2010 FMNH REU Symposium Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Community Analysis of Microbial Sharing and Specialization in A
Downloaded from http://rspb.royalsocietypublishing.org/ on March 15, 2017 Community analysis of microbial sharing rspb.royalsocietypublishing.org and specialization in a Costa Rican ant–plant–hemipteran symbiosis Elizabeth G. Pringle1,2 and Corrie S. Moreau3 Research 1Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Cite this article: Pringle EG, Moreau CS. 2017 Reno, NV 89557, USA 2Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA Community analysis of microbial sharing and 3Department of Science and Education, Field Museum of Natural History, 1400 South Lake Shore Drive, specialization in a Costa Rican ant–plant– Chicago, IL 60605, USA hemipteran symbiosis. Proc. R. Soc. B 284: EGP, 0000-0002-4398-9272 20162770. http://dx.doi.org/10.1098/rspb.2016.2770 Ants have long been renowned for their intimate mutualisms with tropho- bionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of Received: 14 December 2016 microbes between interacting macroorganisms, affects the composition and Accepted: 17 January 2017 function of symbiotic microbial communities. Here we approached this ques- tion by investigating symbiosis within symbiosis. Ant–plant–hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and Subject Category: quantitative PCR to examine community structure of both bacteria and Ecology fungi in a Neotropical ant–plant–scale-insect symbiosis. Both phloem-feed- ing scale insects and honeydew-feeding ants make use of microbial Subject Areas: symbionts to subsist on phloem-derived diets of suboptimal nutritional qual- ecology, evolution, microbiology ity. -
Invasive Argentine Ants Have Shifted Diet Without Clear Aid from Symbiotic Microbes
Molecular Ecology (2017) 26, 1608–1630 doi: 10.1111/mec.13991 By their own devices: invasive Argentine ants have shifted diet without clear aid from symbiotic microbes YI HU,* DAVID A. HOLWAY,† PIOTR ŁUKASIK,* LINH CHAU,* ADAM D. KAY,‡ EDWARD G. LEBRUN,§ KATIE A. MILLER,‡ JON G. SANDERS,¶ ANDREW V. SUAREZ** and JACOB A. RUSSELL* *Department of Biology, Drexel University, Philadelphia, PA 19104, USA, †Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA, ‡Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA, §Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78703, USA, ¶Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA, **Department of Animal Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA Abstract The functions and compositions of symbiotic bacterial communities often correlate with host ecology. Yet cause–effect relationships and the order of symbiont vs. host change remain unclear in the face of ancient symbioses and conserved host ecology. Several groups of ants exemplify this challenge, as their low-nitrogen diets and spe- cialized symbioses appear conserved and ancient. To address whether nitrogen-provi- sioning symbionts might be important in the early stages of ant trophic shifts, we studied bacteria from the Argentine ant, Linepithema humile – an invasive species that has transitioned towards greater consumption of sugar-rich, nitrogen-poor foods in parts of its introduced range. Bacteria were present at low densities in most L. humile workers, and among those yielding quality 16S rRNA amplicon sequencing data, we found just three symbionts to be common and dominant. -
Comparison of the Ant Assemblages in Three Phytophysionomies: Rocky Field, Secondary Forest, and Riparian Forest—A Case Study in the State Park of Ibitipoca, Brazil
Hindawi Publishing Corporation Psyche Volume 2012, Article ID 928371, 7 pages doi:10.1155/2012/928371 Research Article Comparison of the Ant Assemblages in Three Phytophysionomies: Rocky Field, Secondary Forest, and Riparian Forest—A Case Study in the State Park of Ibitipoca, Brazil Juliane Floriano Santos Lopes,1 Noelle Martins dos Reis Hallack,1 Tatiane Archanjo de Sales,2 Mariana Silva Brugger,3 Laila Fieto Ribeiro,1 Isabel Neto Hastenreiter,2 and Roberto da Silva Camargo1 1 Pos-Graduac´ ¸ao˜ em Comportamento e Biologia Animal, Instituto de Ciˆencias Biologicas,´ Universidade Federal de Juiz de Fora, Campus Universitario´ de Martelos, 36.036-330 Juiz de Fora, MG, Brazil 2 Pos-Graduac´ ¸ao˜ em Ecologia, Instituto de Ciˆencias Biologicas,´ Universidade Federal de Juiz de Fora, Campus Universitario´ de Martelos, 36.036-330 Juiz de Fora, MG, Brazil 3 Departamento de Produc¸ao˜ Vegetal, UNESP, Faculdade de Ciˆencias Agronomicas,ˆ Caixa Postal 237, 18.603-979 Botucatu, SP, Brazil Correspondence should be addressed to Juliane Floriano Santos Lopes, julianefl[email protected] Received 13 September 2012; Revised 23 October 2012; Accepted 25 October 2012 Academic Editor: Kleber Del-Claro Copyright © 2012 Juliane Floriano Santos Lopes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ant assemblages are almost all related with the vegetation composition and so can provide us important information for conservation strategies, which are especially relevant to an environmentally protected area. We sampled the ant fauna in three different phytophysionomies in order to verify if the composition of ant species is different among the areas, especially because one of the areas is a Rocky Field and there is little information about the ant fauna in this habitat. -
