Skin,Mucosal and Blood-Brain Barrier Kinetics

Total Page:16

File Type:pdf, Size:1020Kb

Skin,Mucosal and Blood-Brain Barrier Kinetics FACULTY OF PHARMACEUTICAL SCIENCES DRUG Quality & Registration (DRUQUAR) Lab SKIN, MUCOSAL AND BLOOD-BRAIN BARRIER KINETICS OF MODEL CYCLIC DEPSIPEPTIDES: THE MYCOTOXINS BEAUVERICIN AND ENNIATINS Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences Lien TAEVERNIER Promoter Prof. Dr. Bart DE SPIEGELEER FACULTY OF PHARMACEUTICAL SCIENCES Drug Quality & Registration (DruQuaR) Lab SKIN, MUCOSAL AND BLOOD-BRAIN BARRIER KINETICS OF MODEL CYCLIC DEPSIPEPTIDES: THE MYCOTOXINS BEAUVERICIN AND ENNIATINS Lien TAEVERNIER Master of Science in Drug Development Promoter Prof. Dr. Bart DE SPIEGELEER 2016 Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences COPYRIGHT COPYRIGHT The author and the promotor give the authorization to consult and to copy parts of this thesis for personal use only. Any other use is limited by the Laws of Copyright, especially the obligation to refer to the source whenever results from this thesis are cited. Ghent, 9th of September 2016 The promoter The author Prof. Dr. Bart De Spiegeleer Lien Taevernier 3 ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS I never could have achieved this work on my own, therefore I wish to thank some very important people and address a few words to them. I consider myself fortunate to know you and I was honoured to be able to work together with you and learn a great deal from all of you. First of all, a special thank you to my promoter Prof. Dr. Bart De Spiegeleer. I am grateful that you gave me the opportunity to pursue my Ph.D. at DruQuaR. Your door was always open for me, even if it did not consider work. I really appreciate your excellent guidance these last four years and I am proud to say that I have learned a lot from you and from your lifelong experience. Thank you for the trust you have put into me and for always challenging me to bring my work to the next level. Working at DruQuaR has definitely contributed to my personal development, it has conquered its special place and I will never forget it. I also wish to thank the members of the examination committee, Prof. Dr. Christophe Stove as chairman, Prof. Dr. Sarah De Saeger, Prof. Dr. Serge Van Calenbergh, Prof. Dr. Antoon Bronselaer and Prof. Dr. Jos Hoogmartens, for critically reviewing this work. The interesting and dynamic discussions certainly improved the quality of this thesis. I acknowledge Ghent University, the Faculty of Pharmaceutical Sciences and the DruQuaR lab for the use of their facilities and funding. I would also like to thank Doctoral Schools for the educational support. This research work could never have been established without the financial support and scientific interest of the Special Research Fund (BOF 01D23812) of Ghent University. Furthermore, I would like to express my gratitude to the people that I worked with during collaboration projects. I’m grateful to Prof. Dr. Stijn Vansteelandt (Department Applied Mathematics, Computer Science and Statistics, Ghent University) for your help with the statistical analyses and interpretation of the adsorption results, Prof. Dr. Catherine Delesalle, Prof. Dr. Christian Burvenich (Department of Comparative Physiology and Biometrics, Ghent University) and Dr. Kathelijne Peremans (Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Ghent University) for your scientific contributions and Dr. Nathalie Roche and Evelien Vervaet (Department of Plastic and Reconstructive Surgery, UZ Ghent) for your commitment and excellent follow-up on human skin logistics. Also thank you to Dr. Leen De Vreese (Centre for Logic and Philosophy of Science, Ghent University) for your interesting philosophic input in our work about the mycotoxin definition. Sven Detroyer and Antoon Daneels, thank you for all your efforts and help 5 ACKNOWLEDGEMENTS during your master thesis at DruQuaR. I am also grateful to Laurent Dehennin from Porc Meat Zele NV for the provision of the porcine buccal mucosa. Lastly, thank you Prof. Dr. Ralf Hoffmann and Dr. Daniela Volke (Centre for Biotechnology and Biomedicine, University of Leipzig) for providing the experimental framework for the MALDI-MS analyses. I’m grateful to all my former and present DruQuaR co-workers: Dr. Jente Boonen for teaching me all about the Franz diffusion cell technique and Dr. Matthias D’Hondt for