Tumor-Targeting Fluorinated Phthalocyanines for Theranostic Applications Erik Nathaniel Carrión Seton Hall University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Tumor-Targeting Fluorinated Phthalocyanines for Theranostic Applications Erik Nathaniel Carrión Seton Hall University, Erik.Carrion@Student.Shu.Edu Seton Hall University eRepository @ Seton Hall Seton Hall University Dissertations and Theses Seton Hall University Dissertations and Theses (ETDs) Spring 5-19-2018 Tumor-Targeting Fluorinated Phthalocyanines for Theranostic Applications Erik Nathaniel Carrión Seton Hall University, [email protected] Follow this and additional works at: https://scholarship.shu.edu/dissertations Part of the Inorganic Chemistry Commons, Materials Chemistry Commons, Medicinal- Pharmaceutical Chemistry Commons, and the Organic Chemistry Commons Recommended Citation Carrión, Erik Nathaniel, "Tumor-Targeting Fluorinated Phthalocyanines for Theranostic Applications" (2018). Seton Hall University Dissertations and Theses (ETDs). 2524. https://scholarship.shu.edu/dissertations/2524 TUMOR-TARGETING FLUORINATED PHTHALOCYANINES FOR THERANOSTIC APPLICATIONS A Dissertation submitted to Seton Hall University in partial fulfillment of the requirements for the degree of Doctorate of Philosophy By Erik Nathaniel Carrión May 2018 Department of Chemistry and Biochemistry Seton Hall University South Orange, NJ, USA Copyright © 2018 by Erik Nathaniel Carrión ALL RIGHTS RESERVED 2 ABSTRACT TUMOR-TARGETING FLUORINATED PHTHALOCYANINES FOR THERANOSTIC APPLICATIONS Hydrocarbon-based therapeutics and imaging agents are prone to chemical oxidation and degradation resulting in loss of activity and limited functional utility. Thus, more material is required to achieve long-lasting therapeutic effects. Phthalocyanines (Pcs) and their metal complexes (PcMs) can be utilized as prodrugs requiring only renewable energy resources namely, air and light, for cancer therapy and diagnostic (theranostic) applications related to photodynamic therapy (PDT). Replacement of labile C-H bonds in the Pc scaffold with a combination of fluoro and perfluoroisopropyl groups has resulted in a stable yet reactive oxidation catalyst of biological significance and importance. For example, F64PcZn, lacks tumor-cell specificity and may attach non-covalently to a tumor-targeting biovector via van der Waals interactions or via the metal-center. However, the former may leach and the latter may alter the Pc’s photo-physical and photo-chemical properties. Thus, the need for functionalized Pcs is desirable for covalent conjugation while retaining its function and reactivity. We report the bioconjugation of F48H7COOHPcZn to a peptidic ligand, Pep42, with oncoprotein recognition towards Gluocse Regulated Protein of 78 kDa (GRP78) in order to generate a small library of tumor-targeting fluorinated phthalocyanine bioconjugates (Scheme 1). F48H7CONHPcZn-AHX-Pep42 F48H7CONHPcZn-R’-Pep42-R9 (R’ = AHX/PEG6) Scheme 1. Schematic representation of GRP78 -targeting fluorinated PcZn bioconjugates. AHX = aminohexanoate; PEG = polyethylene glycol. 1 F48H7COOHPcCu is also reported and capable of generating singlet oxygen ( O2). 1 F48H7CONHPcZn-AHX-Pep42, like the unconjugated PcZn, still performed O2-mediated substrate oxidation and showed fluorescence after peptide attachment. Pc labeling did not affect the cargo delivery capabilities of Pep42 towards Hep2 cells. F48H7CONHPcZn-AHX-Pep42-R9 and F48H7CONHPcZn-PEG6-Pep42-R9 were biocompatible towards Hep2 cells under dark and light conditions while F48H7CONHPcZn-AHX-Pep42 showed moderate cytotoxicity in both cases 1 unrelated to O2 production. The work herein highlights the development of catalytic, fluorine- based anti-cancer drugs that may be useful as potential theranostic agents. 4 Dedicated to my beloved parents, Daniel and Lupe Carrión and brother, Daniel G. Carrión. 