Lipid II As a Target for Antibiotics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Antibiotic Kills Pathogens Without Detectable Resistance
ARTICLE doi:10.1038/nature14098 A new antibiotic kills pathogens without detectable resistance Losee L. Ling1*, Tanja Schneider2,3*, Aaron J. Peoples1, Amy L. Spoering1, Ina Engels2,3, Brian P. Conlon4, Anna Mueller2,3, Till F. Scha¨berle3,5, Dallas E. Hughes1, Slava Epstein6, Michael Jones7, Linos Lazarides7, Victoria A. Steadman7, Douglas R. Cohen1, Cintia R. Felix1, K. Ashley Fetterman1, William P. Millett1, Anthony G. Nitti1, Ashley M. Zullo1, Chao Chen4 & Kim Lewis4 Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance. Widespread introduction of antibiotics in the 1940s, beginning with factors through the chambers enables growth of uncultured bacteria in penicillin1,2 and streptomycin3, transformed medicine, providing effec- their natural environment. -
Novel Antimicrobial Agents Inhibiting Lipid II Incorporation Into Peptidoglycan Essay MBB
27 -7-2019 Novel antimicrobial agents inhibiting lipid II incorporation into peptidoglycan Essay MBB Mark Nijland S3265978 Supervisor: Prof. Dr. Dirk-Jan Scheffers Molecular Microbiology University of Groningen Content Abstract..............................................................................................................................................2 1.0 Peptidoglycan biosynthesis of bacteria ........................................................................................3 2.0 Novel antimicrobial agents ...........................................................................................................4 2.1 Teixobactin ...............................................................................................................................4 2.2 tridecaptin A1............................................................................................................................7 2.3 Malacidins ................................................................................................................................8 2.4 Humimycins ..............................................................................................................................9 2.5 LysM ........................................................................................................................................ 10 3.0 Concluding remarks .................................................................................................................... 11 4.0 references ................................................................................................................................. -
Abstract a Practical Synthesis of N -Fmoc Protected L-Threo- -Hydroxyaspartic Acid Derivatives for Coupling
CYCLIC LIPODEPSIPEPTIDES AS LEAD STRUCTURES FOR THE DISCOVERY OF NEW ANTIBIOTICS by Nina Bionda A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL May 2013 ACKNOWLEDGEMENTS First and foremost, I want to thank my advisor, Dr. Predrag Cudic, for his guidance throughout my PhD endeavors, the endless discussions about science and life in general, and for teaching me to give my best every step of the way. You have been instrumental in my scientific education and for that I am forever in your debt. Immense gratitude goes to Dr. Lepore for embracing the difficult role of a co-advisor and fulfilling it truly beyond what I have expected. I will always appreciate your advice. I also wish to express my heartfelt thanks to my dissertation committee members, Dr. Laszlo Otvos Jr., Dr. Stefan Vetter and Dr. Andrew C. Terentis, for their valuable time and thoughtful suggestions, comments and critiques. I would also like to extend my appreciation to all of the faculty and students of the Department of Chemistry and Biochemistry that I have had contact with during my PhD studies. To Dr. Richard Houghten and everyone at the Torrey Pines Institute for Molecular Studies, thank you for providing me with a “home” for the last two and a half years of my PhD. And special thanks to Dr. Maré Cudic for sharing her scientific experience and the simple things of the everyday life. To Dr. -
Microorganism Solutions