sharing your knowledge about chromatography and introducing me into the world of quality assurance. Thank you Dr. Sofie Stalmans, Dr. Evelien Wynendaele, Lieselotte Veryser and Nathalie Bracke for the interesting scientific discussions, for your contributions to many manuscripts, for your help during experiments and most importantly, thank you for being there for me in times of need. Han Yao, thank you for the nice atmosphere at our desk; when you return to China I hope to visit you there one day. Kirsten Vandercruyssen, Mathieu Verbeken, Dr. Sultan Suleman, Bert Gevaert, Frederick Verbeke, Xiaolong Xu, Sileshi Belew Yohannes, Yorick Janssens and Anne Kosgei, thank you all for your help and amazing workship. I really enjoyed our scientific discussions, our laughs and joyful evening activities. With some of you I also had some memorable moments at scientific conferences that will always stick to me. Also our DruQuaR weekends were truly fantastic. I will miss all of you, but I hope this is not a final “goodbye”. Finally, I wish to thank all my family & friends for every now and then, puncturing my Ph.D. bubble and therefore providing the necessary distractions. The parties, dinners and trips were always so much fun! Thank you all for your kind words, support and interest, you are really the best! A very special thank you is in place for the four most important people in my life. Mama, papa & Anja, for the past 27 years you have been my biggest support. Thank you for everything you always do to help me achieve my goals. I love you. Last, but certainly not least, thank you Jasper ♡. Your patience is endless, your love and encouraging and comforting words really helped me get through this last year. I am so much looking forward to our future together. I love you. Lien 6 LIST OF ABBREVIATIONS AND SYMBOLS LIST OF ABBREVIATIONS AND SYMBOLS Exposure time 15-ADON 15-Acetyldeoxynivalenol 3-ADON 3-Acetyldeoxynivalenol A Adenylation A Area ABC ATP binding cassette ACAT Acyl-CoA:cholesterol acyltransferase ACP Acyl carrier protein ACN Acetonitrile AF Aflatoxin Ahp Amino-hydroxy-piperidone Ala Alanine Ama Amino-methyl-acid Am(o)ya Amino-methyl-(oct)ynoic-acid Amp Amino-methoxy-piperidone AOH Alternariol AT Acyltransferase AT Averaging time ATP Adenosine triphosphate BBB Blood-brain barrier BEA Beauvericin BEH Ethylene bridged hybrid BMD Benchmark dose BSA Bovine serum albumin BW Body weight 7 LIST OF ABBREVIATIONS AND SYMBOLS C Condensation CART Classification and regression tree CB Cytochalasin B CD Capillary depletion CDP Cyclic depsipeptide CHAID Chi-squared automatic interaction detector CIT Citrinin Cl Plasma clearance CMDh Coordination Group for Mutual Recognition and Decentralised Procedures – Human CNS Central nervous system CONTAM Contaminants in the Food Chain CPG Compliance Policy Guides Cpl,ss,buccal Steady-state plasma concentration after buccal application CSH Charged surface hybrid CSF Cerebrospinal fluid CT Condensation-like Cv Concentration in vehicle Cy Heterocyclistation Cys Cysteine Cyt c Cytochrome c D Derringer desirability DDE Daily dermal exposure DDEmax Maximum daily dermal exposure DH Dehydration DMA Dimethylacetamide Dmh(e/y)a Dimethyl-hydroxy-(e/y)noic-acid DMSO Dimethylsulfoxide 8 LIST OF ABBREVIATIONS AND SYMBOLS DNA Deoxyribonucleic acid DON Deoxynivalenol DS Dose solution E Epimerisation ED Exposure duration EF Exposure frequency EFSA European Food Safety Authority EMA European Medicines Agency EMAN European Mycotoxins Awareness Network ENN Enniatin ESI Electrospray ionisation EtOH Ethanol EU European Union EV Event frequency F Formylation FA Fatty acid FA Formic acid FAO Food and Agriculture Organization of the United Nations FB1 Fumonisin B1 FDA Food and Drug Administration FDC Franz diffusion cell FID Flame ionisation detector FUS Fusaproliferin FUS-X Fusarenon-X GC Gas chromatography GLI Gliotoxin Gly Glycine H Heterocyclisation 9 LIST OF ABBREVIATIONS AND SYMBOLS HCA Hierarchical cluster analysis HDAC Histone deacetylase HIV Human immunodeficiency virus HPBCD Hydroxypropyl-β-cyclodextrin Hppa 3-Hydroxy-3-phenylpropanoic acid Ibu Amino-dimethyl-oxo-acid IC50 Inhibitory concentration, 50% ICR-CD-1 Institute for Cancer Research, Caesarean derived-1 ICV Intracerebroventricular IFN-γ Interferon-gamma IPCS International Programme on Chemical Safety IPM Isopropyl myristate IS Internal standard Jmax Maximum flux Jss Steady-state flux