Inverted Repetitious Sequencesin the Macronuclear DNA Of

Total Page:16

File Type:pdf, Size:1020Kb

Inverted Repetitious Sequencesin the Macronuclear DNA Of Proc. Nat. Acad. Sci. USA Vol. 72, No. 2, pp. 678-682, February 1975 Inverted Repetitious Sequences in the Macronuclear DNA of Hypotrichous Ciliates* (electron microscopy/site-specific endonuclease/DNA structure) RONALD D. WESLEY Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colo. 80302 Communicated by David M. Prescott, November 27,1974 ABSTRACT The low-molecular-weight macronuclear renaturation kinetics of denatured macronuclear DNA are DNA of the hypotrichous ciliates Oxytricha, Euplotes, and the presence of a Paraurostyla contains inverted repetitious sequences. Up approximately second-order, indicating to 89% of the denatured macronuclear DNA molecules single DNA component with a complexity about 13 times form single-stranded circles due to intramolecular re- greater than Escherichia coli DNA (M. Lauth, J. Heumann, naturation of complementary sequences at or near the B. Spear, and D. M. Prescott, manuscript in preparation). ends of the same polynucleotide chain. Other ciliated (ini) The macronuclear DNA pieces possess a polarity, i.e., protozoans, such as Tetrahymena, with high-molecular- weight macronuclear DNA and an alternative mode of one end is different from the other, because a large region at macronuclear development, appear to lack these self- one end of each molecule melts at a slightly lower temperature complementary sequences. than the rest of the molecule, and because RNA polymerase The denatured macronuclear molecules of hypotrichs binds exclusively at only one end (7). are held in the circular conformation by a hydrogen- The experiments reported here demonstrate that single- bonded duplex region, which is probably less than 50 base pairs in length, since the duplex regions are not visible by strand nicks or gaps and inverted repetitious sequences are electron microscopy and since the circles in 0.12 M phos- other important structural features of macronuclear DNA. phate buffer are not retained during hydroxylapatite chromatography at 600. The existence of extremely small MATERIALS AND METHODS circles, with contour lengths shorter than the smallest pieces of native DNA, suggests that inverted repetitions Preparation ofOxytricha Macronuclear DNA. The hypotrich containing nicks (broken phosphodiester bonds in duplex Oxytricha was cultivated aseptically in 0.1% Cerophyl (Cero- DNA) or gaps (interruptions with missing nucleotides) are phyl Laboratories, Kansas City, Mo.), with axenically grown present at internal positions as well as at the ends of na- Tetrahymena as the food organism (4). Oxytricha DNA was tive molecules. Estimates from length measurements of native and denatured Oxytricha macronuclear DNA indi- labeled by feeding Tetrahymena that had been cultured in cate an average of 1.7 nicks per duplex molecule. Thus, in defined medium (8) containing [8H]thymidine (New England order to account for the high frequency of circle formation, Nuclear, 25 MCi/ml, 20 Ci/mmol). The resultant specific a restriction-type enzyme(s) must exist which inserts activity of the purified DNA was 2500 cpm/,4g. single-strand, site-specific nicks or gaps at internal posi- For DNA isolation, the hypotrichs were collected on a 10 tions in the macronuclear DNA of Oxytricha. usm nylon mesh; macronuclei were prepared by the technique Most ciliated protozoa have a macro- and a micronucleus. of Prescott et al. (5) and stored at -20°. After conjugation, a new macronucleus is derived from a Thawed macronuclear preparations were lysed at 600 for single, diploid micronucleus by a temporally well-defined 1-2 hr in a solution of 0.5% Sarkosyl, 0.15 M NaCl, 0.1 M developmental program. In hypotrichous ciliates macronuclear EDTA (pH 8.0) containing 0.5 mg/ml of Pronase CB (Calbio- development is characterized by a biphasic