XSEDE: the Extreme Science and Engineering Discovery Environment

Total Page:16

File Type:pdf, Size:1020Kb

XSEDE: the Extreme Science and Engineering Discovery Environment XSEDE: the Extreme Science and Engineering Discovery Environment PY1-3 Comprehensive Report July 1, 2011 through June 30, 2014 PY1-3 Comprehensive Report Page i XSEDE Senior Management Team (SMT) John Towns (NCSA) PI and Project Director Kelly Gaither (TACC) Interim Co-PI Ralph Roskies (PSC) Co-PI and Extended Collaborative Support Service-Projects Director Nancy Wilkins-Diehr (SDSC) Co-PI and Extended Collaborative Support Service-Communities Director Greg Peterson (UT-NICS) Co-PI and Operations Director Chris Hempel (TACC) Interim Users Services Director Scott Lathrop (Shodor) Education & Outreach Director Justin Whitt (UT/NICS) Manager of Project Management Janet Brown (PSC) Manager of Systems and Software Engineering JP Navarro (UChicago) Manager of Software Development & Integration Tom Cheatham (Utah) Chair of the User Advisory Committee (voting member of the SMT) Richard Moore (SDSC) Chair of the XD Service Providers Forum (voting member of the SMT) PY1-3 Comprehensive Report Page ii Table of Contents Preamble ..................................................................................................................................................................................... 1 1. Executive Summary ...................................................................................................................................................... 1 1.1. Strategic Goals ..................................................................................................................................................... 1 1.2. Progress toward Strategic Goals .................................................................................................................. 2 1.3. Summary & Project Highlights ...................................................................................................................... 2 2. Science and Engineering Highlights ....................................................................................................................... 5 2.1. Environmental Biology/Behavioral Genomics: Using Next-Generation Sequencing to Identify Genetic Differences in the Social Lives of Mammals (Eileen Lacey and Matthew MacManes, University of California, Berkeley) ...................................................................................................... 5 2.2. Biomass Research: Cellulase Enzyme Structure-Function Relationships (Gregg T. Beckham, National Renewable Energy Laboratory) ............................................................................................ 6 2.3. Biochemistry: Evaluating and improving the performance of RNA force fields in molecular dynamics simulations (Thomas Cheatham, University of Utah College of Pharmacy) .... 7 2.4. Aeronautics and astronautics — Turbulence Modeling: Droplet-laden Isotropic Turbulence (Antonino Ferrante, William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle) .............................................................................................................................. 8 2.5. Economics: Fast Construction of Nanosecond Level Snapshots of Financial Markets (Mao Ye, University of Illinois College of Business) ......................................................................................................... 9 2.6. Chemistry: Clean Air Technologies: XSEDE resources help chemists develop new tools for cleaner air, energy production (Brian Space, University of South Florida) ............................................... 9 2.7. Multimedia Literacy: Analysis of video content (Virginia Kuhn, University of Southern California) ............................................................................................................................................................................ 10 2.8. Seismology: Multi-GPU Implementation of a 3D Finite Difference Time Domain Earthquake Code on Heterogeneous Supercomputers (Yifeng Cui, San Diego Supercomputer Center, UC San Diego) ..................................................................................................................................................... 11 2.9. A HPC “Cyber Wind Facility” Incorporating Fully-Coupled CFD/CSD for Turbine-Platform- Wake Interactions with the Atmosphere and Ocean (PI: James G. Brasseur, Pennsylvania State University) ........................................................................................................................................................................... 12 2.10. Materials Research: Atomistic Characterization of Stable and Metastable Alumina Surfaces (Douglas Spearot, University of Arkansas) .......................................................................................... 13 2.11. Mechanics and Materials: An Inverse Stiffness Mapping Approach to the Early Detection of Breast Cancer (Lorraine Olson, Rose-Hulman Institute of Technology) .............................................. 13 2.12. Materials Research: “Morphology and flow properties of micelle-nanoparticle solutions from Molecular Dynamics simulations” (Subas Dhakal, Syracuse University) ....................................... 14 3. Discussion of Goals and Key Performance Indicators .................................................................................. 16 3.1. Deepen and Extend Use ................................................................................................................................. 16 3.1.1. Deepening use to Existing Communities ........................................................................................... 