Tidal Mudflats Acknowledgments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coastal Flood Defences - Groynes
Coastal Flood Defences - Groynes Coastal flood defences are key to protecting our coasts against flooding, which is when normally dry, low lying flat land is inundated by sea water. Hard engineering methods are forms of coastal flood defences which mitigate the risk of flooding and coastal erosion and the consequential effects. Hard Engineering Hard engineering methods are often used as a temporary measure to protect against coastal flooding as they are costly and only last for a relatively short amount of time before they require maintenance. However, they are very effective at protecting the coastline in the short-term as they are immediately effective as opposed to some longer term soft engineering methods. But they are often intrusive and can cause issues elsewhere at other areas along the coastline. Groynes are low lying wood or concrete structures which are situated out to sea from the shore. They are designed to trap sediment, dissipate wave energy and restrict the transfer of sediment away from the beach through long shore drift. Longshore drift is caused when prevailing winds blow waves across the shore at an angle which carries sediment along the beach.Groynes prevent this process and therefore, slow the process of erosion at the shore. They can also be permeable or impermeable, permeable groynes allow some sediment to pass through and some longshore drift to take place. However, impermeable groynes are solid and prevent the transfer of any sediment. Advantages and Disadvantages +Groynes are easy to construct. +They have long term durability and are low maintenance. +They reduce the need for the beach to be maintained through beach nourishment and the recycling of sand. -
A Quick Guide to Southeast Florida's Coral Reefs
A Quick Guide to Southeast Florida’s Coral Reefs DAVID GILLIAM NATIONAL CORAL REEF INSTITUTE NOVA SOUTHEASTERN UNIVERSITY Spring 2013 Prepared by the Land-based Sources of Pollution Technical Advisory Committee (TAC) of the Southeast Florida Coral Reef Initiative (SEFCRI) BRIAN WALKER NATIONAL CORAL REEF INSTITUTE, NOVA SOUTHEASTERN Southeast Florida’s coral-rich communities are more valuable than UNIVERSITY the Spanish treasures that sank nearby. Like the lost treasures, these amazing reefs lie just a few hundred yards off the shores of Martin, Palm Beach, Broward and Miami-Dade Counties where more than one-third of Florida’s 19 million residents live. Fishing, diving, and boating help attract millions of visitors to southeast Florida each year (30 million in 2008/2009). Reef-related expen- ditures generate $5.7 billion annually in income and sales, and support more than 61,000 local jobs. Such immense recreational activity, coupled with the pressures of coastal development, inland agriculture, and robust cruise and commercial shipping industries, threaten the very survival of our reefs. With your help, reefs will be protected from local stresses and future generations will be able to enjoy their beauty and economic benefits. Coral reefs are highly diverse and productive, yet surprisingly fragile, ecosystems. They are built by living creatures that require clean, clear seawater to settle, mature and reproduce. Reefs provide safe havens for spectacular forms of marine life. Unfortunately, reefs are vulnerable to impacts on scales ranging from local and regional to global. Global threats to reefs have increased along with expanding ART SEITZ human populations and industrialization. Now, warming seawater temperatures and changing ocean chemistry from carbon dioxide emitted by the burning of fossil fuels and deforestation are also starting to imperil corals. -
Brighton Beach Groynes
