Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned American Mineralogist, Volume 73, pages 189-199, 1988 NEW MINERAL NAMES* Fn-lNx C. H,lwrHonNn Department of Earth Sciences,University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada EnNsr A. J. Bunxn Instituut voor Aardwetenschappen,Vrije Universiteite, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands T. Scorr Encrr Mineral SciencesDivision, National Museum of Natural Sciences,Ottawa, Ontario KIA 0M8, Canada Eowlnn S. Gnnw Department of GeologicalSciences, University of Maine, Orono, Maine 04469, U.S.A. Jorr, D. Gnrcp Mineral SciencesDivision, National Museum of Natural Sciences,Ottawa, Ontario KIA 0M8, Canada JonN L. Juvrson CANMET, 555 Booth Street,Ottawa, Ontario KIA 0G1, Canada Jlcnx Puzrnwtcz Institut ftiLrKristallographie und Petrographie, Universit?it Hannover, Hannover, Federal Republic of Germany ANonnw C. Rospnrs GeologicalSurvey ofCanada, 601 Booth Street,Ottawa, Ontario KIA 0E8, Canada Dllro A. V,lNxo Department of Geology, Georgia StateUniversity, Atlanta, Georgia 30303, U.S.A. Alacranite* orescent,with imperfect cleavageon {100}. Indentation micro- hardnessis 69 kglmm'?(20-g load), and H : 1.5. In transmitted V.I. Popova, V.A. Popov, A. Clark, V.O. Polyakov, S.E. Bori- light the mineral is orange-yellow,biaxial positive, a: 2.39(l), sovskii ( I 986) Alacranite AsrSr-A new mineral. Zapiski Vses. : gray with Mineralog.Obshch., 115, 360-368 (in Russian). t 2.52(2), nonpleochroic. In reflected light, light rose-yellow internal reflection. Reflectance values (nm, Analysis by electron microprobe (average)gave As 67.35, S Ri, Ri) are 400,14.0,13.0;425,14.6,13.2; 450,14.8,13.3; 32.61, sum 99.96 wto/0,yielding the formula AsrrrSror,ideally 475,r 4.8,13.4; 500, 14.5, I 3.3; 525,14.3,r3.I ; 550,I 4.5,I 3.2; AsrSr. There is no visible reaction with HCI or HNOr. In 5M 575,r 4.7,r3.4; 600, 14.8, I 3.5; 625,14.9,13.6;650, I 5.0,I 3.7; KOH, the mineral turns brown; on heating it then disintegrates 675,1 5.0, I 3.8;700, I 5.I, I 3.90/0. into brown-gray flakes and prolonged boiling turns these flakes The name is for the earliest describedoccurrence. Type ma- dark brown. The melting temperaturein air is 350 + 5 .C. terial is at the Fersman Mineralogical Museum, Moscow, and X-ray studiesshow the mineral to be monoclinic, spacegroup the Il'menskii PreserveMuseum, Miass. D.A.V. P2/c,a: 9.89(2),b:9.73(2), c : 9.13(1)A, B : tOt.t+(Sf, Z: 2, D*rc: 3.43,D-, 3.43 + 0.03.The strongestlines (29 ": given) are 5.91(90Xlll), 5.11(80X1ll), 4.05(70Xll2), Althupite* 3.2e1(s0x022). 3.064(r 00x3 l 0), 2.9 50(90)(222). (1987) and aluminum phosphates The mineral occurs with realgar and usonite as flattened and P. Piret, M. Deliens Uranyl from Kobokobo. Althupite, AlTh(uoJlGJo,)3o(oHXPo.)J'- prismatic grainsup to 0.5 mm across,serving as cementin sandy (OH)r. l5HrO, a new mineral. Propertiesand crystal structure. gravel in the Uson caldera, Kamchatka. An earlier-described Bull. Min6ral., ll0, 65-72 (in French). occurrenceof the mineral, although it is not as well character- ized, is in the Alacran deposit, Pampa Larga, Chile. There, the The averageof l0 electron microprobe analysesgave AlrOt mineral is associatedwith realgar, orpiment, native As and S, 1.75,ThO, 10.25,UO3 68.22,P'Os 9.86, and HrO (ditrerence) stibnite, pyrite, greigite,arsenopyrite, arsenolamprite, sphalerite, 9.92 wto/o,which compareswell with the calculatedvalues of the and acanthite,within barite-quartz-calciteveins. Crystalsofala- structural formula given above. cranite have pinacoidal prismatic habit, somewhat flattened on X-ray powder-diffraction studies and the structure determi- [100].Major formsare {100},{l l1}, and {l1l}; minor or weak nation on a single crystal show the mineral is triclinic, space parallel forms are {l 10}, {011}, {41l}. Striations to [001] occur sroup PI, a : 10.935(3),b : 18.567(4),c: 13.504(3)A, a : on {100} faces. The remaining faces appear dull or tarnished. 