K Net brain clearance K1 Unidirectional blood-to-brain clearance kout Efflux rate constant kp Permeability coefficient kp,v Permeability coefficient in vehicle kp,w Permeability coefficient in water KR Ketoreduction KS Ketosynthase LD50 Lethal dose, 50% LMP Lysosomal membrane permeabilisation LOAEL Lowest observed adverse effect level LoD Limit of detection LoQ Limit of quantification 10 LIST OF ABBREVIATIONS AND SYMBOLS LPS Lipopolysaccharide M Methylation MALDI Matrix-assisted laser desorption/ionisation MeOH Methanol Mh(e/y)a Methyl-hydroxy-(e/y)noic-acid MLR Multiple linear regression MOMP Mitochondrial outer membrane permeabilisation MON Moniliformin MRM Multiple reaction monitoring MS Mass spectrometry MT Mycotoxin MTR Multiple time regression MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MW Molecular weight NCRI
Recommended publications
  • Abstract a Practical Synthesis of N -Fmoc Protected L-Threo- -Hydroxyaspartic Acid Derivatives for Coupling
    CYCLIC LIPODEPSIPEPTIDES AS LEAD STRUCTURES FOR THE DISCOVERY OF NEW ANTIBIOTICS by Nina Bionda A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL May 2013 ACKNOWLEDGEMENTS First and foremost, I want to thank my advisor, Dr. Predrag Cudic, for his guidance throughout my PhD endeavors, the endless discussions about science and life in general, and for teaching me to give my best every step of the way. You have been instrumental in my scientific education and for that I am forever in your debt. Immense gratitude goes to Dr. Lepore for embracing the difficult role of a co-advisor and fulfilling it truly beyond what I have expected. I will always appreciate your advice. I also wish to express my heartfelt thanks to my dissertation committee members, Dr. Laszlo Otvos Jr., Dr. Stefan Vetter and Dr. Andrew C. Terentis, for their valuable time and thoughtful suggestions, comments and critiques. I would also like to extend my appreciation to all of the faculty and students of the Department of Chemistry and Biochemistry that I have had contact with during my PhD studies. To Dr. Richard Houghten and everyone at the Torrey Pines Institute for Molecular Studies, thank you for providing me with a “home” for the last two and a half years of my PhD. And special thanks to Dr. Maré Cudic for sharing her scientific experience and the simple things of the everyday life. To Dr.
    [Show full text]
  • Microorganism Solutions
    C297-E086 Microorganism Species Analysis and Component Analysis – Detection and Identification of Microorganisms and Metabolite Analysis – Shimadzu’s Microorganism Solutions JQA-0376 Founded in 1875, Shimadzu Corporation, a leader in the development of advanced technologies, has a distinguished history of innovation built on the foundation of contributing to society through science and technology. We maintain a global network of sales, service, technical support and applications centers on six continents, and have established long-term relationships with a host of highly trained distributors located in over 100 countries. For information about Shimadzu, and to contact your local office, please visit our Web site at www.shimadzu.com Microorganism SHIMADZU CORPORATION. International Marketing Division 3. Kanda-Nishikicho 1-chome, Chiyoda-ku, Tokyo 101-8448, Japan Solutions Phone: 81(3)3219-5641 Fax. 81(3)3219-5710 URL http://www.shimadzu.com The contents of this brochure are subject to change without notice. AnalysisAnalysis Printed in Japan 3295-12904-15A-NS TotalTotal SolutionsSolutions forfor MicroorganismMicroorganism AnalysisAnalysis andand TestingTesting Shimadzu Supports Everybody Working with Microorganisms While we cannot easily see microorganisms, they are closely linked to our lives. From ancient times, microorganisms have expanded Microorganisms are researched and utilized for a wide range of purposes in many research and industry fields. the human diet by providing fermented foods including alcohol and pickles. In recent years, microorganisms have become The major purposes are inspection and control, identification, searching for new microorganisms, functional investigations, and indispensable in the production of useful substances, such as antibiotics, taste components, and vitamins. Microorganisms are also industrial applications. essential for environmental sustainability and improvements, including wastewater treatment, soil cleanup, and atmospheric balance.
