Maritime Swamp Forest (Typic Subtype)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shrub Swamp State Rank: S5 - Secure
Shrub Swamp State Rank: S5 - Secure cover of tall shrubs with Shrub Swamp Communities are a well decomposed organic common and variable type of wetlands soils. If highbush occurring on seasonally or temporarily blueberries are dominant flooded soils; They are often found in the transition zone between emergent the community is likely to marshes and swamp forests; be a Highbush Blueberry Thicket, often occurring on stunted trees. The herbaceous layer of peat. Acidic Shrub Fens are shrub swamps is often sparse and species- peatlands, dominated by poor. A mixture of species might typically low growing shrubs, along include cinnamon, sensitive, royal, or with sphagnum moss and marsh fern, common arrowhead, skunk herbaceous species of Shrub Swamp along shoreline. Photo: Patricia cabbage, sedges, bluejoint grass, bur-reed, varying abundance. Deep Serrentino, Consulting Wildlife Ecologist. swamp candles, clearweed, and Emergent Marshes and Description: Wetland shrubs dominate turtlehead. Invasive species include reed Shallow Emergent Marshes Cottontail, have easy access to the shrubs Shrub Swamps. Shrub height may be from canary grass, glossy alder-buckthorn, are graminoid dominated wetlands with and protection in the dense thickets. The <1m to 5 meters, of uniform height or common buckthorn, and purple <25% cover of tall shrubs. Acidic larvae of many rare and common moth mixed. Shrub density can be variable, loosestrife. Pondshore/Lakeshore Communities are species feed on a variety of shrubs and from dense (>75% cover) to fairly open broadly defined, variable shorelines associated herbaceous plants in shrub (25-75% cover) with graminoid, around open water. Shorelines often swamps throughout Massachusetts. herbaceous, or open water areas between merge into swamps or marshes. -
The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-8-2007 The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands Lon Boudreaux Jr. University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Boudreaux, Lon Jr., "The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands" (2007). University of New Orleans Theses and Dissertations. 564. https://scholarworks.uno.edu/td/564 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Urban Studies By Lon J. Boudreaux Jr. B.S. Our Lady of Holy Cross College, 1992 M.S. University of New Orleans, 2007 August, 2007 Table of Contents Abstract............................................................................................................................. -
PESHTIGO RIVER DELTA Property Owner
NORTHEAST - 10 PESHTIGO RIVER DELTA WETLAND TYPES Drew Feldkirchner Floodplain forest, lowland hardwood, swamp, sedge meadow, marsh, shrub carr ECOLOGY & SIGNIFICANCE supports cordgrass, marsh fern, sensitive fern, northern tickseed sunflower, spotted joe-pye weed, orange This Wetland Gem site comprises a very large coastal • jewelweed, turtlehead, marsh cinquefoil, blue skullcap wetland complex along the northwest shore of Green Bay and marsh bellflower. Shrub carr habitat is dominated three miles southeast of the city of Peshtigo. The wetland by slender willow; other shrub species include alder, complex extends upstream along the Peshtigo River for MARINETTE COUNTY red osier dogwood and white meadowsweet. Floodplain two miles from its mouth. This site is significant because forest habitats are dominated by silver maple and green of its size, the diversity of wetland community types ash. Wetlands of the Peshtigo River Delta support several present, and the overall good condition of the vegetation. - rare plant species including few-flowered spikerush, The complexity of the site – including abandoned oxbow variegated horsetail and northern wild raisin. lakes and a series of sloughs and lagoons within the river delta – offers excellent habitat for waterfowl. A number This Wetland Gem provides extensive, diverse and high of rare animals and plants have been documented using quality wetland habitat for many species of waterfowl, these wetlands. The area supports a variety of recreational herons, gulls, terns and shorebirds and is an important uses, such as hunting, fishing, trapping and boating. The staging, nesting and stopover site for many migratory Peshtigo River Delta has been described as the most birds. Rare and interesting bird species documented at diverse and least disturbed wetland complex on the west the site include red-shouldered hawk, black tern, yellow shore of Green Bay. -