72.64(2),0 : 68.20(2\,t : 84.2r(2), V : 2434(I) A', z : 2. Luster is adamantine,greasy, streak is orange-yellow,fracture is The strongestX-ray diftaction lines (39 given) are I 0. 2( I 00)( I 00), conchoidal and very brittle. The mineral is transparent,nonflu- 6.67(40)(r 20), 5.80(5 0X t 2 I ), 5.08(70X200), 4.9| (40)(22t), 4.4r(so)(22r,123),4.07 (40)(140), 3.395(40X300), 3.07 l(40X06 l), * Minerals marked with an asteriskwere approved before pub- 3.000(408), (342,30 l), 2.8 96(50X044, 324). The refined crystal lication by the Commission on New Minerals and Mineral Names structure (R : 0.082 for 4220 reflections) consists of of the International Mineralogical Association. (UOr)3O(OHXPO)J;'- layersthat characterizethe phosphuran- 0003-004x/88/0I 02-0 I 89$02.00 189 190 NEW MINERAL NAMES ylite structure group. Layers are connectedby two joined octa- of iron and chromium - Chromferideand ferchromide.Zapiski hedra around Al, one tri-capped trigonal prism around Th, and Vses.Mineralog. Obshch., 115, 355-360 (in Russian). one pentagonalbipyramid around U. Analysisby electronmicroprobe gave Fe 88.91(88.71-89. 12), Althupite occursas thin, transparentyellow tablets,with max- Cr 11.30(11.06-11.55), Si not observed,sum 100.21(100.18- imum length 0. I mm along {00 I } and flattenedon ( I 00). D^*" = 100.26)wt0/0, yielding a suggestedformula of Fe'rCrorlor, or 3.9(1) and D".k : 3.98 g,/cm3.Optically it is biaxial negative;o Fe, rCror-", where E representsvacancy. : r.620(3),P : r.66r(2),t : r.665(2),2v^" 3t(3)',2v"il.: ": X-ray study shows the mineral to be isometric, spacegroup 34'; pleochroism, X pale yellow, Y and Z darker yellow; disper- Pm3m, a : 2.859(5)A, Z: t, D",": 6.69.The lines(7 given) sion, strongr < v, X = [l00], Z A c = 15. are2.87 (20)Q00), 2.02( I 00XI i 0), 1.656( 1 0X I 1I ), 1.43(80X200), The mineral occurs in a pegmatite with beryl and columbite 1.28(50X120),l. l6(100x21 1), r.0l(70x220). at Kobokobo, Kiku, Zaire. The name alludes to the chemistry. The mineral occurs as small grains (of submicrometer size; Type material is depositedin the Mus6eroyal de I'Afrique central, aggregatesto hundreds of micrometers) in quartz veins within in Tervuren, Belgium. J.D.G. brecciatedamphibolite and schist of the southern Urals. Asso- ciated minerals include native iron, copper, bismuth and gold, Bobfergusonite* ferchromide, graphite, metal carbide (cohenite), halite, sylvite, T.S. Ercit, A.J. Anderson, P. Cern!, F.C. Hawthorne (1986) and Cl-rich scapolite (marialite). Chromferide is opaque, light Bobfergusonite:A new primary phosphatemineral from Cross gray, ferromagnetic,with metallic luster and no cleavage.Mi- Lake, Manitoba. Can. Mineral.,24, 599404. crohardness(100-9 load) is 260 + l0 kglmm'?,with weakly con- cave indentation shape. Reflectancevalues in air are (nm,o/o): -ec Microprobe, Mossbauer spectroscopy,and rcn analysesgave 440,50.4;460,5r.4; 480,50.9; 500,52.6; 520,53.0; 540,55.3; Na,O 6.8, MgO 0.3, CaO 1.2,MnO 31.7,FeO 0.3, ZnO O.l, 560,56.5; 580,56.9; 600,57.9; 620,58.3; 640,59.0; 660,60.0; Alro3 7.5, FerO, 6.9, P,O,45.2, HrO 0.3, total 100.3wt0/0. The 680,60.7;700,60.8; 7 20,61.7 ;'7 40,61.9. semiempirical