16 3.1.2. Extending Use to New Communities ................................................................................................... 17 3.1.3. Prepare the Current and Next Generation ........................................................................................ 17 PY1-3 Comprehensive Report Page iii 3.1.4. Raising Awareness ...................................................................................................................................... 18 3.2. Advance the Ecosystem ................................................................................................................................. 19 3.2.1. Create an Open and Evolving e-Infrastructure ............................................................................... 19 3.2.2. Enhance the Array of Technical Expertise and Support Services ........................................... 19 3.3. Sustain the Ecosystem .................................................................................................................................... 20 3.3.1. Provide Reliable, Efficient, and Secure Infrastructure ................................................................. 20 3.3.2. Provide Excellent User Support ............................................................................................................ 21 3.3.3. Effective and Productive Virtual Organization ............................................................................... 21 3.3.4. Innovative Virtual Organization............................................................................................................ 22 4. Supporting and Expanding the Community ...................................................................................................... 23 4.1. Extended Collaborative Support Service - ECSS (WBS 1.4 and 1.5) ............................................ 23 4.2. ECSS – Projects (WBS 1.4) ............................................................................................................................ 24 4.2.1. Extended Support for Research Teams (WBS 1.4.1) .................................................................... 24 4.2.2. Novel and Innovative Projects (WBS 1.4.2) ..................................................................................... 25 4.3. ECSS – Communities (WBS 1.5) .................................................................................................................. 25 4.3.1. Extended Support for Community Codes (WBS 1.5.1) ................................................................ 27 4.3.2. Extended Support for Science Gateways (WBS 1.5.2) ................................................................. 28 4.3.3. ECSS Communities – Extended Collaborative Support for Training, Education and Outreach (WBS 1.5.3) ................................................................................................................................................. 29 4.4. User Services (WBS 1.3) ................................................................................................................................ 30 4.4.1. Training (WBS 1.3.1) ................................................................................................................................. 32 4.4.2. User Information & Interfaces (WBS 1.3.2) ..................................................................................... 34 4.4.3. User Engagement (WBS 1.3.3) ............................................................................................................... 35 4.4.4. Allocations (WBS 1.3.4) ............................................................................................................................ 36 4.5. Education and Outreach (WBS 1.6) .......................................................................................................... 36 4.5.1. Education (WBS 1.6.1) .............................................................................................................................
Recommended publications
  • Community Analysis of Microbial Sharing and Specialization in A
    Downloaded from http://rspb.royalsocietypublishing.org/ on March 15, 2017 Community analysis of microbial sharing rspb.royalsocietypublishing.org and specialization in a Costa Rican ant–plant–hemipteran symbiosis Elizabeth G. Pringle1,2 and Corrie S. Moreau3 Research 1Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Cite this article: Pringle EG, Moreau CS. 2017 Reno, NV 89557, USA 2Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA Community analysis of microbial sharing and 3Department of Science and Education, Field Museum of Natural History, 1400 South Lake Shore Drive, specialization in a Costa Rican ant–plant– Chicago, IL 60605, USA hemipteran symbiosis. Proc. R. Soc. B 284: EGP, 0000-0002-4398-9272 20162770. http://dx.doi.org/10.1098/rspb.2016.2770 Ants have long been renowned for their intimate mutualisms with tropho- bionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of Received: 14 December 2016 microbes between interacting macroorganisms, affects the composition and Accepted: 17 January 2017 function of symbiotic microbial communities. Here we approached this ques- tion by investigating symbiosis within symbiosis. Ant–plant–hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and Subject Category: quantitative PCR to examine community structure of both bacteria and Ecology fungi in a Neotropical ant–plant–scale-insect symbiosis. Both phloem-feed- ing scale insects and honeydew-feeding ants make use of microbial Subject Areas: symbionts to subsist on phloem-derived diets of suboptimal nutritional qual- ecology, evolution, microbiology ity.
