New Antibiotics Against Bacterial Resistance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Antibiotic Kills Pathogens Without Detectable Resistance
ARTICLE doi:10.1038/nature14098 A new antibiotic kills pathogens without detectable resistance Losee L. Ling1*, Tanja Schneider2,3*, Aaron J. Peoples1, Amy L. Spoering1, Ina Engels2,3, Brian P. Conlon4, Anna Mueller2,3, Till F. Scha¨berle3,5, Dallas E. Hughes1, Slava Epstein6, Michael Jones7, Linos Lazarides7, Victoria A. Steadman7, Douglas R. Cohen1, Cintia R. Felix1, K. Ashley Fetterman1, William P. Millett1, Anthony G. Nitti1, Ashley M. Zullo1, Chao Chen4 & Kim Lewis4 Antibiotic resistance is spreading faster than the introduction of new compounds into clinical practice, causing a public health crisis. Most antibiotics were produced by screening soil microorganisms, but this limited resource of cultivable bacteria was overmined by the 1960s. Synthetic approaches to produce antibiotics have been unable to replace this platform. Uncultured bacteria make up approximately 99% of all species in external environments, and are an untapped source of new antibiotics. We developed several methods to grow uncultured organisms by cultivation in situ or by using specific growth factors. Here we report a new antibiotic that we term teixobactin, discovered in a screen of uncultured bacteria. Teixobactin inhibits cell wall synthesis by binding to a highly conserved motif of lipid II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid). We did not obtain any mutants of Staphylococcus aureus or Mycobacterium tuberculosis resistant to teixobactin. The properties of this compound suggest a path towards developing antibiotics that are likely to avoid development of resistance. Widespread introduction of antibiotics in the 1940s, beginning with factors through the chambers enables growth of uncultured bacteria in penicillin1,2 and streptomycin3, transformed medicine, providing effec- their natural environment. -
Novel Antimicrobial Agents Inhibiting Lipid II Incorporation Into Peptidoglycan Essay MBB
27 -7-2019 Novel antimicrobial agents inhibiting lipid II incorporation into peptidoglycan Essay MBB Mark Nijland S3265978 Supervisor: Prof. Dr. Dirk-Jan Scheffers Molecular Microbiology University of Groningen Content Abstract..............................................................................................................................................2 1.0 Peptidoglycan biosynthesis of bacteria ........................................................................................3 2.0 Novel antimicrobial agents ...........................................................................................................4 2.1 Teixobactin ...............................................................................................................................4 2.2 tridecaptin A1............................................................................................................................7 2.3 Malacidins ................................................................................................................................8 2.4 Humimycins ..............................................................................................................................9 2.5 LysM ........................................................................................................................................ 10 3.0 Concluding remarks .................................................................................................................... 11 4.0 references ................................................................................................................................. -
Bacteriocins, Potent Antimicrobial Peptides and the Fight Against Multi Drug Resistant Species: Resistance Is Futile?
antibiotics Review Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Elaine Meade 1, Mark Anthony Slattery 2 and Mary Garvey 1,2,* 1 Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; [email protected] 2 Mark Anthony Slattery MVB, Veterinary Practice, Manorhamilton, F91 DP62 Leitrim, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-071-9305529 Received: 31 December 2019; Accepted: 13 January 2020; Published: 16 January 2020 Abstract: Despite highly specialized international interventions and policies in place today, the rapid emergence and dissemination of resistant bacterial species continue to occur globally, threatening the longevity of antibiotics in the medical sector. In particular, problematic nosocomial infections caused by multidrug resistant Gram-negative pathogens present as a major burden to both patients and healthcare systems, with annual mortality rates incrementally rising. Bacteriocins, peptidic toxins produced by bacteria, offer promising potential as substitutes or conjugates to current therapeutic compounds. These non-toxic peptides exhibit significant potency against certain bacteria (including multidrug-resistant species), while producer strains remain insusceptible to the bactericidal peptides. The selectivity and safety profile of bacteriocins have been highlighted as superior advantages over traditional antibiotics; however, many aspects regarding their efficacy are still -