formula, (Na, orMnorrCa" roE, ro)-(Mn, u, Al, rr- The name is for the chemical composition. Type material is Feoff,MgoorFefir'zlnoo,)*Prr,(O236eOH03,)r2o @asis 24 (O + OH), at the FersmanMineralogical Museum, Akademiya Nauk SSSR, consideredwith crystal-structuredata, gives the ideal formula Moscow.D.A.V. NarMnrFe*3Al(POn)uand Z : 4. Chemically distinct from mem- bers ofthe wyllieite and alluaudite groups. Ellenbergerite* Bobfergusoniteis monoclinic, spacegroup P2r/n, with a : 12.773(2),b: 12.486(2),c: 11.038(2)A, B:97.15". The C. Chopin, R. Klaska, O. Medenbach, D. Dron (1986) Ellen- strongest lines of the X-ray powder pattern (53 given) are bergerite, a new high-pressureMg-Al-(Ti,Zr)-silicate with a 3.054(r 00x4r l ), 2.869(66X 4 | r), 2.712(49)(042), 2. 508(5 3) novel structurebased on face-sharingoctahedra. Contrib. Min- (432,024,4r3),2.082(67)(610,060), and 1.575(43X046,802).The eral. Petrol..92. 316-321. mineral is structurally relatedto both the wyllieite and alluaudite The phengitequartzite layer of the Dora Maira crystallinemas- group of minerals, and all three have very similar powder pat- sif, western Alps, locally contains near-end-member pyrope terns. The structural types can be readily distinguished on the megacrysts,some of which exceed20 cm in diameter. The garnet basis of precessionsingle-crystal (10/)* photographs. contains numerous mineral inclusions, among which ellenber- The mineral occursas abundant anhedral equant crystalsthat gerite makes up to a few modal percent of the megacrysts.El- rangein size from lessthan I mm to 1 cm long. Bobfergusonite lenbergeriteis typically millimeter-sized, anhedral, rarely as prisms is variable in color, ranging from green-brownto red-brown, is up to 10 mm long with a hexagonalcross section. Transparent, nonfluorescent,has a yellow-brown streak and a hardnessof 4, purple to lilac color with a few grains showing a pink or smoky is brittle, shows perfect {010} cleavage,and has a prominent core; vitreous luster, H : 6.5, fracture easy and brittle; D-*, : I I 00] parting.
Recommended publications
  • Paralaurionite Pbcl(OH) C 2001-2005 Mineral Data Publishing, Version 1
    Paralaurionite PbCl(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals are thin to thick tabular k{100}, or elongated along [001], to 3 cm; {100} is usually dominant, but may show many other forms. Twinning: Almost all crystals are twinned by contact on {100}. Physical Properties: Cleavage: {001}, perfect. Tenacity: Flexible, due to twin gliding, but not elastic. Hardness = Soft. D(meas.) = 6.05–6.15 D(calc.) = 6.28 Optical Properties: Transparent to translucent. Color: Colorless, white, pale greenish, yellowish, yellow-orange, rarely violet; colorless in transmitted light. Luster: Subadamantine. Optical Class: Biaxial (–). Pleochroism: Noted in violet material. Orientation: Y = b; Z ∧ c =25◦. Dispersion: r< v,strong. Absorption: Y > X = Z. α = 2.05(1) β = 2.15(1) γ = 2.20(1) 2V(meas.) = Medium to large. Cell Data: Space Group: C2/m. a = 10.865(4) b = 4.006(2) c = 7.233(3) β = 117.24(4)◦ Z=4 X-ray Powder Pattern: Laurium, Greece. 5.14 (10), 3.21 (10), 2.51 (9), 2.98 (7), 3.49 (6), 2.44 (6), 2.01 (6) Chemistry: (1) (2) (3) Pb 78.1 77.75 79.80 O [3.6] 6.00 3.08 Cl 14.9 12.84 13.65 H2O 3.4 3.51 3.47 insol. 0.09 Total [100.0] 100.19 100.00 (1) Laurium, Greece. (2) Tiger, Arizona, USA. (3) PbCl(OH). Polymorphism & Series: Dimorphous with laurionite. Occurrence: A secondary mineral formed through alteration of lead-bearing slag by sea water or in hydrothermal polymetallic mineral deposits.