cycle of extensive chem, predigested for 90 min at 370 to eliminate DNase DNA synthesis (1) which involves the formation of polytene activity). To separate the DNA from protein and RNA, chromosomes that are cut into band-length pieces (2). The 4.86 ml of the nuclear lysate was added to 6.23 g of solid transection of the chromosomes is followed by degradation of CsCl (Schwarz/Mann) and centrifuged to equilibrium at most of the DNA in each band (3). Bostock and Prescott (4) 33,000 rpm for 62 hr in the Spinco no. 65 fixed-angle rotor at have shown that only some micronuclear DNA sequences are 20°. Following centrifugation, four-drop fractions were col- retained during the formation of the macronucleus. lected from the bottom of the tube, 0.5 ml of SSC (0.15 M The following information is available about the DNA that NaCl, 0.015 M sodium citrate, pH 7.5) was added to each remains in the mature macronucleus of hypotrichs. (i) The fraction, and the DNA band was located by its A260. Pooled DNA is in small pieces having the physical size equivalent to fractions were dialyzed against SSC and stored at -20°. one to a few genes (5). The low-molecular-weight nature of Macronuclear DNA preparations were shown to be free of the DNA may have some bearing upon the unusual cytological Tetrahymena DNA contamination by analytical equilibrium structures, termed replication bands, where DNA synthesis density gradient centrifugation. The buoyant density of characteristically occurs in hypotrichous ciliates (6). (ii) The Oxytricha macronuclear DNA is 1.701 g/cm3 and that of Tetrahymena. DNA is 1.690 g/cm3 (4). Abbreviations: SSC, standard saline-citrate, 0.15 M NaCl, 0.015 The macronuclear DNAs of Euplotes and Paraurostyla were M sodium citrate, pH 7.5; RF, replicative form of phage OX174 prepared similarly by isolating macronuclei, followed by DNA. nuclear lysis and CsCl density gradient centrifugation. * This paper is No. IV in the series, "DNA of Ciliated Protozoa." Preparation of Bacteriophage 6X174 DNA. oXamS, a lysis- The preceding paper is ref. 7. defective amber mutant of OX174, and Escherichia coli (HF 678 Downloaded by guest on September 26, 2021 Proc. Nat. Acad. Sci. USA 72 (1975) DNA of Hypotrichous Ciliates 679 4704) were kindly provided by Dr. Dan S. Ray. OX replicative the 3' end of a DNA double helix (13), was used to determine form (RF) DNA was prepared by blocking viral single- if the single-stranded circles, which rapidly form after de- stranded DNA synthesis with chloramphenicol. The procedure naturation of macronuclear DNA, were sealed by a region of was as described previously (9) except that RNA digestions duplex DNA. The exonuclease III reactions were carried out and the Sephadex G-100 chromatography step were elimi- as described by Wolfson and Dressler (14). The enzyme was nated. Single-strand breaks were then introduced into the generously provided by Dr. Tom Kornberg. covalently closed molecules (form I) by photolysis ("photo- Single-stranded macronuclear DNA circles were dialyzed nicking") for 45 min in the presence of ethidium bromide as overnight to remove the formamide (four changes against described by Smith and Vinograd (10). The nicked molecules 0.07 M Tris * HCl, pH 7.6). The solution was then made 7 mM were separated from OX RF I by ethidium bromide-CsCl in MgCl2 and 10 mM in 2-mercaptoethanol. Two units of density gradient centrifugation, the dye was removed by exonuclease III (13) were added to 0.25 Ag of single-stranded dialysis against Dowex 50, and the DNA in SSC was used circular DNA and the mixture was incubated at 450 for 20 as a double-stranded DNA size standard for electron micros- min. Incubation was at 450 to increase the specificity of the copy. enzyme for the 3' end of double-stranded DNA (13). To insure The same general protocol was used to prepare OX single- completion of the reaction, an additional unit of enzyme was stranded circular