5 ACKNOWLEDGEMENTS My journey as a PhD graduate student is one that I will never forget nor the people who were a part of it. First and foremost, I would like to thank my mentor, Dr. Sergiu M. Gorun for introducing me to phthalocyanines and their properties. He taught me some of the fundamentals of X-ray crystallography wherein I grew beautiful crystals, even though the majority of them diffracted poorly or not at all! I will always appreciate the time he spent with me, showing me the significant amount of information that can be extracted at the atomic level. With every experiment, analyses need to be done with a grain of salt and every scientific claim I made needed to be supported with hard, scientific data as per one of his many famous mantras, “In God we trust, everyone else...bring data”. Secondly, I would also like to thank my research co-mentor, Dr. David Sabatino, for welcoming me into his lab and introducing me to peptide chemistry. His expertise with solid-phase organic synthesis was vital in this work in developing drugs for cancer therapy and diagnostic, or simply theranostic (our new favorite word now) applications. I will always remember his inspiring speeches which always motivated us in our work and the importance of meeting deadlines in a timely manner. It was a privilege working with both of my mentors. Their constant support, encouragement, and guidance were equally helpful towards the completion of this thesis work. I would also like to thank Dr. Murphy and his group for not only introducing me to fluorescence spectroscopy but also for allowing me to have an office area in his lab before joining my current research groups. Dr. Lalancette and Dr. Roman Brukh are gratefully acknowledged for their help in acquiring and interpreting X-ray diffraction and mass spectrometry data, respectively. Along these lines, I would also like to acknowledge Dr. Daniel Paley (Columbia University) and Dr. Michelle Neary (Hunter College) for also acquiring X-ray diffraction data and 6 performing structure solutions. I was also fortunate enough to work in collaboration with Dr. Tina Chu in exploring the potential antimicrobial activity of our materials. Dr. Yuri Kazakevich is acknowledged for his generous donation of reverse-phase columns and offering his expertise with any HPLC-related questions we had. Dr. Graça Vicente, Zehua Zhou, Dr. Eddie Merino, and Dr. Allan Blake are thanked for their collaborative work with biology. I would also like to thank Maureen Grutt for her help with my graduate school paperwork. Dr. Cecilia Marzabadi and Dr. Nicholas Snow are acknowledged for their support to attend ACS national conferences. Dr. Cosimo Antonacci is acknowledged for his help in running the undergraduate teaching labs. Rafael Rivera is also acknowledged for his help in ordering the chemicals needed for my work. Jimmy is also acknowledged for helping me with maintenance work in the lab. My former colleague in the Gorun group, Dr. Hemantbhai Patel, is gratefully acknowledged for training me in phthalocyanine synthesis, purification, and characterization as well as Dimitry Kalantarov for his help with the photo-oxidation equipment. In addition, I would also like to thank past and current graduate group members in both Gorun’s and Sabatino’s group I would also like to acknowledge Jenyffer Santiago for her support and patience with me during my studies, especially during the days when I needed to work later than anticipated. She was there for me during the good days and the bad and for that I cannot thank her enough. Last, but not least, I would like to express my sincerest gratitude towards my family, my parents, Daniel and Lupe Carrión, and my brother, Daniel G. Carrión for everything. Words cannot describe how truly grateful I am for the sacrifices they have made to help me receive the education I have now. Everything I am now is because of their love, support, and guidance. I love you all very much and I hope I made you proud. 7 TABLE OF CONTENTS Chapter Page 1. INTRODUCTION TO FLUORINATED METAL PHTHALOCYANINES ..............27 1.1. General Introduction to Phthalocyanines ......................................................28 1 1.2. Photosensitized Production of Singlet Oxygen, O2. ....................................33 1.2.1. Absorption and Emission Mechanism (Jablonski Diagram) 33 1 1.2.2. Electronic Structure of O2. 35 1.3. Application to Photodynamic Therapy ..........................................................37 1.3.1. Porphyrins as Photosensitizers 38 1.3.2. Phthalocyanines as Near-Infrared Photosensitizers for PDT. 39 1.4. Generation of Functional Fluorine-based Phthalocyanines ...........................40 1.5. Project Goals .................................................................................................44 References ........................................................................................................................46 2. CARBOXYL-FUNCTIONALIZED FLUOROALKYL ZINC AND COPPER PHTHALOCYANINES ...................................................................................................55 2.1. Introduction ...................................................................................................56 2.2. Objectives ......................................................................................................61 2.3. Experimental Section ....................................................................................61 2.3.1. Materials and Methods 61 2.3.2. Synthesis 62 2.3.3. Glove Box Techniques 63 2.3.4. Microwave Synthesis 63 2.3.5. UV-Vis Aggregation Study 63 2.3.6. NMR Spectroscopy 63 2.3.7. High-resolution Mass Spectrometry 64 2.3.8. X-ray Crystallography 64 2.3.9. Singlet Oxygen Production 65 2.3.10. Spectrofluorimetry Measurements 66 2.4. Results and Discussion ..................................................................................67 2.4.1. Synthesis 67 2.4.2. Single Crystal X-ray Diffraction studies 68
Recommended publications
  • A Powerful Framework for the Chemical Design of Molecular Nanomagnets Yan Duan†,1,2, Joana T
    Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Yan Duan†,1,2, Joana T. Coutinho†,*,1,3, Lorena E. Rosaleny†,*,1, Salvador Cardona-Serra1, José J. Baldoví1, Alejandro Gaita-Ariño*,1 1 Instituto de Ciencia Molecular (ICMol), Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, Spain 2 Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel 3 Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal *e-mail: [email protected], [email protected], [email protected] Abstract Three decades of intensive research in molecular nanomagnets have brought the magnetic memory in molecules from liquid helium to liquid nitrogen temperature. The enhancement of this operational temperature relies on a wise choice of the magnetic ion and the coordination environment. However, serendipity, oversimplified theories and chemical intuition have played the main role. In order to establish a powerful framework for statistically driven chemical design, we collected chemical and physical data for lanthanide-based nanomagnets to create a catalogue of over 1400 published experiments, developed an interactive dashboard (SIMDAVIS) to visualise the dataset, and applied inferential statistical analysis to it. We found that the effective energy barrier derived from the Arrhenius equation displays an excellent correlation with the magnetic memory, and that among all chemical families studied, only terbium bis-phthalocyaninato sandwiches and dysprosium metallocenes consistently present magnetic memory up to high temperature, but that there are some promising strategies for improvement.
    [Show full text]
  • Preparative Method of Novel Phthalocyanines from 3- Nitro
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2012, 4(4):1397-1403 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Preparative Method of Novel Phthalocyanines from 3- Nitro Phthalic Anhydride, Cobalt salt and Urea with Chloromethylpolyestyrene as a Heterogenous, Reusable and Efficient Catalyst Mohammad Ali Zolfigol 2, Ali Reza Pourali 1, Sami Sajjadifar 3,4 and Shohreh Farahmand 1,2,4 1Faculty of Chemistry, Bu-Ali Sina University, Hamedan, P.O. Box 6517838683, Iran 2School of Chemistry, Damghan University, Damghan, Iran 3Department of Chemistry, Faculty of Science, Ilam University, P.O. Box 69315516, Ilam, Iran 4Department of Chemistry, Payame Noor University, Tehran, P.O. Box 19395-4697, Iran _____________________________________________________________________________________________ ABSTRACT 3-Nitrophthalic anhydride was reacted with urea and cobalt salt in nitrobenzene under N 2 at 185°C and cobalt- tetraanitrophthalocyanine (CoTNP) was produced. Cobalt-tetraaminophthalocyanine (CoTAP) was produced by reduction of CoTNP caused by Sodium borohydride under N 2(g). CoTAP and chloromethylpolystyrene was refluxed in nitrobenzene or DMF at 180 oC for 12h. The mixture was cooled down to reach the room temperature and then solvent removed and the resulting precipitate was washed with water to remove excess CoTAP, and dried it to get a light green solid (CoTAP-linked-polymer). Kaywords Phthalocyanines, Cobaltetraminophthalocyanine, CoTAP ,Phthalocyanines linked polymer. _____________________________________________________________________________________________ INTRODUCTION Phthalocyanines are of interest not only as model compounds for the biologically important porphyrins but also because the intensely colored metal complexes are of commercial importance as dyes and pigments [1], the copper derivatives being an important blue pigment [2].