    [Show full text]
  • Iseite, Mn2mo3o8, a New Mineral from Ise, Mie Prefecture, Japan
    Journal of Mineralogical and PetrologicalIseite, a new Sciences, mineral Volume 108, page 37─ 41, 2013 37 LETTER Iseite, Mn2Mo3O8, a new mineral from Ise, Mie Prefecture, Japan * ** ** *** Daisuke NISHIO-HAMANE , Norimitsu TOMITA , Tetsuo MINAKAWA and Sachio INABA * The institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan ** Department of Earth Science, Faculty of Science, Ehime University, Matsuyama, Ehime 790-8577, Japan *** Inaba-Shinju Corporation, Minamiise, Mie 516-0109, Japan Iseite, Mn2Mo3O8, a new mineral that is a Mn-dominant analogue of kamiokite, is found in the stratiform ferro- manganese deposit, Shobu area, Ise City, Mie Prefecture, Japan. It is the first mineral species that includes both Mn and Mo as essential constituents. Iseite is iron-black in color and has a submetallic luster. It occurs as ag- gregates up to about 1 mm in size made of minute crystals (<20 μm). Iseite has a zoned structure closely associ- ated with undetermined Mn-Fe-Mo oxide minerals with hexagonal forms, and it occasionally coexists with 3 small amounts of powellite. Its Mohs hardness is 4-5, and its calculated density is 5.85 g/cm . The empirical formula of iseite is (Mn1.787Fe0.193)Σ1.980Mo3.010O8. Its simplified ideal formula is written as Mn2Mo3O8. The min- eral is isostructural with kamiokite (hexagonal, P63mc). The unit cell parameters are a = 5.8052 (3) Å, c = 10.2277 (8) Å, V = 298.50 (4) Å3, and Z = 2. The Rietveld refinement using synchrotron radiation (λ = 0.413 Å) powder XRD data converges to Rwp = 3.11%, and confirms two independent Mn sites—tetrahedral and octahe- IV VI dral—in the crystal structure of iseite, indicating the structure formula Mn Mn Mo3O8.
