The Ant Genus Tetraponera in the Afrotropical Region: Synopsis of Species Groups and Revision of the T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacterial Infections Across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma, and Asaia
Hindawi Publishing Corporation Psyche Volume 2013, Article ID 936341, 11 pages http://dx.doi.org/10.1155/2013/936341 Research Article Bacterial Infections across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma,andAsaia Stefanie Kautz,1 Benjamin E. R. Rubin,1,2 and Corrie S. Moreau1 1 Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA 2 Committee on Evolutionary Biology, University of Chicago, 1025 East 57th Street, Chicago, IL 60637, USA Correspondence should be addressed to Stefanie Kautz; [email protected] Received 21 February 2013; Accepted 30 May 2013 Academic Editor: David P. Hughes Copyright © 2013 Stefanie Kautz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bacterial endosymbionts are common across insects, but we often lack a deeper knowledge of their prevalence across most organisms. Next-generation sequencing approaches can characterize bacterial diversity associated with a host and at the same time facilitate the fast and simultaneous screening of infectious bacteria. In this study, we used 16S rRNA tag encoded amplicon pyrosequencing to survey bacterial communities of 310 samples representing 221 individuals, 176 colonies and 95 species of ants. We found three distinct endosymbiont groups—Wolbachia (Alphaproteobacteria: Rickettsiales), Spiroplasma (Firmicutes: Entomoplasmatales), -
2010 FMNH REU Symposium Program
Undergraduate Research Symposium 2010 Program and Abstracts Saturday, August 14 Lecture Hall II Undergraduate Research Projects 2010 Page 1 2010 REU Projects Name: Allen, Jessica Lynn (Eastern Washington University)^ Field Museum faculty mentor: Dr. Thorsten Lumbsch (Botany) Project: Understanding the Evolution of Secondary Chemistry in Lichens Name: Baker, Mairead Rebecca (Northwestern University)^ Field Museum faculty mentor: Dr. Margaret Thayer (Zoology, Insects), David Clarke, graduate student (University of Illinois at Chicago) Project: An Island Giant: Describing a New Species of Rove Beetle from the Chatham Islands Name: FitzPatrick, Vincent Drury (Northwestern University)^ Field Museum faculty mentor: Dr. Larry Heaney (Zoology, Mammals) Project: Evolution and Patterns of Reproduction in Philippine Mammals Name: Kasicky, Anna Therese (Saint Mary’s College of Maryland)* Field Museum faculty mentor: Dr. Rüdiger Bieler and Dr. André Sartori (Zoology, Invertebrates) Project: Shell Ultrastructure in Venus Clams Name: Loria, Stephanie Frances (Sewanee: The University of the South)^ Field Museum faculty mentor: Drs. Petra Sierwald and Thomas Wesener (Zoology, Insects) Project: Island Gigantism or Dwarfism? Phylogeny and Taxonomy of Madagascar's Chirping Giant Pill-Millipede Name: Melstrom, Keegan Michael (University of Michigan)^ Field Museum faculty mentor: Dr. Ken Angielczyk (Geology) Project: Morphological Integration of the Turtle Shell Name: Rudick, Emily Lauren (Temple University)^ Field Museum faculty mentor: Drs. Rüdiger Bieler and Sid Staubach (Zoology, Invertebrates) Project: Comparative Gill and Labial Palp Morphology ^The REU research internships are supported by NSF through an REU site grant to the Field Museum, DBI 08-49958: PIs: Petra Sierwald (Zoology) and Peter Makovicky (Geology). * Funded through NSF grant 09-18982 to R. Bieler #Funded through NSF DBI-1026783 to M. -
List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti
List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti Department of Zoology, Punjabi University, Patiala, India - 147002. (email: [email protected]/[email protected]) (www.antdiversityindia.com) Abstract Ants of India are enlisted herewith. This has been carried due to major changes in terms of synonymies, addition of new taxa, recent shufflings etc. Currently, Indian ants are represented by 652 valid species/subspecies falling under 87 genera grouped into 12 subfamilies. Keywords: Ants, India, Hymenoptera, Formicidae. Introduction The following 652 valid species/subspecies of myrmecology. This species list is based upon the ants are known to occur in India. Since Bingham’s effort of many ant collectors as well as Fauna of 1903, ant taxonomy has undergone major myrmecologists who have published on the taxonomy changes in terms of synonymies, discovery of new of Indian ants and from inputs provided by taxa, shuffling of taxa etc. This has lead to chaotic myrmecologists from other parts of world. However, state of affairs in Indian scenario, many lists appeared the other running/dynamic list continues to appear on web without looking into voluminous literature on http://www.antweb.org/india.jsp, which is which has surfaced in last many years and currently periodically updated and contains information about the pace at which new publications are appearing in new/unconfirmed taxa, still to be published or verified. Subfamily Genus Species and subspecies Aenictinae Aenictus 28 Amblyoponinae Amblyopone 3 Myopopone -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