    [Show full text]
  • Invasive Argentine Ants Have Shifted Diet Without Clear Aid from Symbiotic Microbes
    Molecular Ecology (2017) 26, 1608–1630 doi: 10.1111/mec.13991 By their own devices: invasive Argentine ants have shifted diet without clear aid from symbiotic microbes YI HU,* DAVID A. HOLWAY,† PIOTR ŁUKASIK,* LINH CHAU,* ADAM D. KAY,‡ EDWARD G. LEBRUN,§ KATIE A. MILLER,‡ JON G. SANDERS,¶ ANDREW V. SUAREZ** and JACOB A. RUSSELL* *Department of Biology, Drexel University, Philadelphia, PA 19104, USA, †Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA, ‡Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA, §Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78703, USA, ¶Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA, **Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA Abstract The functions and compositions of symbiotic bacterial communities often correlate with host ecology. Yet cause–effect relationships and the order of symbiont vs. host change remain unclear in the face of ancient symbioses and conserved host ecology. Several groups of ants exemplify this challenge, as their low-nitrogen diets and spe- cialized symbioses appear conserved and ancient. To address whether nitrogen-provi- sioning symbionts might be important in the early stages of ant trophic shifts, we studied bacteria from the Argentine ant, Linepithema humile – an invasive species that has transitioned towards greater consumption of sugar-rich, nitrogen-poor foods in parts of its introduced range. Bacteria were present at low densities in most L. humile workers, and among those yielding quality 16S rRNA amplicon sequencing data, we found just three symbionts to be common and dominant.
    [Show full text]
  • Correlates of Gut Community Composition Across an Ant Species (Cephalotes Varians) Elucidate Causes and Consequences of Symbiotic Variability
    Molecular Ecology (2014) 23, 1284–1300 doi: 10.1111/mec.12607 SPECIAL ISSUE: NATURE’S MICROBIOME Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability YI HU,* PIOTR ŁUKASIK,* CORRIE S. MOREAU† and JACOB A. RUSSELL* *Department of Biology, Drexel University, Philadelphia, PA 19104, USA, †Department of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA Abstract Insect guts are often colonized by multispecies microbial communities that play inte- gral roles in nutrition, digestion and defence. Community composition can differ across host species with increasing dietary and genetic divergence, yet gut microbiota can also vary between conspecific hosts and across an individual’s lifespan. Through exploration of such intraspecific variation and its correlates, molecular profiling of microbial communities can generate and test hypotheses on the causes and conse- quences of symbioses. In this study, we used 454 pyrosequencing and TRFLP to achieve these goals in an herbivorous ant, Cephalotes varians, exploring variation in bacterial communities across colonies, populations and workers reared on different diets. C. varians bacterial communities were dominated by 16 core species present in over two-thirds of the sampled colonies. Core species comprised multiple genotypes, or strains and hailed from ant-specific clades containing relatives from other Cephal- otes species. Yet three were detected in environmental samples, suggesting the poten- tial for environmental acquisition. In spite of their prevalence and long-standing relationships with Cephalotes ants, the relative abundance and genotypic composition of core species varied across colonies. Diet-induced plasticity is a likely cause, but only pollen-based diets had consistent effects, altering the abundance of two types of bacte- ria.