    [Show full text]
  • George Robert Rossman Feb 15, 1995
    George Robert Rossman 20-Jun-2020 Present Position: Professor of Mineralogy Option Representative for Geochemistry Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California 91125-2500 Office Telephone: (626)-395-6471 FAX: (626)-568-0935 E-mail: [email protected] Residence: Pasadena, California Birthdate: August 3, l944, LaCrosse, Wisconsin Education: B.S. (Chemistry and Mathematics), Wisconsin State University, Eau Claire, 1966, Summa cum Laude Ph.D. (Chemistry), California Institute of Technology, Pasadena, 1971 Experience: California Institute of Technology Division of Geological and Planetary Sciences a) 1971 Instructor in Mineralogy b) 1971-1974 Assistant Professor of Mineralogy and Chemistry c) 1974-1977 Assistant Professor of Mineralogy d) 1977-1984 Associate Professor of Mineralogy e) 1984-2008 Professor of Mineralogy f) 2008-2015 Eleanor and John R. McMillan Professor of Mineralogy e) 2015- Professor of Mineralogy Principal Research Interests: a) Spectroscopic studies of minerals. These studies include problems relating to the origin of color phenomena in minerals; site ordering in crystals; pleochroism; metal ions in distorted sites; analytical applications. b) The role of low concentrations of water and hydroxide in nominally anhydrous solids. Analytical methods for OH analysis, mode of incorporation, role of OH in modifying physical and chemical properties, and its relationship to conditions of formation in the natural environment. c) Long term radiation damage effects in minerals from background levels of natural radiation. The effects of high level ionizing radiation on minerals. d) X-ray amorphous minerals. These studies have involved the physical chemical study of bioinorganic hard parts of marine organisms and products of terrestrial surface weathering, and metamict minerals.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Bulletin of the Geological Society of America Vol. 56, Pp
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 56, PP. 50S-SI4, 4 PUS., 3 FIGS. MAY 1945 SIMPSONITE AND THE NORTHERN BRAZILIAN PEGMATITE REGION BY FREDERICK H. POUGH CONTENTS Page Abstract 505 Introduction and acknowledgments 505 General description of the Alto do Giz 506 Mineralogy 508 Simpsonite 508 Microlite 511 Tantalite and its varieties 512 Bismutite and cyrtolite 513 Paragenesis 513 References cited 514 ILLUSTRATIONS Figure Page 1.—Typical tabular yellow-brown Alto do Giz simpsonite crystal 510 2.—Minute tabular, buff-colored simpsonite from Onca Mine 510 3.—Prismatic crystal fragment from Onca Mine 510 Plate Facing page 1.—Simpsonite Frontispiece 2.—Alto do Giz ! 506 3.—Kaolinite replacements 507 4.—Microlite and cyrtolite 510 ABSTRACT A study of the Alto do Giz, near Equador, Rio Grande do Norte, Brazil, reveals an interesting series of tantalum minerals including the rare aluminum tantalate, simpsonite. Crystals of this mineral are yellow brown, hexagonal in outline; c = .60978. It belongs to the hexagonal dipyramidal class Ceh. Hardness 7J, specific gravity is 6.81. It fluoresces blue to white in a cold quartz mercury vapor lamp with a filter. It is also found in white crystals at this mine and in buff-colored crystals at the Onca Mine, some miles away. It appears to be a replacement mineral of a short complex pegmatite sequence, crystallizing after microlite and tantalite. INTRODUCTION AND ACKNOWLEDGMENTS The extensive exploitation of the numerous pegmatite operations in northern Brazil is a relatively recent development, since the beginning of the war. In the years immediately preceding, when some nations foresaw a need for stockpiles of raw materials, there was a certain amount of beryl and tantalite production in the region, but the real impetus to the development of this desert area was supplied by the advent of the United States Purchasing Commission and their introduction of various 505 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/56/5/505/3425995/i0016-7606-56-5-505.pdf by guest on 28 September 2021 506 F.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Shear Zone Initiation in the Marcy Anorthosite Massif, Adirondacks, New York, USA James Hodge University of Maine, [email protected]
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-23-2019 Fractures, Fluids, and Metamorphism: Shear Zone Initiation in the Marcy Anorthosite Massif, Adirondacks, New York, USA James Hodge University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Geochemistry Commons, Geology Commons, and the Tectonics and Structure Commons Recommended Citation Hodge, James, "Fractures, Fluids, and Metamorphism: Shear Zone Initiation in the Marcy Anorthosite Massif, Adirondacks, New York, USA" (2019). Electronic Theses and Dissertations. 3050. https://digitalcommons.library.umaine.edu/etd/3050 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. FRACTURES, FLUIDS, AND METAMORPHISM: SHEAR ZONE INITIATION IN THE MARCY ANORTHOSITE MASSIF, ADIRONDACKS, NEW YORK, USA By James Hodge B.S. College of Saint Rose, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Earth and Climate Sciences) The Graduate School The University of Maine August 2019 Advisory Committee: Scott Johnson, Professor and Director School of Earth and Climate Sciences, Advisor Chris Gerbi, Professor School of Earth and Climate Sciences, Advisor Alicia Cruz-Uribe, Professor School of Earth and Climate Sciences Martin Yates, Professor School of Earth and Climate Sciences FRACTURES, FLUIDS, AND METAMORPHISM: SHEAR ZONE INITIATION IN THE MARCY ANORTHOSITE MASSIF, ADIRONDACKS, NEW YORK, USA By James Hodge Thesis Advisors: Dr.
