have heterocyclic systems. O CH3 N HN O O N O CH 3 N H3C N N HN N OH O S O H N N N 2 N O N N O CH3 N CH3 caffeine sildenafil acyclovir Cl S N CH3 N N H COOCH3 nicotine (S)-clopidogrel Here we will discuss the chemistry of this important group of compounds beginning with the simplest rings and continuing to more complex systems such as those present in nucleic acids. Heterocycles 4 Daniel Palleros 1. Structures Some of the most important heterocycles are shown below. Note that they have five or six-membered rings such as pyrrole and pyridine or polycyclic ring systems such as quinoline and purine. Imidazole, pyrimidine and purine play a very important role in the chemistry of nucleic acids and are highlighted.
    [Show full text]
  • Construction of Unusual Indole-Based Heterocycles from Tetrahydro-1H-Pyridazino[3,4-B]Indoles
    molecules Article Construction of Unusual Indole-Based Heterocycles from Tetrahydro-1H-pyridazino[3,4-b]indoles Cecilia Ciccolini, Lucia De Crescentini, Fabio Mantellini, Giacomo Mari, Stefania Santeusanio and Gianfranco Favi * Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, Italy; [email protected] (C.C.); [email protected] (L.D.C.); [email protected] (F.M.); [email protected] (G.M.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +39-0722-303444 Academic Editor: Pascale Moreau Received: 27 August 2020; Accepted: 7 September 2020; Published: 9 September 2020 Abstract: Herein, we report the successful syntheses of scarcely represented indole-based heterocycles which have a structural connection with biologically active natural-like molecules. The selective oxidation of indoline nucleus to indole, hydrolysis of ester and carbamoyl residues followed by decarboxylation with concomitant aromatization of the pyridazine ring starting from tetrahydro-1H-pyridazino[3,4-b]indole derivatives lead to fused indole-pyridazine compounds. On the other hand, non-fused indole-pyrazol-5-one scaffolds are easily prepared by subjecting the same C2,C3-fused indoline tetrahydropyridazines to treatment with trifluoroacetic acid (TFA). These methods feature mild conditions, easy operation, high yields in most cases avoiding the chromatographic purification, and broad substrate scope. Interestingly, the formation of indole linked pyrazol-5-one system serves as a good example of the application of the umpolung strategy in the synthesis of C3-alkylated indoles. Keywords: indole-based heterocycles; C2-C3 indole oxidation; aromatization; ring-opening/ring-closing; umpolung 1.
    [Show full text]
  • Further Studies on the Synthesis Of
    FURTHER STUDIES ON THE SYNTHESIS OF ARYLETHMOLMINES By Robert Simonoff in Thesis submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of the requirements for the degree of Doctor of Philosophy 1945 UMI Number: DP70015 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI DP70015 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENT The author wishes to express his appreciation for the encouragement and assistance given by Dr, Walter H. Hartung under whose direction this work has been carried out* TABLE OF CONTENTS Page INTRODUCTION.................................................... 1 REVIEW OF THE LITERATURE Previous Methods of Synthesis of Arylethanolamines Hydrogenolytic Debenzylation. ................. ......17 EXPERIMENTAL Synthesis of Ketones .................... .33 Synthesis of Amines.......... ........ ......... ....... ....... 38 Nitrosation of Ketones.• •«••••••.......... 40 Decomposition of Arylglyoxylohydroxamyl
    [Show full text]
  • Dibenzothiophene/Oxide and Quinoxaline/Pyrazine Derivatives Serving As Electron-Transport Materials**
    FULL PAPER DOI: 10.1002/adfm.200500823 Dibenzothiophene/Oxide and Quinoxaline/Pyrazine Derivatives Serving as Electron-Transport Materials** By Tai-Hsiang Huang, Wha-Tzong Whang,* Jiun Yi Shen, Yuh-Sheng Wen, Jiann T. Lin,* Tung-Huei Ke, Li-Yin Chen, and Chung-Chih Wu* A series of 2,8-disubstituted dibenzothiophene and 2,8-disubstituted dibenzothiophene-S,S-dioxide derivatives containing quinoxaline and pyrazine moieties are synthesized via three key steps: i) palladium-catalyzed Sonogashira coupling reaction to form dialkynes; ii) conversion of the dialkynes to diones; and iii) condensation of the diones with diamines. Single-crystal characterization of 2,8-di(6,7-dimethyl-3-phenyl-2-quinoxalinyl)-5H-5k6-dibenzo[b,d]thiophene-5,5-dione indicates a triclinic crystal structure with space group P1 and a non-coplanar structure. These new materials are amorphous, with glass-transition temperatures ranging from 132 to 194 °C. The compounds (Cpd) exhibit high electron mobilities and serve as effective elec- tron-transport materials for organic light-emitting devices. Double-layer devices are fabricated with the structure indium tin oxide (ITO)/Qn/Cpd/LiF/Al, where yellow-emitting 2,3-bis[4-(N-phenyl-9-ethyl-3-carbazolylamino)phenyl]quinoxaline (Qn) serves as the emitting layer. An external quantum efficiency of 1.41 %, a power efficiency of 4.94 lm W–1, and a current efficien- cy of 1.62 cd A–1 are achieved at a current density of 100 mA cm–2. 1. Introduction efficiency, brightness, and durability.[4] In contrast, reports of the use of small molecules as electron-transporting materials [5] Organic and polymer light-emitting diodes (OLEDs and are still rare in the literature.