Teixobactin - a Game Changer Antibiotic
ERA’S JOURNAL OF MEDICAL RESEARCH VOL.7 NO.2 Review Article DOI:10.24041/ejmr2020.37 TEIXOBACTIN - A GAME CHANGER ANTIBIOTIC Sahil Hussain, Neelam Yadav Department of Pharmacy Era's Lucknow Medical College & Hospital, Era University Sarfarazganj Lucknow, U.P., India-226003 Received on : 28-09-2020 Accepted on : 26-12-2020 ABSTRACT Address for correspondence A team of scientist under the supervision of Kim Lewis from Northeastern University has discovered a novel antibiotic called Teixobactin, which Dr. Neelam Yadav kills the bacteria by inhibiting them from building their outer protein Department of Pharmacy envelop. The bacterial resistance interference are key challenges to the Era’s Lucknow Medical College & global health. Teixobactin shows exceptional antibacterial activities Hospital, Era University Lucknow-226003 against the range of pathogenic bacteria viz S. Aureus and Mycobacterium Email: [email protected] Tuberculosis. It is bactericidal and has many mode of operation, however Contact no: +91- it is one of the most important contribution in the modernization of medicine. However, the increase in Antibiotic resistance is at alarming rate and the ability of patient care through antibiotics is a challenge nowadays increment in Antibiotics resistance is among the top public health threats in the century 21". According to the Centers for Disease Control and Prevention (CDCP), around 23 thousand peoples die in every year in United States of America (USA) due to Antibiotic resistance. Whenever the patient is administered with an antibiotic the condition of the patient does not improve due to which more than 2 million people are sickened. The increase in Antibiotic resistance is much greater than the increase in epidemic diseases such as Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (Al DS) or Ebola Virus Disease. -
Escherichia Coli K–12 Derived from the Ecocyc Database Daniel S Weaver1*,Ingridmkeseler1,Amandamackie2, Ian T Paulsen2 and Peter D Karp1
Weaver et al. BMC Systems Biology 2014, 8:79 http://www.biomedcentral.com/1752-0509/8/79 RESEARCH ARTICLE OpenAccess A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database Daniel S Weaver1*,IngridMKeseler1,AmandaMackie2, Ian T Paulsen2 and Peter D Karp1 Abstract Background: Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. Results: We present EcoCyc–18.0–GEM, a genome-scale model of the E. coli K–12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc–18.0–GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc–18.0–GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. -
Raman Spectroscopic Studies of Inhibitor Reactions in Class A, B and D Β
RAMAN SPECTROSCOPIC STUDIES OF INHIBITOR REACTIONS IN CLASS A, B AND D β-LACTAMASES by TAO CHE Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Paul R. Carey Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY May, 2015 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Tao Che candidate for the Ph.D. degree*. (signed) Focco van den Akker (chair of the committee) Paul Carey Robert Bonomo Menachem Shoham Marion Skalweit (date) December, 2014 *We also certify that written approval has been obtained for any proprietary material contained therein. i TABLE OF CONTENTS LIST OF TABLES ........................................................................................................... V LIST OF SCHEMES ...................................................................................................... VI LIST OF ABBREVIATIONS ....................................................................................... XV ABSTRACT .................................................................................................................. XVI CHAPTER I: INTRODUCTION .................................................................................... 1 I-1 Bacterial resistance to β-lactam antibiotics .............................................................. 5 I-2 β-Lactamases ............................................................................................................... 9 I-3 Raman techniques -
Copyright by Natalie Kay Boyd 2020 the Dissertation Committee for Natalie Kay Boyd Certifies That This Is the Approved Version of the Following Dissertation