    [Show full text]
  • Bacterial Infections Across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma, and Asaia
    Hindawi Publishing Corporation Psyche Volume 2013, Article ID 936341, 11 pages http://dx.doi.org/10.1155/2013/936341 Research Article Bacterial Infections across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma,andAsaia Stefanie Kautz,1 Benjamin E. R. Rubin,1,2 and Corrie S. Moreau1 1 Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA 2 Committee on Evolutionary Biology, University of Chicago, 1025 East 57th Street, Chicago, IL 60637, USA Correspondence should be addressed to Stefanie Kautz; [email protected] Received 21 February 2013; Accepted 30 May 2013 Academic Editor: David P. Hughes Copyright © 2013 Stefanie Kautz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bacterial endosymbionts are common across insects, but we often lack a deeper knowledge of their prevalence across most organisms. Next-generation sequencing approaches can characterize bacterial diversity associated with a host and at the same time facilitate the fast and simultaneous screening of infectious bacteria. In this study, we used 16S rRNA tag encoded amplicon pyrosequencing to survey bacterial communities of 310 samples representing 221 individuals, 176 colonies and 95 species of ants. We found three distinct endosymbiont groups—Wolbachia (Alphaproteobacteria: Rickettsiales), Spiroplasma (Firmicutes: Entomoplasmatales),
    [Show full text]
  • Wang, M., M. Xue, and K. Zhao (2016), September 2008
    PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE The impact of T-TREC-retrieved wind and radial 10.1002/2015JD024001 velocity data assimilation using EnKF Key Points: and effects of assimilation window • T-TREC-retrieved wind and radial velocity data are assimilated using an on the analysis and prediction ensemble Kalman filter • The relative impacts of two data sets of Typhoon Jangmi (2008) on analysis and prediction changes with assimilation windows Mingjun Wang1,2, Ming Xue1,2,3, and Kun Zhao1 • The combination of retrieved wind and radial velocity produces better 1Key Laboratory for Mesoscale Severe Weather/MOE and School of Atmospheric Science, Nanjing University, Nanjing, analyses and forecasts China, 2Center for Analysis and Prediction of Storms, Norman, Oklahoma, USA, 3School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA Correspondence to: M. Xue, Abstract This study examines the relative impact of assimilating T-TREC-retrieved winds (VTREC)versusradial [email protected] velocity (Vr) on the analysis and forecast of Typhoon Jangmi (2008) using an ensemble Kalman filter (EnKF). The VTREC and Vr data at 30 min intervals are assimilated into the ARPS model at 3 km grid spacing over four different Citation: assimilation windows that cover, respectively, 0000–0200, 0200–0400, 0400–0600, and 0000–0600 UTC, 28 Wang, M., M. Xue, and K. Zhao (2016), September 2008. The assimilation of VTREC data produces better analyses of the typhoon structure and intensity The impact of T-TREC-retrieved wind and radial velocity data assimilation than the assimilation of Vr data during the earlier assimilation windows, but during the later assimilation using EnKF and effects of assimilation windows when the coverage of Vr data on the typhoon from four Doppler radars is much improved, the window on the analysis and prediction assimilation of V outperforms V data.