    [Show full text]
  • 624 — 632 [1974] ; Received January 9, 1974)
    Some ab Initio Calculations on Indole, Isoindole, Benzofuran, and Isobenzofuran J. Koller and A. Ažman Chemical Institute “Boris Kidric” and Department of Chemistry, University of Ljubljana, P.O.B. 537, 61001 Ljubljana, Slovenia, Yugoslavia N. Trinajstić Institute “Rugjer Boskovic”, Zagreb, Croatia, Yugoslavia (Z. Naturforsch. 29 a. 624 — 632 [1974] ; received January 9, 1974) Ab initio calculations in the framework of the methodology of Pople et al. have been performed on indole, isoindole, benzofuran. and isobenzofuran. Several molecular properties (dipole moments, n. m. r. chemical shifts, stabilities, and reactivities) correlate well with calculated indices (charge densities, HOMO-LUMO separation). The calculations failed to give magnitudes of first ionization potentials, although the correct trends are reproduced, i. e. giving higher values to more stable iso­ mers. Some of the obtained results (charge densities, dipole moments) parallel CNDO/2 values. Introduction as positional isomers 4 because they formally differ Indole (1), benzofuran (3) and their isoconju­ only in the position of a heteroatom. Their atomic gated isomers: isoindole (2) and isobenzofuran (4) skeletal structures and a numbering of atoms are are interesting heteroaromatic molecules1-3 denoted given in Figure 1. 13 1 HtKr^nL J J L / t hü H 15 U (3) U) Fig. 1. Atomic skeletal structures and numbering of atoms for indole (1), isoindole (2), benzofuran (3), and isobenzofuran (4). Reprint requests to Prof. Dr. N. Trinajstic, Rudjer Boskovic Institute, P.O.B. 1016, 41001 Zagreb I Croatia, Yugoslavia. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V.
    [Show full text]
  • Phthaloyl Amino Acids As Anti-Inflammatory And
    MEDICINAL Med Chem Res (2014) 23:1701–1708 CHEMISTRY DOI 10.1007/s00044-013-0730-1 RESEARCH ORIGINAL RESEARCH Phthaloyl amino acids as anti-inflammatory and immunomodulatory prototypes Ana Cristina Lima Leite • Fa´bio Fernandes Barbosa • Marcos Verı´ssimo de Oliveira Cardoso • Diogo R. M. Moreira • Lucas Cunha D. Coeˆlho • Elany Barbosa da Silva • Gevanio Bezerra de Oliveira Filho • Valdeˆnia Maria Oliveira de Souza • Vale´ria Reˆgo A. Pereira • Luiza de C. Reis • Paulo Michel Pinheiro Ferreira • Claudia Pessoa • Almir Gonc¸alves Wanderley • Fernanda Virgı´nia B. Mota • Teresinha G. da Silva Received: 7 May 2013 / Accepted: 15 August 2013 / Published online: 12 September 2013 Ó Springer Science+Business Media New York 2013 Abstract A series of phthalimide analogs were synthesized Introduction by derivatization of phthalic anhydride, a highly toxic sub- stance, using a ‘‘one pot’’ condensation reaction to a-amino It is well known that the free radicals formed during acids. All phthaloyl amino acid derivatives presented anti-oral inflammation play an important role in killing the micro- inflammatory activity, but compounds 2e and 2g were found organism and activating leukocytes and macrophages. to possess the best activities comparable to thalidomide. Most Overproduction of these radicals is associated with a wide of the compounds effectively suppressed nitric oxide pro- range of pathological conditions (Ariel and Serhan, 2007; duction in murine cells stimulated with lipopolysaccharide. N- Nathan, 2002). Thus, it is important to develop anti- phthaloyl amino acids did not exhibit any significant cyto- inflammatory and immunomodulatory drugs that could toxicity in vitro when tested against tumor cells as well as a regulate the overproduction of these undesirable species spleen cell culture of BALB/c mice.