    [Show full text]
  • Mercury--Quicksilver
    scueu« No. 12 Mineral Technology Series No 6 University of Arizona Bulletin Mercury---Quicksilver By P. E. JOSEPH SECOND ISSUE NOVEMBER, 1916. Entered as second class matter November 2:1, 191~, at the postoftice at Tucson, Arizona. under the Act ot August 24, 1912. Issued weekb". September to Ya)·. PUBLISHED BY THE University of Arizona Bureau of Mines CHARLES F. WILLIS, Director TUCSON, ARIZONA 1916-17 BIBLIOGRAPHY Bancroft, Howland. Notes on the occurrence of cinnabar in central western Arizona. U. S. G. S. Bull. 430, pp. 151-153, 1910. Becker, G. F. Geology of- the quicksilver deposits of the Pacific slope, with atlas. Mon. 13, p. 486, 1888. Only the atlas in stock. Quicksilver Ore Deposits; Mineral Resources U. S. for 1892, pp. 139-168, 1893. Christy, S. B. Quicksilver reduction at New Almaden, Cal. Min- eral Resources U. S. for 1883-1884, pp. 603-636, 1885. Hillebrand, W. F., and Schaller, W. T. Mercury miner-als from Terlingua, Tex. U. S. G. S. Bull. 405, pp. 174, 1909. McCaskey, H. D. Quicksilver in 1912; Mineral Resources U. S. for 1912, Pt. 1, pp. 931-948, 1913. Quicksilver in 1913-Production and Resources; Mineral Resources U. S. for 1913, Pt. 1, pp. 197-212, 1914. Melville, W. H., and Lindgren, Waldemar. Contributions to the mineralogy of the Pacific coast. U. S. G. S. Bull. 61, 30 pp., 1890. Parker, E. W. Quicksilver; Twenty-first Ann. Rept. U. S. G. S., Pt. 6, pp. 273-283, 1901. University of Arizona Bulletin BULLETIN No. 12 SECOND ISSUE, NOVEMBER, 1916 MERCURY-QUICKSILVER By P.
    [Show full text]
  • Gomposition and Occurrence of Electrum Atthe
    L37 The Canadian M inerala g i st Vol.33,pp. 137-151(1995) GOMPOSITIONAND OCCURRENCEOF ELECTRUM ATTHE MORNINGSTAR DEPOSIT, SAN BERNARDINOCOUNTY, GALIFORNIA: EVIDENCEFOR REMOBILIZATION OF GOLD AND SILVER RONALD WYNN SIIEETS*, JAMES R. CRAIG em ROBERT J. BODNAR Depanmen of Geolngical Sciences, Virginin Polytechnic h stitate and Stale (Jniversity, 4A44 Dening Hall, Blacl<sburg, Virginin 24060, U.S-A,. Arsrnacr Elecfum, acanthiteand uytenbogaardtite have been examined from six depthswithin the tabular quartzt calcite sockwork and breccia-filled veins in the fault-zone-hostedMorning Star depositof the northeasternMojave Desert, Califomia. Six distinct types of electrum have been identified on the basis of minerat association,grain moryhology and composition. Two types, (1) p1'rite-hostedand (2) quartz-hostedelectrum, occur with acanthite after argentite and base-metalsulfide minerals in unoxidized portions of the orebody; the remaining forr types, (3) goethite-hostedelectrum, (4) electnrm cores, (5) electrumrims and (6) wire electrum,are associatedwith assemblagesof supergeneminerals in its oxidizedportions. Pyrite- hosted quartz-hostedand goethite-hostedelectrum range in compositionfrom 6l ta 75 utt.7oAu and have uniform textures and no zoning. In lower portions ofthe oxidized ore zone, electrum seemsto replacegoethite and occursas small grains on surfacesof the goethite.Textural evidencefavors supergeneremobilization of Au and Ag, which were depositedas electrum on or replacinggoethite. This type of electrumis identical in appearanceand compositionto prinary electrum,In the upper portions of the oxidized zone,secondary electum occursas a gold-rich rim on a core of elechum and as wire-like grains,both with acanthiteand uytenbogaardtite.Such secondaryelectrum contains from 78 to 93 wt./o Au. Textural relations and asso- ciated minerals suggestthat the primary electrum was hydrothermally depositedand partially remobilized by supergene processes.