CASE STUDY: BRIGHTON BEACH GROYNES BRIGHTON, SOUTH AUSTRALIA FEBRUARY 2017 CLIENT: CITY OF HOLDFAST BAY Adelaide’s beaches are affected by a common phenomenon called ELCOROCK® longshore drift - the flow of water, in one direction, along a beach occurring as a result of winds and currents. In Adelaide longshore drift flows from south to north and it frequently erodes beaches The ELCOROCK system consists of sand- over time, particularly during storm events when tides are high and filled geotextile containers built to form sea is rough. a stabilising, defensive barrier against coastal erosion. Without sand replenishment, the southern end of Adelaide’s beaches will slowly erode and undermine existing infrastructure at The robustness and stability of Elcorock the sea/land interface. The objective of Elcorock sand container geotextile containers provide a solutions groynes, laid perpendicular to the beach, is to capture some of for other marine structures such as groynes and breakwaters. These the natural sand as well as dredged sand, that moves along the structures extend out into the wave zone coast. Over time, this process builds up the beach, particularly and provide marina and beach protection, between the groynes which results in the protection of the existing sand movement control and river training. infrastructure. The size of the container can easily be Geofabrics met with the city of Holdfast Bay in the early stages of selected based on the wave climate and the project to discuss the product, durability and previous projects other conditions ensuring stability under with a similar application. Due to recent weather events, the beach the most extreme conditions. -
CITY of MIAMI BEACH DUNE MANAGEMENT PLAN January 2016
CITY OF MIAMI BEACH DUNE MANAGEMENT PLAN January 2016 Prepared by: CITY OF MIAMI BEACH COASTAL MANAGEMENT 1700 Convention Center Drive AND CONSULTING Miami Beach, Florida 33139 7611 Lawrence Road Boynton Beach, Florida 33436 I. STATEMENT OF PURPOSE Coastal dunes are habitat for wildlife and support a high biodiversity of flora and fauna. They also keep beaches healthy by accreting sand and minimizing beach erosion rates. The dunes protect coastal infrastructure and upland properties from storm damage by blocking storm surge and absorbing wave energy. Therefore, a healthy dune system is an invaluable asset to coastal communities like Miami Beach. The purpose of the City of Miami Beach Dune Management Plan (“the Plan”) is to outline the framework and specifications that the City will use to foster and maintain a healthy, stable, and natural dune system that is appropriate for its location and reduces public safety and maintenance concerns. The Plan shall guide the City’s efforts in managing the urban, man-made dune as close to a natural system as possible and ensuring the dune provides storm protection, erosion control, and a biologically-rich habitat for local species. II. OBJECTIVES This plan was developed collaboratively with local government and community stakeholders, as well as local experts to meet the following primary objectives: 1. Reduce to the maximum extent possible the presence of invasive, non-native pest plant species within the dune system. Non-native species compete with and overwhelm more stable native dune plants, thereby threatening the stability and biodiversity of the dune system. Reducing the presence of aggressive, non-native vegetation preserves and promotes the structural integrity and biodiversity of the dune. -
Beach Nourishment: Massdep's Guide to Best Management Practices for Projects in Massachusetts
BBEACHEACH NNOURISHMEOURISHMENNTT MassDEP’sMassDEP’s GuideGuide toto BestBest ManagementManagement PracticesPractices forfor ProjectsProjects inin MassachusettsMassachusetts March 2007 acknowledgements LEAD AUTHORS: Rebecca Haney (Coastal Zone Management), Liz Kouloheras, (MassDEP), Vin Malkoski (Mass. Division of Marine Fisheries), Jim Mahala (MassDEP) and Yvonne Unger (MassDEP) CONTRIBUTORS: From MassDEP: Fred Civian, Jen D’Urso, Glenn Haas, Lealdon Langley, Hilary Schwarzenbach and Jim Sprague. From Coastal Zone Management: Bob Boeri, Mark Borrelli, David Janik, Julia Knisel and Wendolyn Quigley. Engineering consultants from Applied Coastal Research and Engineering Inc. also reviewed the document for technical accuracy. Lead Editor: David Noonan (MassDEP) Design and Layout: Sandra Rabb (MassDEP) Photography: Sandra Rabb (MassDEP) unless otherwise noted. Massachusetts Massachusetts Office Department of of Coastal Zone Environmental Protection Management 1 Winter Street 251 Causeway Street Boston, MA Boston, MA table of contents I. Glossary of Terms 1 II. Summary 3 II. Overview 6 • Purpose 6 • Beach Nourishment 6 • Specifications and Best Management Practices 7 • Permit Requirements and Timelines 8 III. Technical Attachments A. Beach Stability Determination 13 B. Receiving Beach Characterization 17 C. Source Material Characterization 21 D. Sample Problem: Beach and Borrow Site Sediment Analysis to Determine Stability of Nourishment Material for Shore Protection 22 E. Generic Beach Monitoring Plan 27 F. Sample Easement 29 G. References 31 GLOSSARY Accretion - the gradual addition of land by deposition of water-borne sediment. Beach Fill – also called “artificial nourishment”, “beach nourishment”, “replenishment”, and “restoration,” comprises the placement of sediment within the nearshore sediment transport system (see littoral zone). (paraphrased from Dean, 2002) Beach Profile – the cross-sectional shape of a beach plotted perpendicular to the shoreline. -