    [Show full text]
  • Lovely Professional University, Punjab, India
    Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents Project Report-1 Masters of Sciences In Chemistry (Hons.) By Kritika Chopra Registration No. 11615943 Under the guidance Of Dr. Gurpinder Singh Department of Chemistry Lovely Professional University, Punjab, India DECLARATION I hereby affirm that the dissertation entitled “Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents” submitted for the award of Master of Science in Chemistry and submitted to the Lovely Professional University is the original and authentic study that I have carried out from August 2017 to November 2017 under the supervision of Dr. Gurpinder Singh. It does not contain any unauthorized works of other scholars, those referred are properly cited. Name and Signature of the Student Kritika Chopra Reg. No.: 11615943 Certificate This is to certify that the pre-dissertation project entitled “Synthesis and Characterization of Isoindolinone derivatives as potential CNS active agents” submitted by Kritika Chopra to the Lovely Professional University, Punjab, India is a documentation of genuine literature review of coming research work approved under my guidance and is commendable of consideration for the honour of the degree of Master of Science in Chemistry of the University. Supervisor Dr. Gurpinder Singh Assistant Professor Acknowledgement This project report is the result of half of year of work whereby I have been accompanied and supported by many people. It is a pleasant aspect for me to express my gratitude for them all. I would like to thank my supervisor Dr. Gurpinder Singh, Department of Chemistry, Lovely Professional University. Madam guided me when ever, where ever it was needed.
    [Show full text]
  • Recent Advances and Future Prospects of Phthalimide Derivatives
    Journal of Applied Pharmaceutical Science Vol. 6 (03), pp. 159-171, March, 2016 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2016.60330 ISSN 2231-3354 Recent Advances and Future Prospects of Phthalimide Derivatives Neelottama Kushwahaa*, Darpan Kaushikb aPranveer Singh Institute of Technology, Kanpur, India. bPrasad Institute of Technology, Jaunpur, India. ABSTRACT ARTICLE INFO Article history: Among bicyclic non-aromatic nitrogen heterocycles, phthalimides are an interesting class of compounds with a Received on: 21/05/2015 large range of applications. Phthalimide contains an imide functional group and may be considered as nitrogen Revised on: 13/09/2015 analogues of anhydrides or as diacyl derivatives of ammonia. They are lipophilic and neutral compounds and can Accepted on: 02/11/2015 therefore easily cross biological membranes in vivo and showing different pharmacological activities. In the Available online: 10/03/2016 present work compounds containing phthalimide subunit have been described as a scaffold to design new prototypes drug candidates with different biological activities and are used in different diseases as, for example Key words: AIDS, tumor, diabetes, multiple myeloma, convulsion, inflammation, pain, bacterial infection among others. Phthalimide derivatives, imide, biological activity. INTRODUCTION have served as starting materials and intermediates for the synthesis of many types of alkaloids and pharmacophores. Phthalimides possess a structural feature –CO-N(R)- CO- and an imide ring which help them to be biologically active Structure of Phthalimide and pharmaceutically useful. Phthalimides have received attention due to their androgen receptor antagonists (Sharma et Phthalimide is an imido derivative of phthalic acid. In al., 2012), anticonvulsant (Kathuria and Pathak, 2012), organic chemistry, imide is a functional group consisting of two antimicrobial (Khidre et al., 2011), hypoglycaemic (Mbarki and carbonyl groups bound to nitrogen.