    [Show full text]
  • The Influence of Assimilating Dropsonde Data on Typhoon Track
    908 MONTHLY WEATHER REVIEW VOLUME 139 The Influence of Assimilating Dropsonde Data on Typhoon Track and Midlatitude Forecasts MARTIN WEISSMANN,* FLORIAN HARNISCH,* CHUN-CHIEH WU,1 PO-HSIUNG LIN,1 YOICHIRO OHTA,# KOJI YAMASHITA,# YEON-HEE KIM,@ EUN-HEE JEON,@ TETSUO NAKAZAWA,& AND SIM ABERSON** * Deutsches Zentrum fu¨r Luft- und Raumfahrt, Institut fu¨r Physik der Atmospha¨re, Oberpfaffenhofen, Germany 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan # Japan Meteorological Agency, Tokyo, Japan @ National Institute of Meteorological Research, Korea Meteorological Agency, Seoul, South Korea & Meteorological Research Institute, Tsukuba, Japan ** NOAA/AOML/Hurricane Research Division, Miami, Florida (Manuscript received 9 February 2010, in final form 21 April 2010) ABSTRACT A unique dataset of targeted dropsonde observations was collected during The Observing System Re- search and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) in the autumn of 2008. The campaign was supplemented by an enhancement of the operational Dropsonde Ob- servations for Typhoon Surveillance near the Taiwan Region (DOTSTAR) program. For the first time, up to four different aircraft were available for typhoon observations and over 1500 additional soundings were collected. This study investigates the influence of assimilating additional observations during the two major typhoon events of T-PARC on the typhoon track forecast by the global models of the European Centre for Medium- Range Weather Forecasts (ECMWF), the Japan Meteorological Agency (JMA), the National Centers for Environmental Prediction (NCEP), and the limited-area Weather Research and Forecasting (WRF) model. Additionally, the influence of T-PARC observations on ECMWF midlatitude forecasts is investigated. All models show an improving tendency of typhoon track forecasts, but the degree of improvement varied from about 20% to 40% in NCEP and WRF to a comparably low influence in ECMWF and JMA.
    [Show full text]
  • Science Discussion Started: 22 October 2018 C Author(S) 2018
    Discussions Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-127 Earth System Manuscript under review for journal Earth Syst. Sci. Data Science Discussion started: 22 October 2018 c Author(s) 2018. CC BY 4.0 License. Open Access Open Data 1 Field Investigations of Coastal Sea Surface Temperature Drop 2 after Typhoon Passages 3 Dong-Jiing Doong [1]* Jen-Ping Peng [2] Alexander V. Babanin [3] 4 [1] Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, 5 Taiwan 6 [2] Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Rostock, Germany 7 [3] Department of Infrastructure Engineering, Melbourne School of Engineering, University of 8 Melbourne, Australia 9 ---- 10 *Corresponding author: 11 Dong-Jiing Doong 12 Email: [email protected] 13 Tel: +886 6 2757575 ext 63253 14 Add: 1, University Rd., Tainan 70101, Taiwan 15 Department of Hydraulic and Ocean Engineering, National Cheng Kung University 16 -1 Discussions Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-127 Earth System Manuscript under review for journal Earth Syst. Sci. Data Science Discussion started: 22 October 2018 c Author(s) 2018. CC BY 4.0 License. Open Access Open Data 1 Abstract 2 Sea surface temperature (SST) variability affects marine ecosystems, fisheries, ocean primary 3 productivity, and human activities and is the primary influence on typhoon intensity. SST drops 4 of a few degrees in the open ocean after typhoon passages have been widely documented; 5 however, few studies have focused on coastal SST variability. The purpose of this study is to 6 determine typhoon-induced SST drops in the near-coastal area (within 1 km of the coast) and 7 understand the possible mechanism.
    [Show full text]
  • Inverted Repetitious Sequencesin the Macronuclear DNA Of
    Proc. Nat. Acad. Sci. USA Vol. 72, No. 2, pp. 678-682, February 1975 Inverted Repetitious Sequences in the Macronuclear DNA of Hypotrichous Ciliates* (electron microscopy/site-specific endonuclease/DNA structure) RONALD D. WESLEY Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colo. 80302 Communicated by David M. Prescott, November 27,1974 ABSTRACT The low-molecular-weight macronuclear renaturation kinetics of denatured macronuclear DNA are DNA of the hypotrichous ciliates Oxytricha, Euplotes, and the presence of a Paraurostyla contains inverted repetitious sequences. Up approximately second-order, indicating to 89% of the denatured macronuclear DNA molecules single DNA component with a complexity about 13 times form single-stranded circles due to intramolecular re- greater than Escherichia coli DNA (M. Lauth, J. Heumann, naturation of complementary sequences at or near the B. Spear, and D. M. Prescott, manuscript in preparation). ends of the same polynucleotide chain. Other ciliated (ini) The macronuclear DNA pieces possess a polarity, i.e., protozoans, such as Tetrahymena, with high-molecular- weight macronuclear DNA and an alternative mode of one end is different from the other, because a large region at macronuclear development, appear to lack these self- one end of each molecule melts at a slightly lower temperature complementary sequences. than the rest of the molecule, and because RNA polymerase The denatured macronuclear molecules of hypotrichs binds exclusively at only one end (7). are held in the circular conformation by a hydrogen- The experiments reported here demonstrate that single- bonded duplex region, which is probably less than 50 base pairs in length, since the duplex regions are not visible by strand nicks or gaps and inverted repetitious sequences are electron microscopy and since the circles in 0.12 M phos- other important structural features of macronuclear DNA.