Maritime Swamp Forest (Typic Subtype)
MARITIME SWAMP FOREST (TYPIC SUBTYPE) Concept: Maritime Swamp Forests are wetland forests of barrier islands and comparable coastal spits and back-barrier islands, dominated by tall trees of various species. The Typic Subtype includes most examples, which are not dominated by Acer, Nyssa, or Fraxinus, not by Taxodium distichum. Canopy dominants are quite variable among the few examples. Distinguishing Features: Maritime Shrub Swamps are distinguished from other barrier island wetlands by dominance by tree species of (at least potentially) large stature. The Typic Subtype is dominated by combinations of Nyssa, Fraxinus, Liquidambar, Acer, or Quercus nigra, rather than by Taxodium or Salix. Maritime Shrub Swamps are dominated by tall shrubs or small trees, particularly Salix, Persea, or wetland Cornus. Some portions of Maritime Evergreen Forest are marginally wet, but such areas are distinguished by the characteristic canopy dominants of that type, such as Quercus virginiana, Quercus hemisphaerica, or Pinus taeda. The lower strata also are distinctive, with wetland species occurring in Maritime Swamp Forest; however, some species, such as Morella cerifera, may occur in both. Synonyms: Acer rubrum - Nyssa biflora - (Liquidambar styraciflua, Fraxinus sp.) Maritime Swamp Forest (CEGL004082). Ecological Systems: Central Atlantic Coastal Plain Maritime Forest (CES203.261). Sites: Maritime Swamp Forests occur on barrier islands and comparable spits, in well-protected dune swales, edges of dune ridges, and on flats adjacent to freshwater sounds. Soils: Soils are wet sands or mucky sands, most often mapped as Duckston (Typic Psammaquent) or Conaby (Histic Humaquept). Hydrology: Most Maritime Swamp Forests have shallow seasonal standing water and nearly permanently saturated soils. Some may rarely be flooded by salt water during severe storms, but areas that are severely or repeatedly flooded do not recover to swamp forest. -
Animal Adaptations
Animal Adaptations The Animal Adaptations program at Hatfield Marine Science Center is designed to be a 50- minute lab-based program for 3rd-12th grade students that examines marine organisms from three different habitats (sandy beach, rocky shore and estuary) and explores the many ways they are adapted to their particular environment. This lab focuses on the adaptations of several groups of marine animals including Mollusks, Crustaceans, and Echinoderms, and investigates how they differ depending on whether they are found in a sandy beach, rocky shore, or estuary environment. Students will work in small groups with a variety of live animals, studying individual characteristics and how these organisms interact with their environment and one another. Background Information The Oregon Coast is made up of a series of rocky shores, sandy beaches, and estuaries, all of which are greatly affected by fluctuating tides. Many of these areas are intertidal and are alternately inundated by seawater and exposed to air, wind, and dramatic changes in temperature and salinity. High tide floods these areas with cold, nutrient laden seawater, bringing food to organisms that live there in the form of plankton and detritus. Low tides often expose these organisms to the dangers of predation and desiccation. In addition to tidal effects, organisms that inhabit sandy beaches and rocky shores also have to deal with the physical stresses of pounding waves. Because of these harsh conditions, organisms have developed special adaptations that not only help them to survive but thrive in these environments. An adaptation is a physical or behavioral trait that helps a plant or animal survive in a specific environment or habitat. -
Seashore the SANDYSEASHORE the Soilisinfertile, Anditisoften Windy, Andsalty