    [Show full text]
  • United States Patent to 11 B 4,001,273 Hetzel Et Al
    United States Patent to 11 B 4,001,273 Hetzel et al. 45 Jan. 4, 1977 54 CONTINUOUS MANUFACTURE OF 56 References Cited PHTHALIMIDE UNITED STATES PATENTS (75) Inventors: Eckhard Hetzel; Ludwig Vogel, both 2,566,992 9/1951 Morgan et al. ................ 260/326 R of Frankenthal; Gerhard Rotermund, Heidelberg; Hans FOREIGN PATENTS OR APPLICATIONS Christoph Horn, Lambsheim, all of 300,770 8/1972 Austria .......................... 260/326 R Germany OTHER PUBLICATIONS 73) Assignee: BASF Aktiengesellschaft, Pfeifer et al., “Chem. Abstracts," vol. 77, p. 353, No. Ludwigshafen (Rhine), Germany 126,087s (1972). 22 Filed: July 8, 1974 Primary Examiner-Elbert L. Roberts Assistant Examiner-S. P. Williams 21 ) Appl. No.: 486,678 Attorney, Agent, or Firm-Johnston, Keil, Thompson & 44 Published under the second Trial Voluntary Shurtleff Protest Program on March 2, 1976 as document 57 ABSTRACT No. B 486,678. Continuous manufacture of phthalimide by reaction of 30) Foreign Application Priority Data phthalic anhydride with ammonia and washing the offgas with a melt containing phthalimide. The product July 10, 1973 Germany .......................... 233496 is a starting material for the manufacture of dyes, pesti 52) U.S.C. ........................................... 260/326 R cides and pigments, especially copper phthalocyanines. 51 Int. Cl........................................ C07D 209/.48 (58) Field of Search ................................ 260/326 R 7 Claims, No Drawings 4,001,273 1 2 from by-products and the proportion of phthalimide CONTINUOUS MANUFACTURE OF has been increased. Such an off-gas can be used with PHTHALIMIDE advantage for numerous syntheses; since the off-gas is conveniently trapped in aqueous alkali, for cxample in This application discloses and claims subject matter 5 sodium hydroxide solution, or potassium hydroxide described in German Patent Application No.
    [Show full text]
  • Synthesis of Heterocycles from Anthranilic Acid and Its Derivatives
    Synthesis of Heterocycles from Anthranilic acid and its Derivatives Per Wiklund All previously published papers were reproduced with permission from the publisher. Published and printed by Karolinska University Press Box 200, SE-171 77 Stockholm, Sweden © Per Wiklund, 2004 ISBN 91-7349-913-7 Abstract Anthranilic acid (2-aminobenzoic acid, Aa) is the biochemical precursor to the amino acid tryptophan, as well as a catabolic product of tryptophan in animals. It is also integrated into many alkaloids isolated from plants. Aa is produced industrially for production of dyestuffs and pharmaceuticals. The dissertation gives a historical background and a short review on the reactivity of Aa. The synthesis of several types of nitrogen heterocycles from Aa is discussed. Treatment of anthranilonitrile (2-aminobenzonitrile, a derivative of Aa) with organomagnesium compounds gave deprotonation and addition to the nitrile triple bond to form amine-imine complexed dianions. Capture of these intermediate with acyl halides normally gave aromatic quinazolines, a type of heterocyclic compounds that is considered to be highly interesting as scaffolds for development of new drugs. When the acyl halide was a tertiary 2-haloacyl halide, the reaction instead gave 1,4- benzodiazepine-3-ones via rearrangement. These compounds are isomeric to the common benzodiazepine drugs (such as diazepam, Valium®) which are 1,4- benzodiazepine-2-ones. Capture of the dianions with aldehydes or ketones, led to 1,2- dihydroquinazolines. Unsubstituted imine anions could be formed by treatment of anthranilonitrile with diisobutylaluminium hydride. Also in this case capture with aldehydes gave 1,2-dihydroquinazolines. Several different dicarboxylic acid derivatives of Aa were treated with dehydrating reagents, and the resulting products were more or less complex 1,3-benzoxazinones, one of which required X-ray crystallography confirm its structure.