Copyright by Natalie Kay Boyd 2020 The Dissertation Committee for Natalie Kay Boyd Certifies that this is the approved version of the following dissertation: THE IN VITRO ANTIBIOTIC ACTIVITY OF NON-ANTIBIOTIC DRUGS AGAINST S. AUREUS CLINICAL STRAINS Committee: Christopher R. Frei, Supervisor Kelly R. Reveles Jim M. Koeller Jose L. Lopez-Ribot Manjunath P. Pai THE IN VITRO ANTIBIOTIC ACTIVITY OF NON-ANTIBIOTIC DRUGS AGAINST S. AUREUS CLINICAL STRAINS by Natalie Kay Boyd Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2020 Dedication I dedicated this dissertation to my family, friends, and colleagues, who have supported and loved me unconditionally. Abstract THE IN VITRO ANTIBIOTIC ACTIVITY OF NON-ANTIBIOTIC DRUGS AGAINST S. AUREUS CLINICAL STRAINS Natalie Kay Boyd, Ph.D. The University of Texas at Austin, 2020 Supervisor: Christopher R. Frei Drug repurposing, or identifying new uses for existing drugs, has emerged as an alternative to traditional drug discovery processes involving de novo synthesis. Drugs that are currently approved or under development for non- antibiotic indications may possess antibiotic properties, and therefore may have repurposing potential, either alone or in combination with an antibiotic. They might also serve as “antibiotic adjuvants” to enhance the activity of certain antibiotics. The objective of the proposed research is to utilize novel screening tools to characterize antibiotic effects of select non-antibiotic drugs against Staphylococcus aureus clinical isolates. We hypothesized that one or more of the non-antibiotic candidates selected for this study would demonstrate antibiotic activity against Staphylococcus aureus, either directly (as monotherapy) or indirectly (in combination with antibiotic drugs). -
Synthesis and Structure−Activity Relationships of Teixobactin
Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Special Issue: Antimicrobial Therapeutics Reviews REVIEW Synthesis and structure−activity relationships of teixobactin John A. Karas,1 Fan Chen,1 Elena K. Schneider-Futschik,1,2 Zhisen Kang,1 Maytham Hussein,1 James Swarbrick,1 Daniel Hoyer,1,3,4 Andrew M. Giltrap,5 Richard J. Payne,5 Jian Li,6 and Tony Velkov1 1Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, Victoria, Australia. 2Lung Health Research Centre, Department of Pharmacology & Therapeutics, the University of Melbourne, Parkville, Victoria, Australia. 3The Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Victoria, Australia. 4Department of Molecular Medicine, the Scripps Research Institute, La Jolla, California. 5School of Chemistry, the University of Sydney, Sydney, New South Wales, Australia. 6Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia Address for correspondence: Tony Velkov and John A. Karas, Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Parkville, VIC 3010, Australia. [email protected] OR [email protected] The discovery of antibiotics has led to the effective treatment of bacterial infections that were otherwise fatal and has had a transformative effect on modern medicine. Teixobactin is an unusual depsipeptide natural product that was recently discovered from a previously unculturable soil bacterium and found to possess potent antibacterial activity against several Gram positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin- resistant Enterococci. -
E. Coli Pbp1b, Moenomycin-Based
Investigating the Ligand Interactions Between E. coli PBP1b, Moenomycin-based Compounds, and Beta-Lactam Compounds Peter Alexander MSc by Research 2017 i CERTIFICATE OF ORIGINALITY This is to certify that I am responsible for the work submitted in this thesis, that the original work is my own, except as specified in the acknowledgements and in references, and that neither the thesis nor the original work contained therein has been previously submitted to any institution for a degree. Signature: Name: Date: CERTIFICATE OF COMPLIANCE This is to certify that this project has been carried out in accordance with University principles regarding ethics and health and safety. Forms are available to view on request. Signature: Name: Date: ii Abstract Antimicrobial resistance is a growing problem in this era. Resistance to the majority of clinical antibiotics including those of a ‘last line of defence’ nature has been seen in a number of laboratory and clinical settings. One method aiming at reducing this problem is altering existing antimicrobial compounds, in order to improve pharmacological effects (avoiding resistance mechanisms, improved spectrum of use). Analysis of the interactions between the antimicrobial compounds and their targets can determine whether modifications to current antimicrobials (such as moenomycin A, a glycosyltransferase inhibitor) have altered the mode of action. ecoPBP1B is a bifunctional glycosyltransferase that could be used as a model for beta lactams and moenomycins, aiding in the design and development of novel antimicrobials based on these families. Moenomycin A has not seen high clinical usage due to poor pharmacokinetics and bioavailability. This project aimed to show whether ecoPBP1b can be used as a model for novel antimicrobials, such as seeing whether Moenomycin A analogues (with cell penetrating peptides to facilitate entry into the bacterial cell) still retain their ability to bind to glycosyltransferases. -
Lipid II As a Target for Antibiotics