Delaware Bay Estuary Project Supporting the Conservation and Restoration Of
U.S. Fish & Wildlife Service – Coastal Program Delaware Bay Estuary Project Supporting the conservation and restoration of the salt marshes of Delaware Bay People have altered the expansive salt marshes of Delaware Bay for centuries to farm salt hay, try to control mosquitoes, create channels for boats, to increase developable land, and other reasons all resulting in restricted tidal flow, disrupted sediment balances, or increasing erosion. Sea level rise and coastal storms threaten to further negatively impact the integrity of these salt marshes. As we alter or lose the marshes we lose the valuable habitats and ecological services they provide. tidal creek - Katherine Whittemore Addressing the all-important sediment balance of salt marshes is critical for preserving their resilience. A healthy resilient marsh may be able to keep pace with erosion and sea level rise through sediment accretion and growth Downe Twsp, NJ - Brian Marsh of vegetation. However, the delicate sediment balance of salt marshes is DBEP works to support efforts to learn more about the techniques often disrupted by barriers to tidal influence and altered drainage onto and to conserve and restore salt marshes and support the populations of fish and wildlife that rely on them. We support new and off the marsh resulting in sediment ongoing coastal resiliency initiatives and coastal planning as they starved systems, excessive mudflats, or pertain to habitat restoration and conservation. We are interested increased erosion. in finding effective tools and mechanisms for conserving and restoring salt marsh integrity on a meaningful scale and support efforts that bring partners together to approach this challenge. -
Rapids Lake, Louisville Swamp, And
U.S. Fish & Wildlife Service Forest Trail 0.6 mile loop urban influences. The Carver Rapids Unit, part of Parking Leaving from the asphalt trail below the Rapids the MN Valley State Recreation Area (DNR), is Chaska Unit Minnesota Valley Lake Education and Visitor Center, this mostly level located entirely within the Louisville Swamp Unit. Chaska Athletic Park (City of Chaska) trail courses through oak and hickory forest, with a See regulations issued by the DNR for this location. 725 W 1st St, Chaska, MN 55318 National Wildlife Refuge brief view of a slough connecting to Long Lake. View wood ducks in the slough and listen for frogs calling. Trail Descriptions Carver Riverside Park (City of Carver) State Trail Access 1.0 mi, one way 300 E Main St, Carver, MN 55315 North Hunter Lot Trail 1 mile, one way This straight, level trail goes 1 mile to a junction with Chaska, Rapids Lake & This trail is a mowed service road running from the the MN Valley State Trail to the north. Continue Bluff Park (City of Carver) parking lot on CR11 (Jonathan Carver Pkwy) to the west on the State Access Trail to join the Mazomani 102 Carver Bluffs Parkway, Carver, MN 55315 Louisville Swamp Units northeast, where it ends at the refuge boundary. Trail to the south and loop back to the parking area View native wildflowers, bur oaks, woodpeckers, and at W 145 St. Rapids Lake Unit Trail Map prairie skink in this restored oak savanna. Jonathan Carver Parkway North Hunter Lot MN Valley State Trail (DNR) 5.0 mi, one way 14905 Jonathan Carver Parkway/CR 11, Carver, MN Carver Creek Loop Trail 1.6 miles (loop) From north to south through the refuge, the trail 55315 This trail system has three entry points: Bluff Park, passes the State Access Trail then drops to cross a About the Chaska Unit Ash Street (downtown Carver), and the Rapids Lake bridge over Sand Creek. -