    [Show full text]
  • Quantification of Residues of Folpet and Captan in Quechers Extracts Version 3.1 (Last Update: 06.04.17)
    EURL-SRM – Analytical Observation Report concerning the following… o Compound(s): Captan, Folpet, Phthalimide (PI), Tetrahydrophthalimide (THPI) o Commodities: Fruit and vegetables, cereals o Extraction Method(s): QuEChERS, A-QuEChERS o Instrumental analysis: GC-MS, GC-MS/MS Quantification of Residues of Folpet and Captan in QuEChERS Extracts Version 3.1 (last update: 06.04.17) Short description: This document describes approaches for the analysis of captan and folpet in QuEChERS extracts via GC-MS or GC-MS/MS. Different approaches for correcting the results of the parent molecules for matrix effects during GC analysis or for losses during the entire procedure are presented and discussed. In addition two approaches for analyzing captan and folpet next to their legally relevant metabolites tetrahydrophthalimide (THPI) and phthalimide are presented and discussed. Background Information: Captan and folpet are analytically among the most challenging pesticides due to their non-amenability to LC-MS/MS under standard conditions, and their tendency to degrade both in solution as well as during GC-injection. Special attention is also needed to avoid extensive degradation in standard solutions prepared in e.g. acetonitrile (which can be typically reduced by acidification). Attention is also required to prevent degradation during sample comminution or storage of homogenates, which is especially pronounced, when dealing with commodities of high pH and when working at ambient temperature. When employing the CEN-QuEChERS method, attention is furthermore required during the first extraction step (prior to buffering), especially when dealing with non-acidic commodities such as vegetables or cereals. Particularly critical is the dSPE cleanup step with PSA as sorbent, during which the EU Reference Laboratory for Pesticides Requiring Single Residue Methods Page 1 CVUA Stuttgart, Schaflandstr.
    [Show full text]
  • Synthesis of Some N-Phthalimide Derivatives and Evaluation Their Biological Activity
    The Pharmaceutical and Chemical Journal, 2015, 2(3):33-41 Available online www.tpcj.org ISSN: 2349-7092 Research Article CODEN(USA): PCJHBA Synthesis of some N-phthalimide derivatives and Evaluation their Biological Activity Ahmad Homsi1, Amer Kasideh2 1Prof. Organic Chemistry- Faculty of Sciences- Damascus University-Syria. 2Master Student of Chemistry- Faculty of Sciences- Damascus University-Syria. Abstract In this research six of N-phthalimides of amino acids (IIIa-f) have been synthesized, as a first step, through cyclocondensation of o-phthalic acid with amino acids (glycine, L-alanine, L-valine, L-leucine, L- phenylalanine, L-aspartic) in the presence of glacial acetic acid in bath oil (170-180 oC), the results of this step were compared with the results of traditional method. In the second step, (IIIa-b) were refluxed with o-phenylene diamine (IVa) in the present of (HCl, 4N) for 2 h to give N-(1H-benzimidazol-2-yl methyl) phthalimide (Va), N-[1- (1H-benzimidazol-2-yl ) ethyl] phthalimide (Vb). All products were characterized by FT-IR, MS and 1H-NMR spectroscopies and elementary analysis. The synthesized compounds were screened for their antimicrobial activity against four microorganisms: Streptococcus Epidermidis, Escherichia Coli, Mycobacterium Tuberculosis and Candida Albicans. Keywords o-phthalic acid, N-phthalimide amino acids, benzimidazole, antimicrobial, anti-mycobacterial. 1. Introduction N-phthalimide derivatives are an important class of substrates for biological and chemical applications. These are used for synthesis of lots of biological compounds such as hypoglycemic agents [1,2], antihypertensive agents [3], anticonvulsant [4], anti-inflammatory [5], anti-nociceptive [5], peripheral analgesics[6], anti mycobacterium tuberculosis [7], and antimicrobial activity [8,9].