    [Show full text]
  • Uroleptus Willii Nov. Sp., a Euplanktonic Freshwater Ciliate
    Uroleptus willii nov. sp., a euplanktonic freshwater ciliate (Dorsomarginalia, Spirotrichea, Ciliophora) with algal symbionts: morphological description including phylogenetic data of the small subunit rRNA gene sequence and ecological notes * Bettina S ONNTAG , Michaela C. S TRÜDER -K YPKE & Monika S UMMERER Abstract : The eUplanktonic ciliate Uroleptus willii nov. sp. (Dorsomarginalia) was discovered in the plankton of the oligo- mesotrophic PibUrgersee in AUstria. The morphology and infraciliatUre of this new species were stUdied in living cells as well as in specimens impregnated with protargol and the phylogenetic placement was inferred from the small sUbUnit ribosomal RNA (SSrRNA) gene seqUence. In vivo, U. willii is a grass-green fUsiform spirotrich of 100– 150 µm length. It bears aboUt 80–100 sym - biotic green algae and bUilds a lorica. Uroleptus willii is a freqUent species in the sUmmer ciliate assemblage in the Upper 12 m of PibUrgersee with a mean abUndance of aboUt 170 individUals l -1 from May throUgh November. The algal symbionts of this ciliate are known to synthesise Ultraviolet radiation – absorbing compoUnds. At present, the taxonomic position of Uroleptus has not yet been solved since the morphological featUres of the genUs agree well with those of the Urostyloidea, while the molecUlar analy - ses place the genUs within the Oxytrichidae. Uroleptus willii follows this pattern and groUps UnambigUoUsly with other Uroleptus species. We assign oUr new species to the Dorsomarginalia BERGER , 2006. However, this placement is preliminary since it is based on the assUmption that the genUs Uroleptus and the Oxytrichidae are both monophyletic taxa, and the monophyly of the latter groUp has still not been confirmed by molecUlar data.
    [Show full text]
  • A Vortex Relocation Scheme for Tropical Cyclone Initialization in Advanced Research WRF
    3298 MONTHLY WEATHER REVIEW VOLUME 138 A Vortex Relocation Scheme for Tropical Cyclone Initialization in Advanced Research WRF LING-FENG HSIAO Central Weather Bureau, and Taiwan Typhoon and Flood Research Institute, Taipei, Taiwan CHI-SANN LIOU Naval Research Laboratory, Monterey, California TIEN-CHIANG YEH Central Weather Bureau, Taipei, Taiwan YONG-RUN GUO National Center for Atmospheric Research, Boulder, Colorado DER-SONG CHEN,KANG-NING HUANG,CHUEN-TEYR TERNG, AND JEN-HER CHEN Central Weather Bureau, Taipei, Taiwan (Manuscript received 6 November 2009, in final form 23 February 2010) ABSTRACT This paper introduces a relocation scheme for tropical cyclone (TC) initialization in the Advanced Research Weather Research and Forecasting (ARW-WRF) model and demonstrates its application to 70 forecasts of Ty- phoons Sinlaku (2008), Jangmi (2008), and Linfa (2009) for which Taiwan’s Central Weather Bureau (CWB) issued typhoon warnings. An efficient and dynamically consistent TC vortex relocation scheme for the WRF terrain- following mass coordinate has been developed to improve the first guess of the TC analysis, and hence improves the tropical cyclone initialization. The vortex relocation scheme separates the first-guess atmospheric flow into a TC circulation and environmental flow, relocates the TC circulation to its observed location, and adds the relocated TC circulation back to the environmental flow to obtain the updated first guess with a correct TC position. Analysis of these typhoon cases indicates that the relocation procedure moves the typhoon circulation to the observed typhoon position without generating discontinuities or sharp gradients in the first guess. Numerical experiments with and without the vortex relocation procedure for Typhoons Sinlaku, Jangmi, and Linfa forecasts show that about 67% of the first-guess fields need a vortex relocation to correct typhoon position errors while eliminates the topographical effect.