Tidal Wetland Gross Primary Production Across the Continental
RESEARCH ARTICLE Tidal Wetland Gross Primary Production Across 10.1029/2019GB006349 the Continental United States, 2000–2019 Special Section: R. A. Feagin1 , I. Forbrich2 , T. P. Huff1, J. G. Barr3, J. Ruiz‐Plancarte4 , J. D. Fuentes4 , Carbon cycling in tidal wet- 4 5 5 6 7 R. G. Najjar , R. Vargas , A. Vázquez‐Lule , L. Windham‐Myers , K. D. Kroeger , lands and estuaries of the con- 8 1 9 8 8 2 tiguous United States E. J. Ward , G. W. Moore , M. Leclerc , K. W. Krauss , C. L. Stagg , M. Alber , S. H. Knox10 , K. V. R. Schäfer11, T. S. Bianchi12 , J. A. Hutchings13 , H. Nahrawi9,14 , 1 1 1 1,15 6 16 Key Points: A. Noormets , B. Mitra , A. Jaimes , A. L. Hinson , B. Bergamaschi , J. S. King , and 17 • We created the Blue Carbon (BC) G. Miao model, which mapped the Gross Primary Production (GPP) of all 1Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA, 2Marine Biological tidal wetlands within the Laboratory, Woods Hole, MA, USA, 3Elder Research, Charlottesville, VA, USA, 4Department of Meteorology and continental United States 5 • Atmospheric Science, Pennsylvania State University, University Park, PA, USA, Department of Plant and Soil Sciences, The BC model provides maps of tidal 6 7 wetland GPP at sub‐250 m scales University of Delaware, Newark, DE, USA, United States Geological Survey, Menlo Park, CA, USA, United States 8 and at 16‐day intervals for the years Geological Survey, Woods Hole, MA, USA, United States Geological Survey, Wetland and Aquatic Research Center, 2000‐2019 Lafayette, LA, USA, 9Atmospheric Biogeosciences, University of Georgia, Athens, GA, USA, 10Department of Geography, • 2 The average daily GPP per m was University of British Columbia, Vancouver, BC, USA, 11Department of Biological Sciences, Rutgers University, Newark, 4.32 ± 2.45 g C/m2/day, and the total NJ, USA, 12Departmet of Geological Sciences, University of Florida, Gainesville, FL, USA, 13Department of Earth and annual GPP for the continental 14 United States was 39.65 ± 0.89 Tg Planetary Sciences, Washington University, St. -
Exploring Our Wonderful Wetlands Publication
Exploring Our Wonderful Wetlands Student Publication Grades 4–7 Dear Wetland Students: Are you ready to explore our wonderful wetlands? We hope so! To help you learn about several types of wetlands in our area, we are taking you on a series of explorations. As you move through the publication, be sure to test your wetland wit and write about wetlands before moving on to the next exploration. By exploring our wonderful wetlands, we hope that you will appreciate where you live and encourage others to help protect our precious natural resources. Let’s begin our exploration now! Southwest Florida Water Management District Exploring Our Wonderful Wetlands Exploration 1 Wading Into Our Wetlands ................................................Page 3 Exploration 2 Searching Our Saltwater Wetlands .................................Page 5 Exploration 3 Finding Out About Our Freshwater Wetlands .............Page 7 Exploration 4 Discovering What Wetlands Do .................................... Page 10 Exploration 5 Becoming Protectors of Our Wetlands ........................Page 14 Wetlands Activities .............................................................Page 17 Websites ................................................................................Page 20 Visit the Southwest Florida Water Management District’s website at WaterMatters.org. Exploration 1 Wading Into Our Wetlands What exactly is a wetland? The scientific and legal definitions of wetlands differ. In 1984, when the Florida Legislature passed a Wetlands Protection Act, they decided to use a plant list containing plants usually found in wetlands. We are very fortunate to have a lot of wetlands in Florida. In fact, Florida has the third largest wetland acreage in the United States. The term wetlands includes a wide variety of aquatic habitats. Wetland ecosystems include swamps, marshes, wet meadows, bogs and fens. Essentially, wetlands are transitional areas between dry uplands and aquatic systems such as lakes, rivers or oceans. -