Correlates of Gut Community Composition Across an Ant Species (Cephalotes Varians) Elucidate Causes and Consequences of Symbiotic Variability
Molecular Ecology (2014) 23, 1284–1300 doi: 10.1111/mec.12607 SPECIAL ISSUE: NATURE’S MICROBIOME Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability YI HU,* PIOTR ŁUKASIK,* CORRIE S. MOREAU† and JACOB A. RUSSELL* *Department of Biology, Drexel University, Philadelphia, PA 19104, USA, †Department of Science and Education, Field Museum of Natural History, Chicago, IL 60605, USA Abstract Insect guts are often colonized by multispecies microbial communities that play inte- gral roles in nutrition, digestion and defence. Community composition can differ across host species with increasing dietary and genetic divergence, yet gut microbiota can also vary between conspecific hosts and across an individual’s lifespan. Through exploration of such intraspecific variation and its correlates, molecular profiling of microbial communities can generate and test hypotheses on the causes and conse- quences of symbioses. In this study, we used 454 pyrosequencing and TRFLP to achieve these goals in an herbivorous ant, Cephalotes varians, exploring variation in bacterial communities across colonies, populations and workers reared on different diets. C. varians bacterial communities were dominated by 16 core species present in over two-thirds of the sampled colonies. Core species comprised multiple genotypes, or strains and hailed from ant-specific clades containing relatives from other Cephal- otes species. Yet three were detected in environmental samples, suggesting the poten- tial for environmental acquisition. In spite of their prevalence and long-standing relationships with Cephalotes ants, the relative abundance and genotypic composition of core species varied across colonies. Diet-induced plasticity is a likely cause, but only pollen-based diets had consistent effects, altering the abundance of two types of bacte- ria. -
Fire and Leaf Fungus Infection Reduce Benefits to Plants with Extrafloral Nectarines Author(S): L
Variation in the Outcomes of an Ant-Plant System: Fire and Leaf Fungus Infection Reduce Benefits to Plants with Extrafloral Nectarines Author(s): L. P. Pires and K. Del-Claro Source: Journal of Insect Science, 14(84):1-10. Published By: Entomological Society of America DOI: http://dx.doi.org/10.1673/031.014.84 URL: http://www.bioone.org/doi/full/10.1673/031.014.84 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Insect Science: Vol. 14 | Article 84 Pires and Del-Claro Variation in the outcomes of an ant-plant system: Fire and leaf fungus infection reduce benefits to plants with extrafloral nectaries L. P. Piresa and K. Del-Clarob* Universidade Federal de Uberlândia, Laboratório de Ecologia Comportamental e de Interação, Instituto de Biologia, MG, Brazil Abstract Interactions between species are evolutionary malleable and may suffer changes in small timescales. -
Bacterial Infections Across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma, and Asaia
Hindawi Publishing Corporation Psyche Volume 2013, Article ID 936341, 11 pages http://dx.doi.org/10.1155/2013/936341 Research Article Bacterial Infections across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma,andAsaia Stefanie Kautz,1 Benjamin E. R. Rubin,1,2 and Corrie S. Moreau1 1 Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA 2 Committee on Evolutionary Biology, University of Chicago, 1025 East 57th Street, Chicago, IL 60637, USA Correspondence should be addressed to Stefanie Kautz; [email protected] Received 21 February 2013; Accepted 30 May 2013 Academic Editor: David P. Hughes Copyright © 2013 Stefanie Kautz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bacterial endosymbionts are common across insects, but we often lack a deeper knowledge of their prevalence across most organisms. Next-generation sequencing approaches can characterize bacterial diversity associated with a host and at the same time facilitate the fast and simultaneous screening of infectious bacteria. In this study, we used 16S rRNA tag encoded amplicon pyrosequencing to survey bacterial communities of 310 samples representing 221 individuals, 176 colonies and 95 species of ants. We found three distinct endosymbiont groups—Wolbachia (Alphaproteobacteria: Rickettsiales), Spiroplasma (Firmicutes: Entomoplasmatales), -
Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus. -
James K. Wetterer
James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K. -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
Trophobiosis Between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an Overview
