Elsey-Quirk Et Al 2019.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Elsey-Quirk Et Al 2019.Pdf Estuarine, Coastal and Shelf Science 221 (2019) 170–183 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Mississippi river sediment diversions and coastal wetland sustainability: Synthesis of responses to freshwater, sediment, and nutrient inputs T ∗ T. Elsey-Quirka, , S.A. Grahamb, I.A. Mendelssohna, G. Sneddenc, J.W. Daya, R.R. Twilleya, G. Shafferd, L.A. Sharpe, J. Pahlf, R.R. Laneg a Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA b Department of Biological Sciences, Nicholls State University, Thibodaux, LA, 70301, USA c U. S. Geological Survey, Wetland and Aquatic Research Center, Baton Rouge, LA, 70803, USA d Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, 70402, USA e Louisiana Coastal Protection and Restoration Authority, Lafayette, LA, 70596, USA f Louisiana Coastal Protection and Restoration Authority, Baton Rouge, LA, 70802, USA g Comite Resources Inc., P.O. Box 66596, Baton Rouge, LA, 70896, USA ARTICLE INFO ABSTRACT Keywords: Management and restoration of coastal wetlands require insight into how inundation, salinity, and the avail- Restoration ability of mineral sediment and nutrients interact to influence ecosystem functions that control sustainability. Decomposition The Mississippi River Delta, which ranks among the world's largest and most productive coastal wetland com- Productivity plexes, has experienced extensive deterioration over the last century due, in large part, to enhanced vulnerability Eutrophication to relative sea-level rise and lateral erosion caused by a combination of natural processes and anthropogenic Accretion modifications of hydrology. This land loss crisis has prompted the State of Louisiana to develop a comprehensive Mississippi delta restoration plan that includes constructing and implementing a series of large-scale sediment diversions that will reconnect sediment- and nutrient-rich Mississippi River water to adjacent bays, estuaries, and wetlands. Sediment loading through diversions is predicted to enhance the long-term sustainability of coastal wetlands; however, the additive effects of increased inundation, abrubt changes in the salinity regime, and high nutrient loads on wetland plant growth and organic matter (SOM) decomposition rates, which help regulate accretion and elevation change, is uncertain. Therefore, this review attempts to synthesize existing information to inform predictions of the interactive effects of diversions on these drivers of coastal wetland sustainability. The data suggest that sediment deposition within an optimal elevation range will increase the overall productivity of existing wetlands where prolonged flooding does not counter this effect by limiting plant growth. A reduction in salinity may increase plant productivity and cause vegetation shifts to less salt tolerant species, but seasonal swings in salinity may have unforeseen consequences. Nutrient-loading is predicted to lead to greater above- ground productivity, which, in turn, can facilitate additional sediment trapping; however, belowground pro- ductivity may decline, particularly in areas where sediment deposition is limited. In areas experiencing net deposition, nutrient-enrichment is predicted to enhance belowground growth into new sediment and contribute to positive effects on soil organic matter accumulation, accretion, and elevation change. Thus, we contend that sediment input is essential for limiting the negative effects of flooding and nutrient-enrichment on wetland processes. These conclusions are generally supported by the biophysical feedbacks occurring in existing pro- grading deltas of the Mississippi River Delta complex. 1. Introduction transformation and removal, burial and long-term sequestration of carbon, and storm surge protection for coastal communities (e.g., Coastal wetlands are among the most productive ecosystems on the Boesch and Turner, 1984; Chmura et al., 2003; Costanza et al., 2008; planet, performing ecological functions that contribute to services of Sousa et al., 2010; Batker et al., 2014). Yet despite their high value, high economic value such as habitat for fish and wildlife, nutrient coastal wetlands around the world are experiencing a convergence of ∗ Corresponding author. E-mail address: [email protected] (T. Elsey-Quirk). https://doi.org/10.1016/j.ecss.2019.03.002 Received 6 September 2018; Received in revised form 25 February 2019; Accepted 4 March 2019 Available online 09 March 2019 0272-7714/ © 2019 Elsevier Ltd. All rights reserved. T. Elsey-Quirk, et al. Estuarine, Coastal and Shelf Science 221 (2019) 170–183 human disturbance and sea-level rise that threatens