    [Show full text]
  • Thioxopyrimidinecarbonitriles As Precursors for Linked and Fused
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2014, 6 (2):122-135 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Thioxopyrimidinecarbonitriles as precursors for linked and fused pyrimidine derivatives: synthesis of imidazo-, pyrazoloimidazo-, triazoloimidazopyrimidines and pyrimidoimidazotriazepines aAbdelmoneim A. Makhlouf, bRasha A. M. Faty* and aAsmaa K. Mourad aFayoum University, Faculty of Science, Fayoum, Egypt bChemistry Department, Faculty of Science, Cairo University, Giza, Egypt _____________________________________________________________________________________________ ABSTRACT Alkylation of 6-aryl-4-oxo-2-thioxopyrimidine-5-carbonitriles ( 1a-c) afforded the key intermediates 2a-e, which underwent further alkylation at N-3 nitrogen atom, upon treatment with α-halofunctionalized compounds, namely: ethyl bromoacetate, chloroacetone, chloroacetylacetone, chloroacetonirile, or monobromomalononitrile to perform 2-alkylthio-6-aryl-5-cyano-4-oxo-3-substituted-3,4-dihydropyrimidines 7-9. Heating 7-9 with hydrazine hydrate produced imidazo[1,2-a]pyrimidine derivatives 10-15. Treatment of 10a with each of ethyl cyanoacetate, ethyl acetoacetate, or acetylacetone gave pyrazoloimidazopyrimidine derivatives 18a,b, 19 , respectively. Compound 10a reacted with carbon disulphide to give oxazoloimidazopyrimidine 20 . Reaction of the imidazopyrimidine derivative 15a with glacial acetic acid or thiourea afforded triazoloimidazopyrimidines 21,22 . Also, compound 15a underwent cycloaddition reaction upon treatment with either of phthalic anhydride or acrylonitrile to give 2-phenyl-4,12- dioxopyrimidino[2``,1``:2`,3`]imidazo[1`,5`:2,3][1,2,4]triazolo[1,5-b]isoindole-3-carbonitrile ( 23 ) or 8-amino-2- phenyl-4-oxo-7H-pyrimido[2`,1`:2,3]imidazo[1,5-b][1,2,4]triazepine-3-carbonitrile (24 ), respectively.
    [Show full text]
  • Heterocyclic Compounds
    Lecture note- 3 Organic Chemistry CHE 502 HETEROCYCLIC COMPOUNDS Co-Coordinator – Dr. Shalini Singh DEPARTMENT OF CHEMISTRY UTTARAKHAND OPEN UNIVERSITY UNIT 4: HETEROCYCLIC COMPOUNDS- I CONTENTS 4.1 Objectives 4.2 Introduction 4.3 Classification of heterocyclic compounds 4.4 Nomenclature of heterocyclic compounds 4.5 Molecular orbital picture 4.6 Structure and aromaticity of pyrrole, furan, thiophene and pyridine 4.7 Methods of synthesis properties and chemical reactions of Pyrrole, Furan, Thiophene and Pyridine 4.8 Comparison of basicity of Pyridine, Piperidine and Pyrrole 4.9 Summary 4.10 Terminal Question 4.1 OBJECTIVES In this unit learner will be able to • Know about the most important simple heterocyclic ring systems containing heteroatom and their systems of nomenclature and numbering. • Understand and discuss the reactivity and stability of hetero aromatic compounds. • Study the important synthetic routes and reactivity for five and six member hetero aromatic compounds. • Understand the important physical and chemical properties of five and six member hetero aromatic compounds. • Know about the applications of these hetero aromatic compounds in the synthesis of important industrial and pharmaceutical compounds 4.2 INTRODUCTION Heterocyclic compound is the class of cyclic organic compounds those having at least one hetero atom (i.e. atom other than carbon) in the cyclic ring system. The most common heteroatoms are nitrogen (N), oxygen (O) and sulphur (S). Heterocyclic compounds are frequently abundant in plants and animal products; and they are one of the important constituent of almost one half of the natural organic compounds known. Alkaloids, natural dyes, drugs, proteins, enzymes etc. are the some important class of natural heterocyclic compounds.
    [Show full text]