C297-E086 Microorganism Species Analysis and Component Analysis – Detection and Identification of Microorganisms and Metabolite Analysis – Shimadzu’s Microorganism Solutions JQA-0376 Founded in 1875, Shimadzu Corporation, a leader in the development of advanced technologies, has a distinguished history of innovation built on the foundation of contributing to society through science and technology. We maintain a global network of sales, service, technical support and applications centers on six continents, and have established long-term relationships with a host of highly trained distributors located in over 100 countries. For information about Shimadzu, and to contact your local office, please visit our Web site at www.shimadzu.com Microorganism SHIMADZU CORPORATION. International Marketing Division 3. Kanda-Nishikicho 1-chome, Chiyoda-ku, Tokyo 101-8448, Japan Solutions Phone: 81(3)3219-5641 Fax. 81(3)3219-5710 URL http://www.shimadzu.com The contents of this brochure are subject to change without notice. AnalysisAnalysis Printed in Japan 3295-12904-15A-NS TotalTotal SolutionsSolutions forfor MicroorganismMicroorganism AnalysisAnalysis andand TestingTesting Shimadzu Supports Everybody Working with Microorganisms While we cannot easily see microorganisms, they are closely linked to our lives. From ancient times, microorganisms have expanded Microorganisms are researched and utilized for a wide range of purposes in many research and industry fields. the human diet by providing fermented foods including alcohol and pickles. In recent years, microorganisms have become The major purposes are inspection and control, identification, searching for new microorganisms, functional investigations, and indispensable in the production of useful substances, such as antibiotics, taste components, and vitamins. Microorganisms are also industrial applications. essential for environmental sustainability and improvements, including wastewater treatment, soil cleanup, and atmospheric balance. -
Escherichia Coli K–12 Derived from the Ecocyc Database Daniel S Weaver1*,Ingridmkeseler1,Amandamackie2, Ian T Paulsen2 and Peter D Karp1
Weaver et al. BMC Systems Biology 2014, 8:79 http://www.biomedcentral.com/1752-0509/8/79 RESEARCH ARTICLE OpenAccess A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database Daniel S Weaver1*,IngridMKeseler1,AmandaMackie2, Ian T Paulsen2 and Peter D Karp1 Abstract Background: Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. Results: We present EcoCyc–18.0–GEM, a genome-scale model of the E. coli K–12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc–18.0–GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc–18.0–GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. -
Synthesis and Structure−Activity Relationships of Teixobactin
Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Special Issue: Antimicrobial Therapeutics Reviews REVIEW Synthesis and structure−activity relationships of teixobactin John A. Karas,1 Fan Chen,1 Elena K. Schneider-Futschik,1,2 Zhisen Kang,1 Maytham Hussein,1 James Swarbrick,1 Daniel Hoyer,1,3,4 Andrew M. Giltrap,5 Richard J. Payne,5 Jian Li,6 and Tony Velkov1 1Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia. 2Lung Health Research Centre, Department of Pharmacology & Therapeutics, the University of Melbourne, Parkville, Victoria, Australia. 3The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia. 4Department of Molecular Medicine, the Scripps Research Institute, La Jolla, California. 5School of Chemistry, the University of Sydney, Sydney, New South Wales, Australia. 6Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia Address for correspondence: Tony Velkov and John A. Karas, Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, VIC 3010, Australia. [email protected] OR [email protected] The discovery of antibiotics has led to the effective treatment of bacterial infections that were otherwise fatal and has had a transformative effect on modern medicine. Teixobactin is an unusual depsipeptide natural product that was recently discovered from a previously unculturable soil bacterium and found to possess potent antibacterial activity against several Gram positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin- resistant Enterococci. -
Defensin Mimetics As Novel Antibiotics Targeting Lipid II
Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II Kristen M. Varney1., Alexandre M. J. J. Bonvin2., Marzena Pazgier3., Jakob Malin4., Wenbo Yu5., Eugene Ateh3, Taiji Oashi5, Wuyuan Lu3, Jing Huang5, Marlies Diepeveen-de Buin2, Joseph Bryant3, Eefjan Breukink2, Alexander D. MacKerell, Jr.5, Erik P. H. de Leeuw3* 1 NMR Facility, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America, 2 Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht, The Netherlands, 3 Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America, 4 Maastricht University Medical Center, Maastricht, The Netherlands, 5 Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America Abstract We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N- acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis. -