their long-term new land through restoration is of both ecological and economic im- sustainability. The world's river deltas are particularly vulnerable to portance. rapid environmental change due to the combined effects of river In an attempt to offset widespread and rapid coastal land loss, the management and natural processes on flooding regime, sediment Coastal Protection and Restoration Authority (CPRA) of Louisiana has supply, salinity, and nutrient loading, which regulate complex feed- developed, revised, and expanded three Coastal Master Plans (CMPs; backs among plant community composition and productivity, organic CPRA, 2007, 2012 and 2017). The most recent CMP outlines plans for matter decomposition, and soil accretion. Coastal wetland manage- 79 restoration projects designed to build or maintain approximately ment, therefore, requires an understanding of how these hydro- 2000 km2 of land through a combination of wetland creation, sediment geomorphic factors interact to influence wetland stability and resilience diversions, and barrier island restoration (CPRA, 2017). More specifi- to sea-level rise and other stressors (Kirwan and Megonigal, 2013). cally, the 2017 CMP proposes seven large-scale sediment diversion In the Mississippi River delta, as in deltas around the world, wet- projects to be implemented over the next 50 years (Pahl et al., 2019 this lands form as vegetation colonizes subaerial sediments deposited in volume). River sediment diversions are engineered outlets through shallow coastal environments. Historically, the Mississippi River and its existing levees designed for periodic and/or sustained delivery of distributaries freely overflowed their banks and penetrated natural le- freshwater, nutrients, and sediment to create new wetlands and combat vees as crevasse splays during periods of high flow creating a delta- further degradation (Day et al., 2007; CPRA, 2017; Peyronnin et al., complex made up of several hydrologic basins separated by active or 2017). Once diversion structures are operational, water flows from the abandoned distributary ridges (Roberts, 1998; Day et al., 2000; Blum river by gravity and is distributed to the receiving basin largely by and Roberts, 2012). Eight major delta lobes have been identified in- wind, waves, tides and currents. In essence, diversions are designed to cluding the Atchafalaya, which is in the early stages of development. mimic natural crevasse splays and promote sub-delta development Each delta lobe, having a lifespan of approximately 1500 years and (Davis, 2000). In total, coastal restoration and protection efforts in covering 100s–1000s of km2, formed as river channels elongated and Louisiana represent the largest ever attempt to restore a natural system, bifurcated. Delta lobes are ultimately abandoned through a process of with an estimated cost of $50 billion over 50 years. upstream avulsion in favor of shorter, more efficient routes to sea level. The high cost and scale of the proposed coastal restoration in the Even after abandonment, most distributaries continued to flow with Mississippi River Delta necessitates improved predictions of how sedi- river water during major floods, maintaining a framework of inter- ment diversions will change important environmental drivers that in- connected distributary channels and natural levee ridges (Penland teract to influence key wetland processes. In this context, our goal was et al., 1988), and extending the life of wetlands in abandoned delta to synthesize existing information on the effects of flooding, freshwater lobes until their ultimate degradation. Numerous crevasses also func- input, nutrient, and mineral sediment availability on processes that tioned at a smaller scale during high water for a few years to as long as influence coastal wetland sustainability, including plant productivity, a century to build sediment splays adjacent to the natural levee with decomposition, and rates of accretion and elevation change, as well as areas of 10s–100s of km2 (Saucier, 1963; Weller, 1959; Davis, 2000; discuss likely interactions. Finally, we summarize our findings, with Roberts, 1998; Shen et al., 2015). The discharge of mineral sediment support from case studies where rivers flow freely into receiving basins, during delta formation or through crevasse splays created elevations to help better understand the fate of coastal wetlands receiving diverted appropriate for wetland vegetation to colonize and facilitated positive river wate and sediment. While this review is broadly applicable, our feedbacks among primary productivity, organic matter accumulation, focus is on potential changes to wetland plant productivity, organic sediment-trapping, and accretion following plant establishment. matter decomposition, accretion and elevation change that are