DNA, but chloramphenicol was omitted. added and allowed to act for 20 min, at which time the reaction Infected cells were vigorously aerated for 2 hr while [14C]- tube was transferred to 00. The material was then processed thymidine was added in aliquots of 5 MACi at 1, 30, and 60 min for electron microscopy. post-infection. Collection and lysis of infected E. coli were as Control experiments, in which single-stranded OX DNA described above except that sucrose gradients were centrifuged circles were incubated with exonuclease III under the same for 12 hr at 24,000 rpm in the Spinco SW 27 rotor at 5°. The conditions, were performed to exclude the possibility of con- radioactivities of aliquots were measured, and fractions con- version of circular to linear molecules by an endonuclease taining mature viral DNA were pooled and dialyzed against activity. A preparation containing 87% (160/183) phage SSC. The DNA was further purified by neutral CsCl density circles remained essentially unaltered after exonuclease III gradient centrifugation for 48 hr at 40,000 rpm in the Spinco incubation (85%, 182/214), indicating the absence of any SW rotor at 200 (po = 1.723 g/cm3). This constituted the endonuclease contaminant. single-stranded DNA standard for electron microscopy. Hydroxylapatite Chromatography. Hydroxylapatite (DNA Conditions for the Formation of Single-Stranded Circles in grade) was obtained from Bio-Rad (Richmond, Calif.). Small Macronuclear DNA. Single-stranded circles were prepared as columns (1 ml bed volume) equilibrated with 0.12 M sodium follows: macronuclear DNA (0.5-1.0 Mug) was denatured in phosphate buffer (pH 6.8) were maintained at 600. [3H]- 0.5 ml of 0.1 M NaOH, 0.02 M EDTA at 22-24° for 10 min. Thymidine labeled, single-stranded rings were prepared by the Next, 50 Ml of 1.8 M Tris-HCl, 0.2 M Tris, and 0.5 ml of standard formamide method as described above and dialyzed formamide (99% pure, Matheson, Coleman and Bell) were against 0.12 M sodium phosphate buffer. The sample (0.7 ,g added so that the final annealing pH was 8.0.
Recommended publications
  • Uroleptus Willii Nov. Sp., a Euplanktonic Freshwater Ciliate
    Uroleptus willii nov. sp., a euplanktonic freshwater ciliate (Dorsomarginalia, Spirotrichea, Ciliophora) with algal symbionts: morphological description including phylogenetic data of the small subunit rRNA gene sequence and ecological notes * Bettina S ONNTAG , Michaela C. S TRÜDER -K YPKE & Monika S UMMERER Abstract : The eUplanktonic ciliate Uroleptus willii nov. sp. (Dorsomarginalia) was discovered in the plankton of the oligo- mesotrophic PibUrgersee in AUstria. The morphology and infraciliatUre of this new species were stUdied in living cells as well as in specimens impregnated with protargol and the phylogenetic placement was inferred from the small sUbUnit ribosomal RNA (SSrRNA) gene seqUence. In vivo, U. willii is a grass-green fUsiform spirotrich of 100– 150 µm length. It bears aboUt 80–100 sym - biotic green algae and bUilds a lorica. Uroleptus willii is a freqUent species in the sUmmer ciliate assemblage in the Upper 12 m of PibUrgersee with a mean abUndance of aboUt 170 individUals l -1 from May throUgh November. The algal symbionts of this ciliate are known to synthesise Ultraviolet radiation – absorbing compoUnds. At present, the taxonomic position of Uroleptus has not yet been solved since the morphological featUres of the genUs agree well with those of the Urostyloidea, while the molecUlar analy - ses place the genUs within the Oxytrichidae. Uroleptus willii follows this pattern and groUps UnambigUoUsly with other Uroleptus species. We assign oUr new species to the Dorsomarginalia BERGER , 2006. However, this placement is preliminary since it is based on the assUmption that the genUs Uroleptus and the Oxytrichidae are both monophyletic taxa, and the monophyly of the latter groUp has still not been confirmed by molecUlar data.