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • 1 Revision 2 1 Stability Field of the Cl-Rich Scapolite Marialite 2 3 Kaleo
    1 Revision 2 2 Stability field of the Cl-rich scapolite marialite 3 4 Kaleo M. F. Almeida1,2* 5 David M. Jenkins1 6 7 8 1 Department of Geological Sciences and Environmental Studies 9 Binghamton University 10 Binghamton, NY, 13902 11 2 Present address: Department of Earth and Environmental Sciences, Rutgers University, 12 Newark, NJ 07102 13 14 *Corresponding author 15 16 17 1 18 Abstract 19 Scapolites are widespread rock-forming aluminosilicates, appearing in metasomatic and igneous 20 environments, and metamorphic terrains. Marialite (Na4Al3Si9O24Cl) is the Cl-rich end member 21 of the group. Even though Cl-rich scapolite is presumably stable over a wide range of pressure 22 and temperature, little is known about its stability field. Understanding Cl-rich scapolite 23 paragenesis is important since it can help identifying subsurface fluid flow, metamorphic and 24 isotopic equilibration. Due to its metasomatic nature Cl-rich scapolite is commonly reported in 25 economic ore deposits, hence it is of critical interest to the mineral resource industries who seek 26 to better understand processes contributing to mineralization. In this experimental study two 27 reactions were investigated. The first one was the anhydrous reaction of albite + halite to form 28 marialite (3NaAlSi3O8 + NaCl = Na4Al3Si9O24Cl (1)). The second reaction was the 29 hydrothermal equivalent described by H2O + Na4Al3Si9O24Cl = 3NaAlSi3O8 + liquid (2), where 30 the liquid is assumed to be a saline-rich hydrous-silicate melt. Experiments were performed 31 using a piston-cylinder press and internally heated gas vessels. The temperature and pressure 32 conditions range from 700-1050°C and 0.5-2.0 GPa, respectively.
    [Show full text]
  • SSEF FACETTE No. 12 SWISS GEMMOLOGICAL INSTITUTE SCHWEIZERISCHES GEMMOLOGISCHES INSTITUT INSTITUT SUISSE DE GEMMOLOGIE
    SSEF FACETTE No. 12 SWISS GEMMOLOGICAL INSTITUTE SCHWEIZERISCHES GEMMOLOGISCHES INSTITUT INSTITUT SUISSE DE GEMMOLOGIE International Issue No. 12, January 2005 Reproduction allowed with reference to the Swiss Gemmological Institute SSEF In this Issue: - Diamonds are forever - New Diamond Courses 2005 - Coral en Vogue - LIBS in Gemmology - Lead glass in Ruby - New: Launching of SSEF Alumni - News from CIBJO and LMHC - GemmoBasel 2005 SSEF Facette No. 12, © 2005 Editorial Dear Reader The year 2004 was again packed with many inter- pearl research in China, instrumental development esting challenges for the SSEF laboratory but also in Florida, diamond conference in England, SSEF for the trade. We are lucky that business for the is always on the edge. And you may profit from SSEF was much better than predicted under tight this: SSEF is proud to have found a new analyti- general conditions. The high performance and the cal solution for the detection of beryllium diffusion degree of integrity of the SSEF is appreciated by a treated sapphires, which caused so much concern number of well-known international companies. We and “headache” to the international gem trade. The notice with pleasure that our origin determinations SSEF is the first laboratory offering an inexpensive and treatment identifications form an important part and reliable Be detection service. of our activity and strongly influence the price of a gem. Reliable SSEF We are glad to offer you the SSEF Facette in a new Test Reports for pearls and colourful look. We are continuing to produce guarantee the trade with this newsletter in three languages: German, French sometimes extremely and English.
    [Show full text]