Recommended publications
  • Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
    ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia)
    [Show full text]
  • Maritime Swamp Forest (Typic Subtype)
    MARITIME SWAMP FOREST (TYPIC SUBTYPE) Concept: Maritime Swamp Forests are wetland forests of barrier islands and comparable coastal spits and back-barrier islands, dominated by tall trees of various species. The Typic Subtype includes most examples, which are not dominated by Acer, Nyssa, or Fraxinus, not by Taxodium distichum. Canopy dominants are quite variable among the few examples. Distinguishing Features: Maritime Shrub Swamps are distinguished from other barrier island wetlands by dominance by tree species of (at least potentially) large stature. The Typic Subtype is dominated by combinations of Nyssa, Fraxinus, Liquidambar, Acer, or Quercus nigra, rather than by Taxodium or Salix. Maritime Shrub Swamps are dominated by tall shrubs or small trees, particularly Salix, Persea, or wetland Cornus. Some portions of Maritime Evergreen Forest are marginally wet, but such areas are distinguished by the characteristic canopy dominants of that type, such as Quercus virginiana, Quercus hemisphaerica, or Pinus taeda. The lower strata also are distinctive, with wetland species occurring in Maritime Swamp Forest; however, some species, such as Morella cerifera, may occur in both. Synonyms: Acer rubrum - Nyssa biflora - (Liquidambar styraciflua, Fraxinus sp.) Maritime Swamp Forest (CEGL004082). Ecological Systems: Central Atlantic Coastal Plain Maritime Forest (CES203.261). Sites: Maritime Swamp Forests occur on barrier islands and comparable spits, in well-protected dune swales, edges of dune ridges, and on flats adjacent to freshwater sounds. Soils: Soils are wet sands or mucky sands, most often mapped as Duckston (Typic Psammaquent) or Conaby (Histic Humaquept). Hydrology: Most Maritime Swamp Forests have shallow seasonal standing water and nearly permanently saturated soils. Some may rarely be flooded by salt water during severe storms, but areas that are severely or repeatedly flooded do not recover to swamp forest.
    [Show full text]
  • Contribution of Plant-Induced Pressurized Flow to CH4 Emission
    www.nature.com/scientificreports OPEN Contribution of plant‑induced pressurized fow to ­CH4 emission from a Phragmites fen Merit van den Berg2*, Eva van den Elzen2, Joachim Ingwersen1, Sarian Kosten 2, Leon P. M. Lamers 2 & Thilo Streck1 The widespread wetland species Phragmites australis (Cav.) Trin. ex Steud. has the ability to transport gases through its stems via a pressurized fow. This results in a high oxygen (O2) transport to the rhizosphere, suppressing methane (CH4) production and stimulating CH4 oxidation. Simultaneously CH4 is transported in the opposite direction to the atmosphere, bypassing the oxic surface layer. This raises the question how this plant-mediated gas transport in Phragmites afects the net CH4 emission. A feld experiment was set-up in a Phragmites‑dominated fen in Germany, to determine the contribution of all three gas transport pathways (plant-mediated, difusive and ebullition) during the growth stage of Phragmites from intact vegetation (control), from clipped stems (CR) to exclude the pressurized fow, and from clipped and sealed stems (CSR) to exclude any plant-transport. Clipping resulted in a 60% reduced difusive + plant-mediated fux (control: 517, CR: 217, CSR: −2 −1 279 mg CH4 m day ). Simultaneously, ebullition strongly increased by a factor of 7–13 (control: −2 −1 10, CR: 71, CSR: 126 mg CH4 m day ). This increase of ebullition did, however, not compensate for the exclusion of pressurized fow. Total CH4 emission from the control was 2.3 and 1.3 times higher than from CR and CSR respectively, demonstrating the signifcant role of pressurized gas transport in Phragmites‑stands.
    [Show full text]
  • The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-8-2007 The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands Lon Boudreaux Jr. University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Boudreaux, Lon Jr., "The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands" (2007). University of New Orleans Theses and Dissertations. 564. https://scholarworks.uno.edu/td/564 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Urban Studies By Lon J. Boudreaux Jr. B.S. Our Lady of Holy Cross College, 1992 M.S. University of New Orleans, 2007 August, 2007 Table of Contents Abstract.............................................................................................................................