    [Show full text]
  • Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
    toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B.
    [Show full text]
  • Investigations on the Impact of Toxic Cyanobacteria on Fish : As
    INVESTIGATIONS ON THE IMPACT OF TOXIC CYANOBACTERIA ON FISH - AS EXEMPLIFIED BY THE COREGONIDS IN LAKE AMMERSEE - DISSERTATION Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften an der Universität Konstanz Fachbereich Biologie Vorgelegt von BERNHARD ERNST Tag der mündlichen Prüfung: 05. Nov. 2008 Referent: Prof. Dr. Daniel Dietrich Referent: Prof. Dr. Karl-Otto Rothhaupt Referent: Prof. Dr. Alexander Bürkle 2 »Erst seit gestern und nur für einen Tag auf diesem Planeten weilend, können wir nur hoffen, einen Blick auf das Wissen zu erhaschen, das wir vermutlich nie erlangen werden« Horace-Bénédict de Saussure (1740-1799) Pionier der modernen Alpenforschung & Wegbereiter des Alpinismus 3 ZUSAMMENFASSUNG Giftige Cyanobakterien beeinträchtigen Organismen verschiedenster Entwicklungsstufen und trophischer Ebenen. Besonders bedroht sind aquatische Organismen, weil sie von Cyanobakterien sehr vielfältig beeinflussbar sind und ihnen zudem oft nur sehr begrenzt ausweichen können. Zu den toxinreichsten Cyanobakterien gehören Arten der Gattung Planktothrix. Hierzu zählt auch die Burgunderblutalge Planktothrix rubescens, eine Cyanobakterienart die über die letzten Jahrzehnte im Besonderen in den Seen der Voralpenregionen zunehmend an Bedeutung gewonnen hat. An einigen dieser Voralpenseen treten seit dem Erstarken von P. rubescens existenzielle, fischereiwirtschaftliche Probleme auf, die wesentlich auf markante Wachstumseinbrüche bei den Coregonenbeständen (Coregonus sp.; i.e. Renken, Felchen, etc.) zurückzuführen sind. So auch
    [Show full text]
  • Degradation of Microcystins in a Gravity-Driven Ultra-Low Pressure
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Structural characterization, bioactivity and biodegradation of cyanobacterial toxins Kohler, Esther Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-105523 Dissertation Published Version Originally published at: Kohler, Esther. Structural characterization, bioactivity and biodegradation of cyanobacterial toxins. 2014, University of Zurich, Faculty of Science. STRUCTURAL CHARACTERIZATION, BIOACTIVITY AND BIODEGRADATION OF CYANOBACTERIAL TOXINS Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Esther Kohler von Schwaderloch AG Promotionskomitee Prof. Dr. Jakob Pernthaler (Vorsitz) Prof. Dr. Leo Eberl PD Dr. Judith F. Blom Zürich, 2015 Meiner Familie GLOSSARY Adda (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid AG 828A Aeruginosin 828A Ahp 3-amino-6-hydroxy-2-piperidone BMAA β-methyl-amino-L-alanine Choi 2-carboxy-6-hydroxyoctahydroindole CP 1020 Cyanopeptolin 1020 DNA Deoxyribonucleic acid DOPA Dihydroxyphenylalanine GC-MS Gas chromatography-mass spectrometry GDM Gravity-driven membrane filtration GSH Glutathione GST Glutathione-s-transferase (H)PLA (Hydroxyl)phenyllactic acid HPLC High-performance liquid chromatography IC50 Half maximal inhibitory concentration i.p. Intraperitoneal (injection) LC50 Median
    [Show full text]
  • Defensin Mimetics As Novel Antibiotics Targeting Lipid II
    Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II Kristen M. Varney1., Alexandre M. J. J. Bonvin2., Marzena Pazgier3., Jakob Malin4., Wenbo Yu5., Eugene Ateh3, Taiji Oashi5, Wuyuan Lu3, Jing Huang5, Marlies Diepeveen-de Buin2, Joseph Bryant3, Eefjan Breukink2, Alexander D. MacKerell, Jr.5, Erik P. H. de Leeuw3* 1 NMR Facility, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America, 2 Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht, The Netherlands, 3 Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America, 4 Maastricht University Medical Center, Maastricht, The Netherlands, 5 Department of Pharmaceutical Sciences and Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America Abstract We have previously reported on the functional interaction of Lipid II with human alpha-defensins, a class of antimicrobial peptides. Lipid II is an essential precursor for bacterial cell wall biosynthesis and an ideal and validated target for natural antibiotic compounds. Using a combination of structural, functional and in silico analyses, we present here the molecular basis for defensin-Lipid II binding. Based on the complex of Lipid II with Human Neutrophil peptide-1, we could identify and characterize chemically diverse low-molecular weight compounds that mimic the interactions between HNP-1 and Lipid II. Lead compound BAS00127538 was further characterized structurally and functionally; it specifically interacts with the N- acetyl muramic acid moiety and isoprenyl tail of Lipid II, targets cell wall synthesis and was protective in an in vivo model for sepsis.
    [Show full text]
  • Lipid II As a Target for Antibiotics
    Nature Reviews Drug Discovery | AOP, published online 10 March 2006; doi:10.1038/nrd2004 REVIEWS Lipid II as a target for antibiotics Eefjan Breukink and Ben de Kruijff Abstract | Lipid II is a membrane-anchored cell-wall precursor that is essential for bacterial cell-wall biosynthesis. The effectiveness of targeting Lipid II as an antibacterial strategy is highlighted by the fact that it is the target for at least four different classes of antibiotic, including the clinically important glycopeptide antibiotic vancomycin. However, the growing problem of bacterial resistance to many current drugs, including vancomycin, has led to increasing interest in the therapeutic potential of other classes of compound that target Lipid II. Here, we review progress in understanding of the antibacterial activities of these compounds, which include lantibiotics, mannopeptimycins and ramoplanin, and consider factors that will be important in exploiting their potential as new treatments for bacterial infections. Since the discovery of penicillin more than 75 years ago, for novel antibacterial drugs, and here we review their antibiotics have had an immense impact on the treatment mode of action and their antibacterial activities, and use of infections caused by bacteria. However, the widespread, this as a basis to discuss their potential as novel drugs for and sometimes inappropriate, use of antibiotics has gen- combating antibiotic-resistant bacteria. erated a strong evolutionary pressure for the emergence of bacteria that either have an inherent resistance to a The role of Lipid II in cell-wall synthesis particular antibiotic or have the capacity to acquire such The cell wall (FIG. 1) of all bacteria comprises a polymer of resistance.