Nature Reviews Drug Discovery | AOP, published online 10 March 2006; doi:10.1038/nrd2004 REVIEWS Lipid II as a target for antibiotics Eefjan Breukink and Ben de Kruijff Abstract | Lipid II is a membrane-anchored cell-wall precursor that is essential for bacterial cell-wall biosynthesis. The effectiveness of targeting Lipid II as an antibacterial strategy is highlighted by the fact that it is the target for at least four different classes of antibiotic, including the clinically important glycopeptide antibiotic vancomycin. However, the growing problem of bacterial resistance to many current drugs, including vancomycin, has led to increasing interest in the therapeutic potential of other classes of compound that target Lipid II. Here, we review progress in understanding of the antibacterial activities of these compounds, which include lantibiotics, mannopeptimycins and ramoplanin, and consider factors that will be important in exploiting their potential as new treatments for bacterial infections. Since the discovery of penicillin more than 75 years ago, for novel antibacterial drugs, and here we review their antibiotics have had an immense impact on the treatment mode of action and their antibacterial activities, and use of infections caused by bacteria. However, the widespread, this as a basis to discuss their potential as novel drugs for and sometimes inappropriate, use of antibiotics has gen- combating antibiotic-resistant bacteria. erated a strong evolutionary pressure for the emergence of bacteria that either have an inherent resistance to a The role of Lipid II in cell-wall synthesis particular antibiotic or have the capacity to acquire such The cell wall (FIG. 1) of all bacteria comprises a polymer of resistance. -
Methicillin-Resistant Staphylococcus Aureus in Diabetic Foot Infection In
IJLXXX10.1177/1534734619853668The International Journal of Lower Extremity WoundsViswanathan et al 853668research-article2019 Original Review The International Journal of Lower Extremity Wounds Methicillin-Resistant Staphylococcus 1 –11 © The Author(s) 2019 Article reuse guidelines: aureus in Diabetic Foot Infection in sagepub.com/journals-permissions DOI:https://doi.org/10.1177/1534734619853668 10.1177/1534734619853668 India: A Growing Menace journals.sagepub.com/home/ijl Vijay Viswanathan, MD, PhD, FRCP1, Sharad Pendsey, MD2, Chandni Radhakrishnan, MD, PhD, FRCP3, Tushar Devidas Rege, MS4, Jaishid Ahdal, MD5 , and Rishi Jain, MD5 Abstract Diabetic foot infection (DFI) is a serious and common complication of diabetes mellitus. These infections are potentially disastrous and rapidly progress to deeper spaces and tissues. If not treated promptly and appropriately, DFI can be incurable or even lead to septic gangrene, which may require foot amputation. Mostly, these infections are polymicrobial, where Gram-positive pathogens mainly Staphylococcus aureus play a dominant causative role. Methicillin-resistant Staphylococcus aureus (MRSA) is present in 10% to 32% of diabetic infections and is associated with a higher rate of treatment failure, morbidity, and hospitalization cost in patients with DFIs. The increasing resistance of bacteria and the adverse effects pertaining to the safety and tolerability towards currently available anti-MRSA agents have limited the available treatment options for patients with DFI. Infection control, antimicrobial stewardship, and rapid diagnostics based on the microbiological culture and the antimicrobial susceptibility testing results are important components in helping curb this disturbing trend. Emphasis to revisit a vigorous research effort in order to improve the therapeutic options for the increasingly resistant and highly adaptable MRSA is the need of hour. -
Teixobactin: a Powerful Tool for Combating Resistant Strains
Review Article Teixobactin: A Powerful Tool for Combating Resistant Strains TEJAL RAWAL* AND SHITAL BUTANI Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad-382 481, India Rawal and Butani: Teixobactin against Drug-resistant Pathogens Resistance to antibiotics has grown out to be a serious health concern. Despite this serious health crisis, no new antibiotics have been discovered since the last 30 years. A new ray of hope in the form of teixobactin has come out of the dark, which could demonstrate the potential to be effective in countering resistance. This new antibiotic has an interesting mechanism of action against bacteria. The discovery of this wonderful compound has evolved as a major breakthrough especially in this era of antibiotic catastrophe. This review article highlights various facets of teixobactin that include chemistry, mode of action, in vitro and in vivo activities. Though the compound has not yet undergone clinical studies, its effect on mice models has given hope for overpowering resistance. This review attempts to provide information about teixobactin and its potential for fighting as antibiotic resistance. Key words: Teixobactin, antibiotic, Eleftheria terrae, iChip, resistance, antimicrobial A new crisis the world facing today is antibiotic which gained the title of 'remarkable drug' as well as resistance. Genetic modifications in bacteria have referred to as "magic bullet" by Paul Ehlrich, gained led to a condition, where pathogenic microorganisms these recognitions since it was highly effective have become more virulent and resistant to the against bacteria, without causing any harm to the available antimicrobial agents. The risk of resistance body. It was found to be effective against organisms, has also been accelerated due to overuse of the where sulphonamides failed.