    [Show full text]
  • PESHTIGO RIVER DELTA Property Owner
    NORTHEAST - 10 PESHTIGO RIVER DELTA WETLAND TYPES Drew Feldkirchner Floodplain forest, lowland hardwood, swamp, sedge meadow, marsh, shrub carr ECOLOGY & SIGNIFICANCE supports cordgrass, marsh fern, sensitive fern, northern tickseed sunflower, spotted joe-pye weed, orange This Wetland Gem site comprises a very large coastal • jewelweed, turtlehead, marsh cinquefoil, blue skullcap wetland complex along the northwest shore of Green Bay and marsh bellflower. Shrub carr habitat is dominated three miles southeast of the city of Peshtigo. The wetland by slender willow; other shrub species include alder, complex extends upstream along the Peshtigo River for MARINETTE COUNTY red osier dogwood and white meadowsweet. Floodplain two miles from its mouth. This site is significant because forest habitats are dominated by silver maple and green of its size, the diversity of wetland community types ash. Wetlands of the Peshtigo River Delta support several present, and the overall good condition of the vegetation. - rare plant species including few-flowered spikerush, The complexity of the site – including abandoned oxbow variegated horsetail and northern wild raisin. lakes and a series of sloughs and lagoons within the river delta – offers excellent habitat for waterfowl. A number This Wetland Gem provides extensive, diverse and high of rare animals and plants have been documented using quality wetland habitat for many species of waterfowl, these wetlands. The area supports a variety of recreational herons, gulls, terns and shorebirds and is an important uses, such as hunting, fishing, trapping and boating. The staging, nesting and stopover site for many migratory Peshtigo River Delta has been described as the most birds. Rare and interesting bird species documented at diverse and least disturbed wetland complex on the west the site include red-shouldered hawk, black tern, yellow shore of Green Bay.
    [Show full text]
  • Wetlands of Saratoga County New York
    Acknowledgments THIS BOOKLET I S THE PRODUCT Of THE work of many individuals. Although it is based on the U.S. Fish and Wildlife Service's National Wetlands Inventory (NWI), tlus booklet would not have been produced without the support and cooperation of the U.S. Environmental Protection Agency (EPA). Patrick Pergola served as project coordinator for the wetlands inventory and Dan Montella was project coordinator for the preparation of this booklet. Ralph Tiner coordi­ nated the effort for the U.S. Fish and Wildlife Service (FWS). Data compiled from the NWI serve as the foun­ dation for much of this report. Information on the wetland status for this area is the result of hard work by photointerpreters, mainly Irene Huber (University of Massachusetts) with assistance from D avid Foulis and Todd Nuerminger. Glenn Smith (FWS) provided quality control of the interpreted aerial photographs and draft maps and collected field data on wetland communities. Tim Post (N.Y. State D epartment of Environmental Conservation), John Swords (FWS), James Schaberl and Chris Martin (National Park Ser­ vice) assisted in the field and the review of draft maps. Among other FWS staff contributing to this effort were Kurt Snider, Greg Pipkin, Kevin Bon, Becky Stanley, and Matt Starr. The booklet was reviewed by several people including Kathleen Drake (EPA), G eorge H odgson (Saratoga County Environmental Management Council), John Hamilton (Soil and W ater Conserva­ tion District), Dan Spada (Adirondack Park Agency), Pat Riexinger (N.Y. State Department of Environ­ mental Conservation), Susan Essig (FWS), and Jen­ nifer Brady-Connor (Association of State Wetland Nlanagers).
    [Show full text]
  • Delaware Bay Estuary Project Supporting the Conservation and Restoration Of
    U.S. Fish & Wildlife Service – Coastal Program Delaware Bay Estuary Project Supporting the conservation and restoration of the salt marshes of Delaware Bay People have altered the expansive salt marshes of Delaware Bay for centuries to farm salt hay, try to control mosquitoes, create channels for boats, to increase developable land, and other reasons all resulting in restricted tidal flow, disrupted sediment balances, or increasing erosion. Sea level rise and coastal storms threaten to further negatively impact the integrity of these salt marshes. As we alter or lose the marshes we lose the valuable habitats and ecological services they provide. tidal creek - Katherine Whittemore Addressing the all-important sediment balance of salt marshes is critical for preserving their resilience. A healthy resilient marsh may be able to keep pace with erosion and sea level rise through sediment accretion and growth Downe Twsp, NJ - Brian Marsh of vegetation. However, the delicate sediment balance of salt marshes is DBEP works to support efforts to learn more about the techniques often disrupted by barriers to tidal influence and altered drainage onto and to conserve and restore salt marshes and support the populations of fish and wildlife that rely on them. We support new and off the marsh resulting in sediment ongoing coastal resiliency initiatives and coastal planning as they starved systems, excessive mudflats, or pertain to habitat restoration and conservation. We are interested increased erosion. in finding effective tools and mechanisms for conserving and restoring salt marsh integrity on a meaningful scale and support efforts that bring partners together to approach this challenge.