    [Show full text]
  • Bacterial and Archaeal Symbioses with Protists, Current Biology (2021), J.Cub.2021.05.049
    Please cite this article in press as: Husnik et al., Bacterial and archaeal symbioses with protists, Current Biology (2021), https://doi.org/10.1016/ j.cub.2021.05.049 ll Review Bacterial and archaeal symbioses with protists Filip Husnik1,2,*, Daria Tashyreva3, Vittorio Boscaro2, Emma E. George2, Julius Lukes3,4, and Patrick J. Keeling2,* 1Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan 2Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada 3Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 370 05, Czech Republic 4Faculty of Science, University of South Bohemia, Ceske Budejovice, 370 05, Czech Republic *Correspondence: fi[email protected] (F.H.), [email protected] (P.J.K.) https://doi.org/10.1016/j.cub.2021.05.049 SUMMARY Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms—the pro- karyotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukary- otic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
    [Show full text]
  • The Amoeboid Parabasalid Flagellate Gigantomonas Herculeaof
    Acta Protozool. (2005) 44: 189 - 199 The Amoeboid Parabasalid Flagellate Gigantomonas herculea of the African Termite Hodotermes mossambicus Reinvestigated Using Immunological and Ultrastructural Techniques Guy BRUGEROLLE Biologie des Protistes, UMR 6023, CNRS and Université Blaise Pascal de Clermont-Ferrand, Aubière Cedex, France Summary. The amoeboid form of Gigantomonas herculea (Dogiel 1916, Kirby 1946), a symbiotic flagellate of the grass-eating subterranean termite Hodotermes mossambicus from East Africa, is observed by light, immunofluorescence and transmission electron microscopy. Amoeboid cells display a hyaline margin and a central granular area containing the nucleus, the internalized flagellar apparatus, and organelles such as Golgi bodies, hydrogenosomes, and food vacuoles with bacteria or wood particles. Immunofluorescence microscopy using monoclonal antibodies raised against Trichomonas vaginalis cytoskeleton, such as the anti-tubulin IG10, reveals the three long anteriorly-directed flagella, and the axostyle folded into the cytoplasm. A second antibody, 4E5, decorates the conspicuous crescent-shaped structure or cresta bordered by the adhering recurrent flagellum. Transmission electron micrographs show a microfibrillar network in the cytoplasmic margin and internal bundles of microfilaments similar to those of lobose amoebae that are indicative of cytoplasmic streaming. They also confirm the internalization of the flagella. The arrangement of basal bodies and fibre appendages, and the axostyle composed of a rolled sheet of microtubules are very close to that of the devescovinids Foaina and Devescovina. The very large microfibrillar cresta supporting an enlarged recurrent flagellum resembles that of Macrotrichomonas. The parabasal apparatus attached to the basal bodies is small in comparison to the cell size; this is probably related to the presence of many Golgi bodies supported by a striated fibre that are spread throughout the central cytoplasm in a similar way to Placojoenia and Mixotricha.
    [Show full text]
  • Classification and Phylogeny in the Suborder Euplotina (Ciliophora, Hypotrichida) Bruce Fleming Hill
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1980 CLASSIFICATION AND PHYLOGENY IN THE SUBORDER EUPLOTINA (CILIOPHORA, HYPOTRICHIDA) BRUCE FLEMING HILL Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation HILL, BRUCE FLEMING, "CLASSIFICATION AND PHYLOGENY IN THE SUBORDER EUPLOTINA (CILIOPHORA, HYPOTRICHIDA)" (1980). Doctoral Dissertations. 1251. https://scholars.unh.edu/dissertation/1251 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected]
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2009 Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers Micah Dunthorn University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Life Sciences Commons Recommended Citation Dunthorn, Micah, "Ciliate Biodiversity and Phylogenetic Reconstruction Assessed by Multiple Molecular Markers" (2009). Open Access Dissertations. 95. https://doi.org/10.7275/fyvd-rr19 https://scholarworks.umass.edu/open_access_dissertations/95 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented by MICAH DUNTHORN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2009 Organismic and Evolutionary Biology © Copyright by Micah Dunthorn 2009 All Rights Reserved CILIATE BIODIVERSITY AND PHYLOGENETIC RECONSTRUCTION ASSESSED BY MULTIPLE MOLECULAR MARKERS A Dissertation Presented By MICAH DUNTHORN Approved as to style and content by: _______________________________________
    [Show full text]
  • Bacterial, Archaeal, and Eukaryotic Diversity Across Distinct Microhabitats in an Acid Mine Drainage Victoria Mesa, José.L.R
    Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage Victoria Mesa, José.L.R. Gallego, Ricardo González-Gil, B. Lauga, Jesus Sánchez, Célia Méndez-García, Ana I. Peláez To cite this version: Victoria Mesa, José.L.R. Gallego, Ricardo González-Gil, B. Lauga, Jesus Sánchez, et al.. Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Frontiers in Microbiology, Frontiers Media, 2017, 8 (SEP), 10.3389/fmicb.2017.01756. hal-01631843 HAL Id: hal-01631843 https://hal.archives-ouvertes.fr/hal-01631843 Submitted on 14 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-08-01756 September 9, 2017 Time: 16:9 # 1 ORIGINAL RESEARCH published: 12 September 2017 doi: 10.3389/fmicb.2017.01756 Bacterial, Archaeal, and Eukaryotic Diversity across Distinct Microhabitats in an Acid Mine Drainage Victoria Mesa1,2*, Jose L. R. Gallego3, Ricardo González-Gil4, Béatrice Lauga5, Jesús Sánchez1, Celia Méndez-García6† and Ana I. Peláez1† 1 Department of Functional Biology – IUBA, University of Oviedo, Oviedo, Spain, 2 Vedas Research and Innovation, Vedas CII, Medellín, Colombia, 3 Department of Mining Exploitation and Prospecting – IUBA, University of Oviedo, Mieres, Spain, 4 Department of Biology of Organisms and Systems – University of Oviedo, Oviedo, Spain, 5 Equipe Environnement et Microbiologie, CNRS/Université de Pau et des Pays de l’Adour, Institut des Sciences Analytiques et de Physico-chimie pour l’Environnement et les Matériaux, UMR5254, Pau, France, 6 Carl R.
    [Show full text]
  • Phylogeny of the Ciliate Family Psilotrichidae (Protista
    Boise State University ScholarWorks Biology Faculty Publications and Presentations Department of Biological Sciences 6-18-2019 Phylogeny of the Ciliate Family Psilotrichidae (Protista, Ciliophora), a Curious and Poorly- Known Taxon, with Notes on Two Algae-Bearing Psilotrichids from Guam, USA Xiaotian Luo Boise State University Jie A. Huang Chinese Academy of Sciences Lifang Li Shandog University Weibo Song Ocean University of China William A. Bourland Boise State University Publication Information Luo, Xiaotian; Huang, Jie A.; Li, Lifang; Song, Weibo; and Bourland, William A. (2019). "Phylogeny of the Ciliate Family Psilotrichidae (Protista, Ciliophora), a Curious and Poorly-Known Taxon, with Notes on Two Algae-Bearing Psilotrichids from Guam, USA". BMC Evolutionary Biology, 19, 125-1 - 125-15. http://dx.doi.org/10.1186/s12862-019-1450-z Luo et al. BMC Evolutionary Biology (2019) 19:125 https://doi.org/10.1186/s12862-019-1450-z RESEARCH ARTICLE Open Access Phylogeny of the ciliate family Psilotrichidae (Protista, Ciliophora), a curious and poorly-known taxon, with notes on two algae-bearing psilotrichids from Guam, USA Xiaotian Luo1,2, Jie A. Huang1, Lifang Li3, Weibo Song4 and William A. Bourland2* Abstract Background: The classification of the family Psilotrichidae, a curious group of ciliated protists with unique morphological and ontogenetic features, is ambiguous and poorly understood particularly due to the lack of molecular data. Hence, the systematic relationship between this group and other taxa in the subclass Hypotrichia remains unresolved. In this paper the morphology and phylogenetics of species from two genera of Psilotrichida are studied to shed new light on the phylogeny and species diversity of this group of ciliates.
    [Show full text]
  • Morphology and Phylogeny of Four Marine Or Brackish Water Spirotrich Ciliates (Protozoa, Ciliophora) from China, with Descriptio
    Available online at www.sciencedirect.com ScienceDirect European Journal of Protistology 72 (2020) 125663 Morphology and phylogeny of four marine or brackish water spirotrich ciliates (Protozoa, Ciliophora) from China, with descriptions of two new species Chunyu Liana,b, Xiaotian Luob, Alan Warrenc, Yan Zhaod,∗∗, Jiamei Jiange,f,g,∗ aInstitute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China bKey Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China cDepartment of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK dCollege of Life Sciences, Capital Normal University, Beijing, 100048, China eShanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China f Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China gNational Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China Received 9 June 2019; received in revised form 25 November 2019; accepted 30 November 2019 Available online 7 December 2019 Abstract In this study, we investigated the morphology and molecular phylogeny of four marine or brackish spirotrichean cili- ates found in China, namely: Caryotricha sinica sp. nov., Prodiscocephalus orientalis sp. nov., P. cf. borrori, and Certesia quadrinucleata. Caryotricha sinica is characterized by its small size, seven cirral rows extending posteriorly to about 65% of the cell length, and four transverse cirri. Prodiscocephalus orientalis differs from its congeners mainly by the number of cirri in the “head” region and on the ventral side. The SSU rDNA sequence of P.