E. Coli Pbp1b, Moenomycin-Based
Investigating the Ligand Interactions Between E. coli PBP1b, Moenomycin-based Compounds, and Beta-Lactam Compounds Peter Alexander MSc by Research 2017 i CERTIFICATE OF ORIGINALITY This is to certify that I am responsible for the work submitted in this thesis, that the original work is my own, except as specified in the acknowledgements and in references, and that neither the thesis nor the original work contained therein has been previously submitted to any institution for a degree. Signature: Name: Date: CERTIFICATE OF COMPLIANCE This is to certify that this project has been carried out in accordance with University principles regarding ethics and health and safety. Forms are available to view on request. Signature: Name: Date: ii Abstract Antimicrobial resistance is a growing problem in this era. Resistance to the majority of clinical antibiotics including those of a ‘last line of defence’ nature has been seen in a number of laboratory and clinical settings. One method aiming at reducing this problem is altering existing antimicrobial compounds, in order to improve pharmacological effects (avoiding resistance mechanisms, improved spectrum of use). Analysis of the interactions between the antimicrobial compounds and their targets can determine whether modifications to current antimicrobials (such as moenomycin A, a glycosyltransferase inhibitor) have altered the mode of action. ecoPBP1B is a bifunctional glycosyltransferase that could be used as a model for beta lactams and moenomycins, aiding in the design and development of novel antimicrobials based on these families. Moenomycin A has not seen high clinical usage due to poor pharmacokinetics and bioavailability. This project aimed to show whether ecoPBP1b can be used as a model for novel antimicrobials, such as seeing whether Moenomycin A analogues (with cell penetrating peptides to facilitate entry into the bacterial cell) still retain their ability to bind to glycosyltransferases. -
1 Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin
Molecular dynamics simulations reveal the conformational flexibility of Lipid II and its loose association with the defensin plectasin in the Staphylococcus aureus membrane. Sarah Witzke,1,2 , Michael Petersen1, Timothy S. Carpenter3*and Syma Khalid2* 1 Department of Physics, Chemistry and Pharmacy University of Southern Denmark Denmark 2 School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK. 3 Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, USA. *To whom correspondence should be addressed: [email protected] or [email protected] 1 Abbreviations and Textual Footnotes ADPG Tetra-anteiso-myristoyl Cardiolipin Ala Alanine ALPG Lysyl-AMPG AMPG 1,2-di-anteiso-myristoyl-sn-glycero-3-phosphoglycerol Cys Cysteine DMPG 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol DPC Dodecylphosphocholine Glc N-acetylglucosamine Gly Glycine His Histidine LII Lipid II Lys Lysine MD Molecular Dynamics Mur N-acetylmuramic acid PG Phosphatidylglycerol Phe Phenylalanine RDF Radial Distribution Function S. aureus Staphylococcus aureus SI Supporting Information 2 Abstract Lipid II is a precursor for peptidoglycan, which is the main component of the bacterial cell wall. Lipid II is a relatively conserved and important part of the cell wall biosynthesis pathway and is targeted by antibiotics such as the lantibiotics, which achieve their function by disrupting the biosynthesis of the cell wall. Given the urgent need for development of novel antibiotics to counter the growing threat of bacterial infection, it is imperative that a thorough molecular-level characterisation of the molecules targeted by antibiotics is achieved. To this end, we present a molecular dynamics simulation study of the conformational dynamics of Lipid II within a detailed model of the Staphylococcus aureus cell membrane. -
As the Peptidoglycan Lipid II Flippase in Escherichia Coli
Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli Natividad Ruiz* Department of Molecular Biology, Princeton University, Princeton, NJ 08544 Communicated by Thomas J. Silhavy, Princeton University, Princeton, NJ, August 25, 2008 (received for review August 7, 2008) Peptidoglycan is a cell-wall glycopeptide polymer that protects in a process that is not well understood but that is known to bacteria from osmotic lysis. Whereas in Gram-positive bacteria it involve dephosphorylation by multiple phosphatases and trans- also serves as scaffold for many virulence factors, in Gram-negative port across the IM (1, 12). In E. coli, recycled and newly bacteria, peptidoglycan is an anchor for the outer membrane. For synthesized undecaprenyl phosphate can be used in new rounds years, we have known the enzymes required for the biosynthesis of peptidoglycan biosynthesis as well as in the transport across of peptidoglycan; what was missing was the flippase that trans- the IM of other cell envelope polysaccharides, such as lipopoly- locates the lipid-anchored precursors across the cytoplasmic mem- saccharides (LPS) and enterobacterial common antigen (ECA) brane before their polymerization into mature peptidoglycan. (13, 14). Thus, although we do not understand how undecaprenyl Using a reductionist bioinformatics approach, I have identified the pyrophosphate is flipped back across the IM for recycling, the essential inner-membrane protein MviN (renamed MurJ) as a likely only unknown factor required for an essential step unique to candidate for the peptidoglycan flippase in Escherichia coli. Here, peptidoglycan biogenesis is the flippase that transports lipid II I present genetic and biochemical data that confirm the require- across the IM. -
Skin,Mucosal and Blood-Brain Barrier Kinetics
FACULTY OF PHARMACEUTICAL SCIENCES DRUG Quality & Registration (DRUQUAR) Lab SKIN, MUCOSAL AND BLOOD-BRAIN BARRIER KINETICS OF MODEL CYCLIC DEPSIPEPTIDES: THE MYCOTOXINS BEAUVERICIN AND ENNIATINS Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences Lien TAEVERNIER Promoter Prof. Dr. Bart DE SPIEGELEER FACULTY OF PHARMACEUTICAL SCIENCES Drug Quality & Registration (DruQuaR) Lab SKIN, MUCOSAL AND BLOOD-BRAIN BARRIER KINETICS OF MODEL CYCLIC DEPSIPEPTIDES: THE MYCOTOXINS BEAUVERICIN AND ENNIATINS Lien TAEVERNIER Master of Science in Drug Development Promoter Prof. Dr. Bart DE SPIEGELEER 2016 Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences COPYRIGHT COPYRIGHT The author and the promotor give the authorization to consult and to copy parts of this thesis for personal use only. Any other use is limited by the Laws of Copyright, especially the obligation to refer to the source whenever results from this thesis are cited. Ghent, 9th of September 2016 The promoter The author Prof. Dr. Bart De Spiegeleer Lien Taevernier 3 ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS I never could have achieved this work on my own, therefore I wish to thank some very important people and address a few words to them. I consider myself fortunate to know you and I was honoured to be able to work together with you and learn a great deal from all of you. First of all, a special thank you to my promoter Prof. Dr. Bart De Spiegeleer. I am grateful that you gave me the opportunity to pursue my Ph.D. at DruQuaR. Your door was always open for me, even if it did not consider work. -
(12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin Et Al
USOO8486374B2 (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin et al. (45) Date of Patent: Jul. 16, 2013 (54) HYDROPHILIC, NON-AQUEOUS (56) References Cited PHARMACEUTICAL CARRIERS AND COMPOSITIONS AND USES U.S. PATENT DOCUMENTS 1,159,250 A 11/1915 Moulton 1,666,684 A 4, 1928 Carstens (75) Inventors: Dov Tamarkin, Maccabim (IL); Meir 1924,972 A 8, 1933 Beckert Eini, Ness Ziona (IL); Doron Friedman, 2,085,733. A T. 1937 Bird Karmei Yosef (IL); Alex Besonov, 2,390,921 A 12, 1945 Clark Rehovot (IL); David Schuz. Moshav 2,524,590 A 10, 1950 Boe Gimzu (IL); Tal Berman, Rishon 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely LeZiyyon (IL); Jorge Danziger, Rishom 2,767,712 A 10, 1956 Waterman LeZion (IL); Rita Keynan, Rehovot (IL); 2.968,628 A 1/1961 Reed Ella Zlatkis, Rehovot (IL) 3,004,894 A 10/1961 Johnson et al. 3,062,715 A 11/1962 Reese et al. 3,067,784. A 12/1962 Gorman (73) Assignee: Foamix Ltd., Rehovot (IL) 3,092.255. A 6, 1963 Hohman 3,092,555 A 6, 1963 Horn 3,141,821 A 7, 1964 Compeau (*) Notice: Subject to any disclaimer, the term of this 3,142,420 A 7/1964 Gawthrop patent is extended or adjusted under 35 3,144,386 A 8/1964 Brightenback U.S.C. 154(b) by 1180 days. 3,149,543 A 9, 1964 Naab 3,154,075 A 10, 1964 Weckesser 3,178,352 A 4, 1965 Erickson (21) Appl.