    [Show full text]
  • A Synthesis of Information I
    Outer Continental Shelf Environmental Assessment Program * A Synthesis of Information I U.S. DEPARTMENT OF COMMERCE U.S. DEPARTMENT OF THE INTEXIOR National Oceanic and Atmospheric Administration Minerals Management Service National Ocean Service Alaska OCS Region Office of Oceanography and Marine Assessment . .:.% y! Ocean Assessments Division ' t. CU ' k Alaska Office OCS Study, MMS 89-0081 . '.'Y. 4 3 --- NOTICES This report has been prepared as part of the U.S. Department bf Commerce, National Oceanic and Atmospheric Administration's Outer Continental Shelf Environmental Assessment Program, and approved for publication. The inter- pretation of data and opinions expressed in this document are those of the authors. Approval does not necessarily signify that the contents reflect the views and policies of the Department of Commerce or those of the Department of the Interior. The National Oceanic and Atmospheric Administration (NOAA) does not approve, recommend, or endorse any proprietary material mentioned in this publication. No reference shall be made to NOAA or to this publication in any advertising or sales promotion which would indicate or imply that NOAA approves, recommends, or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose or intent to cause directly or indirectly the advertised product to be used or purchased because of this publication. Cover: LandsatTMimage of the Yukon Delta taken on Julg 22, 1975, showing the thamal gradients resulting from Yukon River discharge. In this image land is dqicted in sesof red indicating warmer temperatures versus the dark blues (colder temperatures) of Bering Sea waters. Yukon River water, cooh than the surround- ing land but wanner than marine waters, is represented bg a light aqua blue.
    [Show full text]
  • Tidal Wetland Gross Primary Production Across the Continental
    RESEARCH ARTICLE Tidal Wetland Gross Primary Production Across 10.1029/2019GB006349 the Continental United States, 2000–2019 Special Section: R. A. Feagin1 , I. Forbrich2 , T. P. Huff1, J. G. Barr3, J. Ruiz‐Plancarte4 , J. D. Fuentes4 , Carbon cycling in tidal wet- 4 5 5 6 7 R. G. Najjar , R. Vargas , A. Vázquez‐Lule , L. Windham‐Myers , K. D. Kroeger , lands and estuaries of the con- 8 1 9 8 8 2 tiguous United States E. J. Ward , G. W. Moore , M. Leclerc , K. W. Krauss , C. L. Stagg , M. Alber , S. H. Knox10 , K. V. R. Schäfer11, T. S. Bianchi12 , J. A. Hutchings13 , H. Nahrawi9,14 , 1 1 1 1,15 6 16 Key Points: A. Noormets , B. Mitra , A. Jaimes , A. L. Hinson , B. Bergamaschi , J. S. King , and 17 • We created the Blue Carbon (BC) G. Miao model, which mapped the Gross Primary Production (GPP) of all 1Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA, 2Marine Biological tidal wetlands within the Laboratory, Woods Hole, MA, USA, 3Elder Research, Charlottesville, VA, USA, 4Department of Meteorology and continental United States 5 • Atmospheric Science, Pennsylvania State University, University Park, PA, USA, Department of Plant and Soil Sciences, The BC model provides maps of tidal 6 7 wetland GPP at sub‐250 m scales University of Delaware, Newark, DE, USA, United States Geological Survey, Menlo Park, CA, USA, United States 8 and at 16‐day intervals for the years Geological Survey, Woods Hole, MA, USA, United States Geological Survey, Wetland and Aquatic Research Center, 2000‐2019 Lafayette, LA, USA, 9Atmospheric Biogeosciences, University of Georgia, Athens, GA, USA, 10Department of Geography, • 2 The average daily GPP per m was University of British Columbia, Vancouver, BC, USA, 11Department of Biological Sciences, Rutgers University, Newark, 4.32 ± 2.45 g C/m2/day, and the total NJ, USA, 12Departmet of Geological Sciences, University of Florida, Gainesville, FL, USA, 13Department of Earth and annual GPP for the continental 14 United States was 39.65 ± 0.89 Tg Planetary Sciences, Washington University, St.