Peat Swamp and Lowland Forests of Sumatra (Indonesia)
Forest Area Key Facts & Peat Swamp and Lowland Carbon Emissions Forests of Sumatra (Indonesia) from Deforestation Forest location and brief description With an area of some 470,000 km2, Sumatra is Indonesia’s largest island, and the world’s sixth largest, supporting 40 million people. The lowland forests cover approximately 118,300 km2 of the eastern part of the island. These rainforests are characterized by large, buttressed trees dominated by the Dipterocarpaceae family, woody climbers and epiphytes. Figs are also common in the lowland forests. There are more than 100 fig species in Sumatra. According to the SPOT Vegetation 2006 data, the Sumatran peat swamp forests total approximately 33,600 km2. These forests are located on Sumatra’s eastern coast and boast the deepest peat in Indonesia. Over 30 per cent of Sumatra’s peat are over 4 metres deep. Most of the peat are in the Sumatran province of Riau (56.1 per cent of its total provincial area). Unique qualities of forest area Sumatra’s lowland forests are home to a range of species including: Sumatran pine, Rafflesia arnoldii (the world’s largest individual flower, measuring up to 1 metre wide), Amorphophallus spp. (world’s tallest and largest inflorescence flower measuring up to 2 metres tall), Sumatran tiger, orang utan, Sumatran rhinoceros, Sumatran elephant, Malayan tapir, Malayan sun bear, Bornean clouded leopard, and many birds and butterflies. Although Sumatra’s peat swamp forests do not support an abundant terrestrial wildlife, they do support some of the island’s biggest and • The forest sector accounts rarest animals, such as the critically endangered Sumatran tiger, and the for 85 per cent of Indonesia’s endangered Sumatran rhinoceros and Asian elephant. -
Coastal Wetland Trends in the Narragansett Bay Estuary During the 20Th Century
u.s. Fish and Wildlife Service Co l\Ietland Trends In the Narragansett Bay Estuary During the 20th Century Coastal Wetland Trends in the Narragansett Bay Estuary During the 20th Century November 2004 A National Wetlands Inventory Cooperative Interagency Report Coastal Wetland Trends in the Narragansett Bay Estuary During the 20th Century Ralph W. Tiner1, Irene J. Huber2, Todd Nuerminger2, and Aimée L. Mandeville3 1U.S. Fish & Wildlife Service National Wetlands Inventory Program Northeast Region 300 Westgate Center Drive Hadley, MA 01035 2Natural Resources Assessment Group Department of Plant and Soil Sciences University of Massachusetts Stockbridge Hall Amherst, MA 01003 3Department of Natural Resources Science Environmental Data Center University of Rhode Island 1 Greenhouse Road, Room 105 Kingston, RI 02881 November 2004 National Wetlands Inventory Cooperative Interagency Report between U.S. Fish & Wildlife Service, University of Massachusetts-Amherst, University of Rhode Island, and Rhode Island Department of Environmental Management This report should be cited as: Tiner, R.W., I.J. Huber, T. Nuerminger, and A.L. Mandeville. 2004. Coastal Wetland Trends in the Narragansett Bay Estuary During the 20th Century. U.S. Fish and Wildlife Service, Northeast Region, Hadley, MA. In cooperation with the University of Massachusetts-Amherst and the University of Rhode Island. National Wetlands Inventory Cooperative Interagency Report. 37 pp. plus appendices. Table of Contents Page Introduction 1 Study Area 1 Methods 5 Data Compilation 5 Geospatial Database Construction and GIS Analysis 8 Results 9 Baywide 1996 Status 9 Coastal Wetlands and Waters 9 500-foot Buffer Zone 9 Baywide Trends 1951/2 to 1996 15 Coastal Wetland Trends 15 500-foot Buffer Zone Around Coastal Wetlands 15 Trends for Pilot Study Areas 25 Conclusions 35 Acknowledgments 36 References 37 Appendices A. -
The Annual Net Primary Production and Decomposition of the Salt Marsh Grass, Spartina Alterniflora, Loisel. in the Barataria Bay Estuary of Louisiana