    [Show full text]
  • Tetrazinebox: a Structurally Transformative Toolbox Qing-Hui Guo, Jiawang Zhou, Haochuan Mao, Yunyan Qiu, Minh T
    pubs.acs.org/JACS Article TetrazineBox: A Structurally Transformative Toolbox Qing-Hui Guo, Jiawang Zhou, Haochuan Mao, Yunyan Qiu, Minh T. Nguyen, Yuanning Feng, Jiaqi Liang, Dengke Shen, Penghao Li, Zhichang Liu, Michael R. Wasielewski, and J. Fraser Stoddart* Cite This: J. Am. Chem. Soc. 2020, 142, 5419−5428 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Synthetic macrocycles capable of undergoing allosteric regulation by responding to versatile external stimuli are the subject of increasing attention in supramolecular science. Herein, we report a structurally transformative tetracationic cyclophane containing two 3,6-bis(4-pyridyl)-l,2,4,5-tetrazine (4-bptz) units, which are linked together by two p-xylylene bridges. The cyclophane, which possesses modular redox states and structural post-modifications, can undergo two reversibly consecutive two-electron reductions, affording first its bisradical dicationic counterpart, and then subsequently the fully reduced species. Furthermore, one single-parent cyclophane can afford effectively three other new analogs through box- to-box cascade transformations, taking advantage of either reductions or an inverse electron-demand Diels−Alder (IEDDA) reaction. While all four new tetracationic cyclophanes adopt rigid and symmetric box-like conformations, their geometries in relation to size, shape, electronic properties, and binding affinities toward polycyclic aromatic hydrocarbons can be readily regulated. This structurally transformative tetracationic cyclophane performs a variety of new tasks as a result of structural post-modifications, thus serving as a toolbox for probing the radical properties and generating rapidly a range of structurally diverse cyclophanes by efficient divergent syntheses. This research lays a solid foundation for the introduction of the structurally transformative tetracationic cyclophane into the realm of mechanically interlocked molecules and will provide a toolbox to construct and operate intelligent molecular machines.
    [Show full text]
  • Non-Empirical Calculations on the Electronic Structure of Olefins and Aromatics
    NON-EMPIRICAL CALCULATIONS ON THE ELECTRONIC STRUCTURE OF OLEFINS AND AROMATICS by Robert H. Findlay, B.Sc. Thesis presented for the Degree of Doctor of philosophy University of Edinburgh December 1973 U N /),, cb CIV 3 ACKNOWLEDGEMENTS I Wish to express my gratitude to Dr. M.H. Palmer for his advice and encouragement during this period of study. I should also like to thank Professor J.I.G. Cadogan and Professor N. Campbell for the provision of facilities, and the Carnegie Institute for the Universities of Scotland for a Research Scholarship. SUMMARY Non-empirical, self-consistent field, molecular orbital calculations, with the atomic orbitals represented by linear combinations of Gaussian-type functions have been carried out on the ground state electronic structures of some nitrogen-, oxygen-, sulphur- and phosphorus-containing heterocycles. Some olefins and olefin derivatives have also been studied. Calculated values of properties have been compared with the appropriate experimental quantities, and in most cases the agreement is good, with linear relationships being established; these are found to have very small standard deviations. Extensions to molecules for which there is no experimental data have been made. In many cases it has been iôtrnd possible to relate the molecular orbitals to the simplest member of a series, or to the hydrocarbon analogue. Predictions of the preferred geometry of selected molecules have been made; these have been used to predict inversion barriers and reaction mechanisms. / / The extent of d-orbital participation in molecules containing second row atoms has been investigated and found to be of trivial importance except in molecules containing high valence states of the second row atoms.
    [Show full text]