    [Show full text]
  • GLOSSARY a Anoxic a Lack of Oxygen
    ECOLOGY OF OLD WOMAN CREEK ESTUARY AND WATERSHED 13. GLOSSARY A anoxic A lack of oxygen. abiotic Non living or derived from non-living anthropogenic Developed by human beings; man- processes; factor contributing to an environment made. that is of a non-living nature. aqueous Of, or pertaining to water. ablation All processes by which snow and ice are aquifer A body of rock that is sufficiently permeable lost from a glacier, floating ice, or snow cover, to conduct groundwater and to yield economically including melting, evaporation (sublimation), significant quantities of water to springs and wells. wind erosion, and calving. artifact Anything made by man or showing signs of AD Used as a prefix or suffix to a date, denoting the human use; generally applied to tools, implements, number of years after the beginning of the Christian and other objects of human manufacture. calendar (Anno Domini). adventitious roots Roots growing laterally from the atlatl A Mexican term for a spear throwing device; a stem rather than from the main root. stick with a hook at one end that fits into a depression in the base of a spear and is used to aerenchyma Tissue with large, air-filled cavities lengthen the thrower’s arm, thus adding leverage between the cells that are present in the stems and and speed. roots of certain aquatic plants that enables adequate gaseous exchange below water. atlatl weights Stone objects fastened to the throwing stick for added mass. aerial Growing or borne above the ground or water; autochthonous Material generated within a particular of, for, or by means of aircraft (e.g.
    [Show full text]
  • Exploring Our Wonderful Wetlands Publication
    Exploring Our Wonderful Wetlands Student Publication Grades 4–7 Dear Wetland Students: Are you ready to explore our wonderful wetlands? We hope so! To help you learn about several types of wetlands in our area, we are taking you on a series of explorations. As you move through the publication, be sure to test your wetland wit and write about wetlands before moving on to the next exploration. By exploring our wonderful wetlands, we hope that you will appreciate where you live and encourage others to help protect our precious natural resources. Let’s begin our exploration now! Southwest Florida Water Management District Exploring Our Wonderful Wetlands Exploration 1 Wading Into Our Wetlands ................................................Page 3 Exploration 2 Searching Our Saltwater Wetlands .................................Page 5 Exploration 3 Finding Out About Our Freshwater Wetlands .............Page 7 Exploration 4 Discovering What Wetlands Do .................................... Page 10 Exploration 5 Becoming Protectors of Our Wetlands ........................Page 14 Wetlands Activities .............................................................Page 17 Websites ................................................................................Page 20 Visit the Southwest Florida Water Management District’s website at WaterMatters.org. Exploration 1 Wading Into Our Wetlands What exactly is a wetland? The scientific and legal definitions of wetlands differ. In 1984, when the Florida Legislature passed a Wetlands Protection Act, they decided to use a plant list containing plants usually found in wetlands. We are very fortunate to have a lot of wetlands in Florida. In fact, Florida has the third largest wetland acreage in the United States. The term wetlands includes a wide variety of aquatic habitats. Wetland ecosystems include swamps, marshes, wet meadows, bogs and fens. Essentially, wetlands are transitional areas between dry uplands and aquatic systems such as lakes, rivers or oceans.
    [Show full text]
  • Life Cycle of Oil and Gas Fields in the Mississippi River Delta: a Review
    water Review Life Cycle of Oil and Gas Fields in the Mississippi River Delta: A Review John W. Day 1,*, H. C. Clark 2, Chandong Chang 3 , Rachael Hunter 4,* and Charles R. Norman 5 1 Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 2 Department of Earth, Environmental and Planetary Science, Rice University, Houston, TX 77005, USA; [email protected] 3 Department of Geological Sciences, Chungnam National University, Daejeon 34134, Korea; [email protected] 4 Comite Resources, Inc., P.O. Box 66596, Baton Rouge, LA 70896, USA 5 Charles Norman & Associates, P.O. Box 5715, Lake Charles LA 70606, USA; [email protected] * Correspondence: [email protected] (J.W.D.); [email protected] (R.H.) Received: 20 April 2020; Accepted: 20 May 2020; Published: 23 May 2020 Abstract: Oil and gas (O&G) activity has been pervasive in the Mississippi River Delta (MRD). Here we review the life cycle of O&G fields in the MRD focusing on the production history and resulting environmental impacts and show how cumulative impacts affect coastal ecosystems. Individual fields can last 40–60 years and most wells are in the final stages of production. Production increased rapidly reaching a peak around 1970 and then declined. Produced water lagged O&G and was generally higher during declining O&G production, making up about 70% of total liquids. Much of the wetland loss in the delta is associated with O&G activities. These have contributed in three major ways to wetland loss including alteration of surface hydrology, induced subsidence due to fluids removal and fault activation, and toxic stress due to spilled oil and produced water.
    [Show full text]