December, 2001 Neotropical Entomology 30(4) 501 FORUM Trophobiosis Between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an Overview JACQUES H.C. DELABIE 1Lab. Mirmecologia, UPA Convênio CEPLAC/UESC, Centro de Pesquisas do Cacau, CEPLAC, C. postal 7, 45600-000, Itabuna, BA and Depto. Ciências Agrárias e Ambientais, Univ. Estadual de Santa Cruz, 45660-000, Ilhéus, BA, [email protected] Neotropical Entomology 30(4): 501-516 (2001) Trofobiose Entre Formicidae e Hemiptera (Sternorrhyncha e Auchenorrhyncha): Uma Visão Geral RESUMO – Fêz-se uma revisão sobre a relação conhecida como trofobiose e que ocorre de forma convergente entre formigas e diferentes grupos de Hemiptera Sternorrhyncha e Auchenorrhyncha (até então conhecidos como ‘Homoptera’). As principais características dos ‘Homoptera’ e dos Formicidae que favorecem as interações trofobióticas, tais como a excreção de honeydew por insetos sugadores, atendimento por formigas e necessidades fisiológicas dos dois grupos de insetos, são discutidas. Aspectos da sua evolução convergente são apresenta- dos. O sistema mais arcaico não é exatamente trofobiótico, as forrageadoras coletam o honeydew despejado ao acaso na folhagem por indivíduos ou grupos de ‘Homoptera’ não associados. As relações trofobióticas mais comuns são facultativas, no entanto, esta forma de mutualismo é extremamente diversificada e é responsável por numerosas adaptações fisiológicas, morfológicas ou comportamentais entre os ‘Homoptera’, em particular Sternorrhyncha. As trofobioses mais diferenciadas são verdadeiras simbioses onde as adaptações mais extremas são observadas do lado dos ‘Homoptera’. Ao mesmo tempo, as formigas mostram adaptações comportamentais que resultam de um longo período de coevolução. Considerando-se os inse- tos sugadores como principais pragas dos cultivos em nível mundial, as implicações das rela- ções trofobióticas são discutidas no contexto das comunidades de insetos em geral, focalizan- do os problemas que geram em Manejo Integrado de Pragas (MIP), em particular. -
Download PDF File
Myrmecological News 24 43-69 Vienna, March 2017 Hotspots for symbiosis: function, evolution, and specificity of ant-microbe associa- tions from trunk to tips of the ant phylogeny (Hymenoptera: Formicidae) Jacob A. RUSSELL , Jon G. SANDERS & Corrie S. MOREAU Abstract Ants are among the world's most abundant and dominant non-human animals. Yet in spite of our growing knowledge of microbes as important associates of many animals, we have only begun to develop a broad understanding of the ants' microbial symbionts and their impacts across this diverse family (Hymenoptera: Formicidae). With an impressive degree of niche diversification across their ~ 140 million year history, evolution has performed a range of natural experiments among the ants, allowing studies of symbiosis through a lens of comparative biology. Through this lens it is gradually becoming clear that specialized symbioses can be gained or lost in conjunction with important shifts in ant biology, ranging from dietary ecology to investment in chemical defense. Viewing symbiosis across the ant phylogeny has also lent an additional insight – that the presence of specialized and ancient microbial symbionts is a patchily distributed attribute of ant biology. In fact, recent evidence suggests that several groups of ants harbor very few microbial symbionts – at least those of a eubacterial nature. These combined findings raise the possibility that the importance of symbiosis has fluctuated throughout the evolutionary history of the ants, making "hotspot" lineages stand out amongst potential symbiotic coldspots. In this review, we discuss these phenomena, highlighting the evidence for symbiont turnover and symbiotic hotspots that has accumulated largely over the past decade. -
The Ant Genus Tetraponera in the Afrotropical Region: Synopsis of Species Groups and Revision of the T
Myrmecologische Nachrichten 8 119 - 130 Wien, September 2006 The ant genus Tetraponera in the Afrotropical region: synopsis of species groups and revision of the T. ambigua-group (Hymenoptera: Formicidae) Philip S. WARD Abstract The Afrotropical (including Malagasy) species of the ant genus Tetraponera F. SMITH, 1862 are evaluated, and five monophyletic species groups are established. A key is provided to these groups and their composition and distribution are summarized. One of these clades, the T. ambigua-group, is revised at the species level. Within this group the follow- ing new synonymies are proposed (senior synonyms listed first): T. ambigua (EMERY, 1895) = T. erythraea (EMERY, 1895) = T. bifoveolata (MAYR, 1895) = T. bifoveolata maculifrons (SANTSCHI, 1912) = T. ambigua rhodesiana (FOREL, 1913) = T. bifoveolata syriaca (WHEELER & MANN, 1916) = T. encephala (SANTSCHI, 1919) = T. oph- thalmica angolensis SANTSCHI, 1930 = T. ambigua occidentalis MENOZZI, 1934; and T. ophthalmica (EMERY, 1912) = T. ophthalmica tenebrosa SANTSCHI, 1928 = T. ophthalmica unidens SANTSCHI, 1928 = T. nasuta BERNARD, 1953. This reduces the number of valid species to two, T. ambigua and T. ophthalmica, both widely distributed on the Afri- can continent. Two additional species are described: T. parops sp.n., from east Africa and T. phragmotica sp.n., from northwestern Madagascar. All four species in the T. ambigua-group have a dimorphic worker caste, a trait otherwise unknown in the subfamily Pseudomyrmecinae. The major workers and queens of T. phragmotica sp.n. have plug- shaped heads, which are remarkably convergent with those of distantly related ant species in the formicine tribe Campo- notini. The phylogeny and biogeographic history of the T.