    [Show full text]
  • Program 12 List of Posters 23 Abstracts – Symposia 27 Abstracts – Parallel Sessions 31 Abstracts – Posters 54 Social Program 74 List of Participants 77
    1 2 Conference venues Protist2012 will take place in three different buildings. The main location is Vilhelm Bjerknes (building 13 on the map). This is the Life Science library at the campus and is where registration will take place at July 29. This is also the location for the posters and where lunches will be served. In the library there is access to computers and internet for all conferences participants. The presentations will be held in Georg Sverdrups (building 27) and Helga Engs (building 20) Helga Engs Georg Sverdrups Vilhelm Bjerknes Map and all photos: UiO 3 4 Index: General information 9 Program 12 List of posters 23 Abstracts – Symposia 27 Abstracts – Parallel sessions 31 Abstracts – Posters 54 Social program 74 List of participants 77 5 ISOP – International Society of Protistologists The Society is an international association of scientists devoted to research on single-celled eukaryotes, or protists. The ISOP promotes the presentation and discussion of new or important facts and problems in protistology, and works to provide resources for the promotion and advancement of this science. We are scientists from all over the world who perform research on protists, single- celled eukaryotic organisms. Individual areas of research involving protists encompass ecology, parasitology, biochemistry, physiology, genetics, evolution and many others. Our Society thus helps bring together researchers with different research foci and training. This multidisciplinary attitude is rather unique among scientific societies, and it results in an unparalleled forum for sharing and integrating a wide spectrum of scientific information on these fascinating and important organisms. ISOP executive meeting Sunday, July 29, 13:00 – 17:00 ISOP business meeting Tuesday, July 31, 17:30 Both meeting will be held in Vilhelm Bjerknes (building 13) room 209.
    [Show full text]
  • Assessing the Utility of Hsp90 Gene for Inferring Evolutionary Relationships Within the Ciliate Subclass Hypotricha
    Zhang et al. BMC Evolutionary Biology (2020) 20:86 https://doi.org/10.1186/s12862-020-01653-0 RESEARCH ARTICLE Open Access Assessing the utility of Hsp90 gene for inferring evolutionary relationships within the ciliate subclass Hypotricha (Protista, Ciliophora) Qi Zhang1,2†, Jiahui Xu1,2†, Alan Warren3, Ran Yang1, Zhuo Shen4,5* and Zhenzhen Yi1,2* Abstract Background: Although phylogenomic analyses are increasingly used to reveal evolutionary relationships among ciliates, relatively few nuclear protein-coding gene markers have been tested for their suitability as candidates for inferring phylogenies within this group. In this study, we investigate the utility of the heat-shock protein 90 gene (Hsp90) as a marker for inferring phylogenetic relationships among hypotrich ciliates. Results: A total of 87 novel Hsp90 gene sequences of 10 hypotrich species were generated. Of these, 85 were distinct sequences. Phylogenetic analyses based on these data showed that: (1) the Hsp90 gene amino acid trees are comparable to the small subunit rDNA tree for recovering phylogenetic relationships at the rank of class, but lack sufficient phylogenetic signal for inferring evolutionary relationships at the genus level; (2) Hsp90 gene paralogs are recent and therefore unlikely to pose a significant problem for recovering hypotrich clades; (3) definitions of some hypotrich orders and families need to be revised as their monophylies are not supported by various gene markers; (4) The order Sporadotrichida is paraphyletic, but the monophyly of the “core” Urostylida is supported; (5) both the subfamily Oxytrichinae and the genus Urosoma seem to be non-monophyletic, but monophyly of Urosoma is not rejected by AU tests.