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 The Annual Net Primary Production and Decomposition of the Salt Marsh Grass, Spartina Alterniflora, Loisel. In the Barataria Bay Estuary of Louisiana. Conrad Joseph Kirby Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Kirby, Conrad Joseph Jr, "The Annual Net Primary Production and Decomposition of the Salt Marsh Grass, Spartina Alterniflora, Loisel. In the Barataria Bay Estuary of Louisiana." (1971). LSU Historical Dissertations and Theses. 2139. https://digitalcommons.lsu.edu/gradschool_disstheses/2139 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. -
Life Cycle of Oil and Gas Fields in the Mississippi River Delta: a Review
water Review Life Cycle of Oil and Gas Fields in the Mississippi River Delta: A Review John W. Day 1,*, H. C. Clark 2, Chandong Chang 3 , Rachael Hunter 4,* and Charles R. Norman 5 1 Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 2 Department of Earth, Environmental and Planetary Science, Rice University, Houston, TX 77005, USA; [email protected] 3 Department of Geological Sciences, Chungnam National University, Daejeon 34134, Korea; [email protected] 4 Comite Resources, Inc., P.O. Box 66596, Baton Rouge, LA 70896, USA 5 Charles Norman & Associates, P.O. Box 5715, Lake Charles LA 70606, USA; [email protected] * Correspondence: [email protected] (J.W.D.); [email protected] (R.H.) Received: 20 April 2020; Accepted: 20 May 2020; Published: 23 May 2020 Abstract: Oil and gas (O&G) activity has been pervasive in the Mississippi River Delta (MRD). Here we review the life cycle of O&G fields in the MRD focusing on the production history and resulting environmental impacts and show how cumulative impacts affect coastal ecosystems. Individual fields can last 40–60 years and most wells are in the final stages of production. Production increased rapidly reaching a peak around 1970 and then declined. Produced water lagged O&G and was generally higher during declining O&G production, making up about 70% of total liquids. Much of the wetland loss in the delta is associated with O&G activities. These have contributed in three major ways to wetland loss including alteration of surface hydrology, induced subsidence due to fluids removal and fault activation, and toxic stress due to spilled oil and produced water. -
Mcgovern Pond Dredging and Restoration Project Spicebush Swamp Park – 173 Mountain Road, West Hartford, CT
McGovern Pond Dredging and Restoration Project Spicebush Swamp Park – 173 Mountain Road, West Hartford, CT History: Established in 1962, Spicebush Swamp Park was West Hartford’s first park to be set aside as a natural area for nature study or walking, and as a 33-acre, outdoor classroom for schools to use. McGovern Pond was created in the park by excavating an area of approximately one acre in Spicebush Swamp Park around 1968. The pond is maintained by a flow of water from a branch of the Trout Brook. Since its creation, McGovern pond has slowly been filled with sediments washed in from upstream watershed sources. These sediments, which consist primarily of road sand, eroded soils from construction sites and organic plant materials, have filled in approximately one quarter of the upstream side of the pond to an average depth of only 1 foot. This process is referred to as “cultural” eutrophication and is a common occurrence in heavily developed watersheds. As the eutrophication process advances, the ability of the affected pond to support a diverse aquatic community diminishes. Sediment at McGovern Pond was addressed once, approximately 15 years ago, when Public Works established a sediment trap, but they did not dredge the pond or address organic matter that had built up around the pond edges. Reasons for Project – Habitat restoration and Environmental Education: In a letter from 2006, Don Mysling, a Senior Fisheries Biologist with the CT DEEP, recommended that pond restoration projects for this area of Connecticut should be planned to provide habitat for warm water fish species such a largemouth bass and sunfish.