    [Show full text]
  • Mass-Spectrometry Based Metabolomics to Decipher Strain Specific Microcystis Cyanopeptide Profiles
    MASS-SPECTROMETRY BASED METABOLOMICS TO DECIPHER STRAIN SPECIFIC MICROCYSTIS CYANOPEPTIDE PROFILES by Kimberlynn Pearl McDonald A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Chemistry with Specialization in Chemical and Environmental Toxicology Carleton University Ottawa, Ontario © 2020, Kimberlynn Pearl McDonald i. Abstract Over the last one hundred years, ecosystem changes have occurred as a result of human population growth, pollution, increased temperatures, and habitat degradation. A visible change is the increase in frequency and magnitude of toxic cyanobacterial blooms. Cyanobacterial blooms release mixtures of biologically active compounds into freshwater that negatively impact human and ecosystem health as well as having socioeconomic consequences. The factors that influence cyanobacterial growth and toxin production are broadly understood. However, cyanobacteria are a prolific source of structurally diverse and strain specific mixtures of biologically active compounds. Currently, the chemistry, toxicology, environmental concentrations, and risks posed to human and ecosystem health by most cyanobacterial secondary metabolites are unknown. Advances in mass spectrometry and metabolomic techniques can aid in comprehension of complex metabolomes. Here, the use of untargeted and semi-targeted mass spectrometry-based metabolomics is used to decipher the non-ribosomal peptide natural products (cyanopeptides) from five Microcystis strains. Cyanopeptides are grouped based on shared structural features, such as the incorporation of non-proteogenic amino acids or partial amino acid sequences that generate diagnostic product ions with the MS/MS of metabolites within the same cyanopeptide group. Global natural product society (GNPS) molecular networking and diagnostic fragmentation filtering (DFF) techniques utilize the similarity in product ion spectra to visualize all variants in the different cyanopeptide groups and the production by Microcystis strains.
    [Show full text]
  • Multiple Toxin Production in the Cyanobacterium Microcystis: Isolation of the Toxic Protease Inhibitor Cyanopeptolin 1020
    Gademann, K; Portmann, C; Blom, J F; Zeder, M; Jüttner, F (2010). Multiple toxin production in the cyanobacterium microcystis: isolation of the toxic protease inhibitor cyanopeptolin 1020. Journal of Natural Products, 73(5):980-984. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Gademann, K; Portmann, C; Blom, J F; Zeder, M; Jüttner, F (2010). Multiple toxin production in the Winterthurerstr. 190 cyanobacterium microcystis: isolation of the toxic protease inhibitor cyanopeptolin 1020. Journal of Natural CH-8057 Zurich Products, 73(5):980-984. http://www.zora.uzh.ch Year: 2010 Multiple toxin production in the cyanobacterium microcystis: isolation of the toxic protease inhibitor cyanopeptolin 1020 Gademann, K; Portmann, C; Blom, J F; Zeder, M; Jüttner, F Gademann, K; Portmann, C; Blom, J F; Zeder, M; Jüttner, F (2010). Multiple toxin production in the cyanobacterium microcystis: isolation of the toxic protease inhibitor cyanopeptolin 1020. Journal of Natural Products, 73(5):980-984. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Gademann, K; Portmann, C; Blom, J F; Zeder, M; Jüttner, F (2010). Multiple toxin production in the cyanobacterium microcystis: isolation of the toxic protease inhibitor cyanopeptolin 1020. Journal of Natural Products, 73(5):980-984. Multiple toxin production in the cyanobacterium microcystis: isolation of the toxic protease inhibitor cyanopeptolin 1020 Abstract The isolation and structure of cyanopeptolin 1020 (hexanoic acid-Glu-N[-O-Thr-Arg-Ahp-Phe-N-Me-Tyr-Val-]) from a Microcystis strain is reported.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin Et Al
    USOO8486374B2 (12) United States Patent (10) Patent No.: US 8,486,374 B2 Tamarkin et al. (45) Date of Patent: Jul. 16, 2013 (54) HYDROPHILIC, NON-AQUEOUS (56) References Cited PHARMACEUTICAL CARRIERS AND COMPOSITIONS AND USES U.S. PATENT DOCUMENTS 1,159,250 A 11/1915 Moulton 1,666,684 A 4, 1928 Carstens (75) Inventors: Dov Tamarkin, Maccabim (IL); Meir 1924,972 A 8, 1933 Beckert Eini, Ness Ziona (IL); Doron Friedman, 2,085,733. A T. 1937 Bird Karmei Yosef (IL); Alex Besonov, 2,390,921 A 12, 1945 Clark Rehovot (IL); David Schuz. Moshav 2,524,590 A 10, 1950 Boe Gimzu (IL); Tal Berman, Rishon 2,586.287 A 2/1952 Apperson 2,617,754 A 1 1/1952 Neely LeZiyyon (IL); Jorge Danziger, Rishom 2,767,712 A 10, 1956 Waterman LeZion (IL); Rita Keynan, Rehovot (IL); 2.968,628 A 1/1961 Reed Ella Zlatkis, Rehovot (IL) 3,004,894 A 10/1961 Johnson et al. 3,062,715 A 11/1962 Reese et al. 3,067,784. A 12/1962 Gorman (73) Assignee: Foamix Ltd., Rehovot (IL) 3,092.255. A 6, 1963 Hohman 3,092,555 A 6, 1963 Horn 3,141,821 A 7, 1964 Compeau (*) Notice: Subject to any disclaimer, the term of this 3,142,420 A 7/1964 Gawthrop patent is extended or adjusted under 35 3,144,386 A 8/1964 Brightenback U.S.C. 154(b) by 1180 days. 3,149,543 A 9, 1964 Naab 3,154,075 A 10, 1964 Weckesser 3,178,352 A 4, 1965 Erickson (21) Appl.