    [Show full text]
  • Bacterial and Archaeal Symbioses with Protists, Current Biology (2021), J.Cub.2021.05.049
    Please cite this article in press as: Husnik et al., Bacterial and archaeal symbioses with protists, Current Biology (2021), https://doi.org/10.1016/ j.cub.2021.05.049 ll Review Bacterial and archaeal symbioses with protists Filip Husnik1,2,*, Daria Tashyreva3, Vittorio Boscaro2, Emma E. George2, Julius Lukes3,4, and Patrick J. Keeling2,* 1Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan 2Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada 3Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 370 05, Czech Republic 4Faculty of Science, University of South Bohemia, Ceske Budejovice, 370 05, Czech Republic *Correspondence: fi[email protected] (F.H.), [email protected] (P.J.K.) https://doi.org/10.1016/j.cub.2021.05.049 SUMMARY Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms—the pro- karyotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukary- otic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
    [Show full text]
  • The Amoeboid Parabasalid Flagellate Gigantomonas Herculeaof
    Acta Protozool. (2005) 44: 189 - 199 The Amoeboid Parabasalid Flagellate Gigantomonas herculea of the African Termite Hodotermes mossambicus Reinvestigated Using Immunological and Ultrastructural Techniques Guy BRUGEROLLE Biologie des Protistes, UMR 6023, CNRS and Université Blaise Pascal de Clermont-Ferrand, Aubière Cedex, France Summary. The amoeboid form of Gigantomonas herculea (Dogiel 1916, Kirby 1946), a symbiotic flagellate of the grass-eating subterranean termite Hodotermes mossambicus from East Africa, is observed by light, immunofluorescence and transmission electron microscopy. Amoeboid cells display a hyaline margin and a central granular area containing the nucleus, the internalized flagellar apparatus, and organelles such as Golgi bodies, hydrogenosomes, and food vacuoles with bacteria or wood particles. Immunofluorescence microscopy using monoclonal antibodies raised against Trichomonas vaginalis cytoskeleton, such as the anti-tubulin IG10, reveals the three long anteriorly-directed flagella, and the axostyle folded into the cytoplasm. A second antibody, 4E5, decorates the conspicuous crescent-shaped structure or cresta bordered by the adhering recurrent flagellum. Transmission electron micrographs show a microfibrillar network in the cytoplasmic margin and internal bundles of microfilaments similar to those of lobose amoebae that are indicative of cytoplasmic streaming. They also confirm the internalization of the flagella. The arrangement of basal bodies and fibre appendages, and the axostyle composed of a rolled sheet of microtubules are very close to that of the devescovinids Foaina and Devescovina. The very large microfibrillar cresta supporting an enlarged recurrent flagellum resembles that of Macrotrichomonas. The parabasal apparatus attached to the basal bodies is small in comparison to the cell size; this is probably related to the presence of many Golgi bodies supported by a striated fibre that are spread throughout the central cytoplasm in a similar way to Placojoenia and Mixotricha.
    [Show full text]