    [Show full text]
  • Epixenosomes: Symbionts of the Hypotrich Ciliate Euplotidium Itoi
    Symbiosis, 26 (1999) 1-23 1 Balaban, Philadelphia/Rehovot Review article Epixenosomes: Symbionts of the Hypotrich Ciliate Euplotidium itoi GIOVANNA ROSA TI Dipartimento di Etologia, Ecologia, Evoluzione, Unioersita di Pisa, via A. Volta 4, 56126 Pisa, Italy. Tel. +39-50-500840, Fax. +39-50-24653 Received October 20, 1997; Accepted May 9, 1998 Abstract Peculiar episymbionts (epixenosomes) are located on the surface of the marine ciliate Euplotidium itoi. Reproduction, redistribution between the two offspring Euplotidium cells, and the developmental transformation (maturation) of epixenosomes are well coordinated with the ciliate's reproductive cycle. Not only does the ciliate strongly influence the epixenosomes, but the epixenosomes influence the hypotrich. During their reproductive stage epixenosomes have a bacteria-like morphology and divide like prokaryotes, but when mature they have both prokaryotic and eukaryotic traits. Although they lack a membrane-bounded nucleus, their DNA hybridizes with eukaryotic rDNA probes obtained from organisms belonging to three different kingdoms (Protista, Animalia, Plantae). Their DNA hybridizes with the gene encoding for ~ tubulin in another related ciliate (Euplotes crassus). They lack mitochondria and other membrane-bounded organelles, but display their own distinctive cell compartmentalization. Tubules, present in their cytoplasm, positively react with different antitubulin antibodies. The most prominent structure of mature epixenosomes is their unique sophisticated extrusive apparatus that shares features of both prokaryotes and eukaryotes. A 40 µm long tubular process terminates with a "head" mainly consisting of the epixenosome genetic material. The ejected tubes, detached from the ciliate host, are rapidly deployed into the surroundings. Ejection is triggered by the detection of external signals through membrane receptors followed by activation of an adenylate cyclase-cyclic AMP system.
    [Show full text]
  • Morphology and Molecular Phylogeny of a New Hypotrich Ciliate, Anteholosticha Songi Nov. Spec., and an American Population of Ho
    Available online at www.sciencedirect.com ScienceDirect European Journal of Protistology 72 (2020) 125646 Morphology and molecular phylogeny of a new hypotrich ciliate, Anteholosticha songi nov. spec., and an American population of Holosticha pullaster (Müller, 1773) Foissner et al., 1991 (Ciliophora, Hypotrichia) Lingyun Chena,1, Jingyi Dongb,1, Weining Wuc,1, Yuanyuan Xina, Alan Warrend, Yingzhi Ninga,∗, Yan Zhaoe,∗ aLaboratory of Microbiota, College of Life Science, Northwest Normal University, Lanzhou 730070, China bInstitute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China cCollege of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China dDepartment of Life Sciences, Natural History Museum, London SW7 5BD, UK eCollege of Life Sciences, Capital Normal University, Beijing 100048, China Received 29 August 2019; received in revised form 19 October 2019; accepted 21 October 2019 Available online 31 October 2019 Abstract A new urostylid ciliate, Anteholosticha songi nov. spec., isolated from forest soil in Tibet, and an American population of Holosticha pullaster (Müller, 1773) Foissner et al., 1991, isolated from a freshwater pond in the USA, are investigated in terms of their morphology, ontogenesis, and molecular biology. Anteholosticha songi nov. spec. is characterized by a slender to ellipsoidal body measuring 160–205 × 40–55 ␮m in vivo; rod-shaped yellowish cortical granules arranged in irregular short rows; four dorsal kineties; adoral zone consisting of 35–40 membranelles; three frontal, one buccal, one parabuccal, two frontoterminal, two pretransverse, and four to six transverse cirri and 14–25 midventral pairs; 12–22 ellipsoidal macronuclear nodules longitudinally arranged in pairs left of cell mid-line.
    [Show full text]