SEASHORE DESCRIPTION The seashore is an area fi lled with an interesting mix of unique plants and animals that have adapted to cope with this environment. Living on the edge of the sea is not easy. The soil is infertile, and it is often windy, dry and salty. THE SANDY SEASHORE Along a sandy shore there are no large rocks, algae or tidal pools. The sandy seashore can be divided into four general zones: Intertidal, Pioneer, Fixed Dune and Scrub Woodland. 1. Intertidal Zone: Between the low tide and the high tide mark is the intertidal zone. When the tide goes out the creatures living in this zone are left stranded. They have to endure the heat of the sun and the higher salinity of the water resulting from evaporation. Notice the many small holes on a sandy beach; they are the doorways to the homes of many animals which burrow under the sand where it is cooler. Some of Ecosystems of The Bahamas the creatures living in this zone are sea worms, sand fl eas and sand crabs. 2. Pioneer Zone: So named because it is where the fi rst plants to try to grow over sand. These plants must adapt to loose, shifting sand and poor soil. There is no protection from wind or salt spray. Plants here are usually low growing vines with waxy leaves. Some plants found in the pioneer zone are Purple seaside bean (C. rosea), Saltwort (Batis maritima), Goat's foot (Ipomea pes-caprae), and Sea purslane (Sesuvium portulacastrum). 3. Fixed Dune Zone: The next zone is the fi xed dune, so named because as the plants in the pioneer zone grip the sand around their roots and make the beach more stable, the sand mounds up into small humps or dunes. -
Delaware Bay Estuary Project Supporting the Conservation and Restoration Of
U.S. Fish & Wildlife Service – Coastal Program Delaware Bay Estuary Project Supporting the conservation and restoration of the salt marshes of Delaware Bay People have altered the expansive salt marshes of Delaware Bay for centuries to farm salt hay, try to control mosquitoes, create channels for boats, to increase developable land, and other reasons all resulting in restricted tidal flow, disrupted sediment balances, or increasing erosion. Sea level rise and coastal storms threaten to further negatively impact the integrity of these salt marshes. As we alter or lose the marshes we lose the valuable habitats and ecological services they provide. tidal creek - Katherine Whittemore Addressing the all-important sediment balance of salt marshes is critical for preserving their resilience. A healthy resilient marsh may be able to keep pace with erosion and sea level rise through sediment accretion and growth Downe Twsp, NJ - Brian Marsh of vegetation. However, the delicate sediment balance of salt marshes is DBEP works to support efforts to learn more about the techniques often disrupted by barriers to tidal influence and altered drainage onto and to conserve and restore salt marshes and support the populations of fish and wildlife that rely on them. We support new and off the marsh resulting in sediment ongoing coastal resiliency initiatives and coastal planning as they starved systems, excessive mudflats, or pertain to habitat restoration and conservation. We are interested increased erosion. in finding effective tools and mechanisms for conserving and restoring salt marsh integrity on a meaningful scale and support efforts that bring partners together to approach this challenge. -
1 the Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration
1 The Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration 2 of Soft Cliff Coastlines 3 4 Sally Brown1*, Max Barton1, Robert J Nicholls1 5 6 1. Faculty of Engineering and the Environment, University of Southampton, 7 University Road, Highfield, Southampton, UK. S017 1BJ. 8 9 * Sally Brown ([email protected], Telephone: +44(0)2380 594796). 10 11 Abstract: Building defences, such as groynes, on eroding soft cliff coastlines alters the 12 sediment budget, changing the shoreline configuration adjacent to defences. On the 13 down-drift side, the coastline is set-back. This is often believed to be caused by increased 14 erosion via the ‘terminal groyne effect’, resulting in rapid land loss. This paper examines 15 whether the terminal groyne effect always occurs down-drift post defence construction 16 (i.e. whether or not the retreat rate increases down-drift) through case study analysis. 17 18 Nine cases were analysed at Holderness and Christchurch Bay, England. Seven out of 19 nine sites experienced an increase in down-drift retreat rates. For the two remaining sites, 20 retreat rates remained constant after construction, probably as a sediment deficit already 21 existed prior to construction or as sediment movement was restricted further down-drift. 22 For these two sites, a set-back still evolved, leading to the erroneous perception that a 23 terminal groyne effect had developed. Additionally, seven of the nine sites developed a 24 set back up-drift of the initial groyne, leading to the defended sections of coast acting as 1 25 a hard headland, inhabiting long-shore drift. -