    [Show full text]
  • Microcystin-LR Detected in a Low Molecular Weight Fraction from a Crude Extract of Zoanthus Sociatus
    toxins Communication Microcystin-LR Detected in a Low Molecular Weight Fraction from a Crude Extract of Zoanthus sociatus Dany Domínguez-Pérez 1,2, Armando Alexei Rodríguez 3, Hugo Osorio 4,5,6, Joana Azevedo 1, Olga Castañeda 7,Vítor Vasconcelos 1,2 and Agostinho Antunes 1,2,* 1 CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; [email protected] (D.D.-P.); [email protected] (J.A.); [email protected] (V.V.) 2 Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal 3 Department of Experimental and Clinical Peptide Chemistry, Hanover Medical School (MHH), Feodor-Lynen-Straße 31, D-30625 Hannover, Germany; [email protected] 4 i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; [email protected] 5 Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal 6 Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal 7 Faculty of Biology, University of La Habana, 25 St 455, CP 10400 La Habana, Cuba; castañ[email protected] * Correspondence: [email protected]; Tel.: +353-22-340-1813 Academic Editor: Michio Murata Received: 21 October 2016; Accepted: 20 February 2017; Published: 1 March 2017 Abstract: Cnidarian constitutes a great source of bioactive compounds. However, research involving peptides from organisms belonging to the order Zoanthidea has received very little attention, contrasting to the numerous studies of the order Actiniaria, from which hundreds of toxic peptides and proteins have been reported.
    [Show full text]
  • Microcystis Aeruginosa in a Central Chilean (36° Lat
    Almanza et al. Revista Chilena de Historia Natural (2016) 89:8 Revista Chilena de DOI 10.1186/s40693-016-0057-7 Historia Natural RESEARCH Open Access Occurrence of toxic blooms of Microcystis aeruginosa in a central Chilean (36° Lat. S) urban lake Viviana Almanza1,2*, Oscar Parra1, Carlos E. De M. Bicudo4,CarolinaBaeza1, Johana Beltran1, Ricardo Figueroa1,3 and Roberto Urrutia1,3 Abstract Background: During the last decades the frequency and global distribution of toxic cyanobacteria blooms has increased globally, which has been attributed to the eutrophication and climate change. In Chile there have been reports on blooms in aquatic ecosystem in localities with high density population and on the presence of five congeners of microcystins but only two documented toxics blooms with hundreds fish kills. We investigated the presence of toxic cyanobacteria blooms in the Lo Galindo urban lake, Concepción city, and the environmental factors that influence the abundance of cyanobacteria and microcystins concentration. Lo Galindo Lake, is used for various recreational and eventually as a drinking water source. Results: Toxic blooms of Microcystis aeruginosa are developed in Lo Galindo lake, those that occur throughout the year in a wide range of environmental conditions, forming scums blooms during summer and dispersive blooms in all seasons. There are different microcystin congeners, the most frequent congener was MC-RR (21 %) and the highest concentration corresponded to 115.4 µg L-1 MC-LR. Conclusions: The dominance and development of the M. aeruginosa blooms in the lake is determined by various environmental factors such as temperature, nutrients, diversity of taxa and wind speed that affect the formation of disperse-type blooms and/or scums; the latter are developed only in summer, coinciding with the highest temperature and concentrations of total microcystins.
    [Show full text]