PROTISTS Shore and the Waves Are Large, Often the Largest of a Storm Event, and with a Long Period
(seas), and these waves can mobilize boulders. During this phase of the storm the rapid changes in current direction caused by these large, short-period waves generate high accelerative forces, and it is these forces that ultimately can move even large boulders. Traditionally, most rocky-intertidal ecological stud- ies have been conducted on rocky platforms where the substrate is composed of stable basement rock. Projec- tiles tend to be uncommon in these types of habitats, and damage from projectiles is usually light. Perhaps for this reason the role of projectiles in intertidal ecology has received little attention. Boulder-fi eld intertidal zones are as common as, if not more common than, rock plat- forms. In boulder fi elds, projectiles are abundant, and the evidence of damage due to projectiles is obvious. Here projectiles may be one of the most important defi ning physical forces in the habitat. SEE ALSO THE FOLLOWING ARTICLES Geology, Coastal / Habitat Alteration / Hydrodynamic Forces / Wave Exposure FURTHER READING Carstens. T. 1968. Wave forces on boundaries and submerged bodies. Sarsia FIGURE 6 The intertidal zone on the north side of Cape Blanco, 34: 37–60. Oregon. The large, smooth boulders are made of serpentine, while Dayton, P. K. 1971. Competition, disturbance, and community organi- the surrounding rock from which the intertidal platform is formed zation: the provision and subsequent utilization of space in a rocky is sandstone. The smooth boulders are from a source outside the intertidal community. Ecological Monographs 45: 137–159. intertidal zone and were carried into the intertidal zone by waves. Levin, S. A., and R. -
Exploring Our Wonderful Wetlands Publication
Exploring Our Wonderful Wetlands Student Publication Grades 4–7 Dear Wetland Students: Are you ready to explore our wonderful wetlands? We hope so! To help you learn about several types of wetlands in our area, we are taking you on a series of explorations. As you move through the publication, be sure to test your wetland wit and write about wetlands before moving on to the next exploration. By exploring our wonderful wetlands, we hope that you will appreciate where you live and encourage others to help protect our precious natural resources. Let’s begin our exploration now! Southwest Florida Water Management District Exploring Our Wonderful Wetlands Exploration 1 Wading Into Our Wetlands ................................................Page 3 Exploration 2 Searching Our Saltwater Wetlands .................................Page 5 Exploration 3 Finding Out About Our Freshwater Wetlands .............Page 7 Exploration 4 Discovering What Wetlands Do .................................... Page 10 Exploration 5 Becoming Protectors of Our Wetlands ........................Page 14 Wetlands Activities .............................................................Page 17 Websites ................................................................................Page 20 Visit the Southwest Florida Water Management District’s website at WaterMatters.org. Exploration 1 Wading Into Our Wetlands What exactly is a wetland? The scientific and legal definitions of wetlands differ. In 1984, when the Florida Legislature passed a Wetlands Protection Act, they decided to use a plant list containing plants usually found in wetlands. We are very fortunate to have a lot of wetlands in Florida. In fact, Florida has the third largest wetland acreage in the United States. The term wetlands includes a wide variety of aquatic habitats. Wetland ecosystems include swamps, marshes, wet meadows, bogs and fens. Essentially, wetlands are transitional areas between dry uplands and aquatic systems such as lakes, rivers or oceans.