Trophobiosis Between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an Overview
December, 2001 Neotropical Entomology 30(4) 501 FORUM Trophobiosis Between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an Overview JACQUES H.C. DELABIE 1Lab. Mirmecologia, UPA Convênio CEPLAC/UESC, Centro de Pesquisas do Cacau, CEPLAC, C. postal 7, 45600-000, Itabuna, BA and Depto. Ciências Agrárias e Ambientais, Univ. Estadual de Santa Cruz, 45660-000, Ilhéus, BA, [email protected] Neotropical Entomology 30(4): 501-516 (2001) Trofobiose Entre Formicidae e Hemiptera (Sternorrhyncha e Auchenorrhyncha): Uma Visão Geral RESUMO – Fêz-se uma revisão sobre a relação conhecida como trofobiose e que ocorre de forma convergente entre formigas e diferentes grupos de Hemiptera Sternorrhyncha e Auchenorrhyncha (até então conhecidos como ‘Homoptera’). As principais características dos ‘Homoptera’ e dos Formicidae que favorecem as interações trofobióticas, tais como a excreção de honeydew por insetos sugadores, atendimento por formigas e necessidades fisiológicas dos dois grupos de insetos, são discutidas. Aspectos da sua evolução convergente são apresenta- dos. O sistema mais arcaico não é exatamente trofobiótico, as forrageadoras coletam o honeydew despejado ao acaso na folhagem por indivíduos ou grupos de ‘Homoptera’ não associados. As relações trofobióticas mais comuns são facultativas, no entanto, esta forma de mutualismo é extremamente diversificada e é responsável por numerosas adaptações fisiológicas, morfológicas ou comportamentais entre os ‘Homoptera’, em particular Sternorrhyncha. As trofobioses mais diferenciadas são verdadeiras simbioses onde as adaptações mais extremas são observadas do lado dos ‘Homoptera’. Ao mesmo tempo, as formigas mostram adaptações comportamentais que resultam de um longo período de coevolução. Considerando-se os inse- tos sugadores como principais pragas dos cultivos em nível mundial, as implicações das rela- ções trofobióticas são discutidas no contexto das comunidades de insetos em geral, focalizan- do os problemas que geram em Manejo Integrado de Pragas (MIP), em particular. -
Hymenoptera: Formicidae)
ASIAN MYRMECOLOGY Volume 8, 17 – 48, 2016 ISSN 1985-1944 © Weeyawat Jaitrong, Benoit Guénard, Evan P. Economo, DOI: 10.20362/am.008019 Nopparat Buddhakala and Seiki Yamane A checklist of known ant species of Laos (Hymenoptera: Formicidae) Weeyawat Jaitrong1, Benoit Guénard2, Evan P. Economo3, Nopparat Buddhakala4 and Seiki Yamane5* 1 Thailand Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani, 12120 Thailand E-mail: [email protected] 2 School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China 3 Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan 4 Biology Divisions, Faculty of Science and Technology, Rajamangala Univer- sity of Technology Tanyaburi, Pathum Thani 12120 Thailand E-mail: [email protected] 5 Kagoshima University Museum, Korimoto 1-21-30, Kagoshima-shi, 890-0065 Japan *Corresponding author’s email: [email protected] ABSTRACT. Laos is one of the most undersampled areas for ant biodiversity. We begin to address this knowledge gap by presenting the first checklist of Laotian ants. The list is based on a literature review and on specimens col- lected from several localities in Laos. In total, 123 species with three additional subspecies in 47 genera belonging to nine subfamilies are listed, including 62 species recorded for the first time in the country. Comparisons with neighboring countries suggest that this list is still very incomplete. The provincial distribu- tion of ants within Laos also show that most species recorded are from Vien- tiane Province, the central part of Laos while the majority of other provinces have received very little, if any, ant sampling. -
Comparison of Ant (Hymenoptera: Formicidae) Diversity in Different Habitats of Machad Region of Thrissur
Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 5 [2] January 2016: 28-33 ©2015 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal’s URL:http://www.bepls.com CODEN: BEPLAD Global Impact Factor 0.533 Universal Impact Factor 0.9804 ORIGINAL ARTICLE OPEN ACCESS Comparison of Ant (Hymenoptera: Formicidae) Diversity in Different Habitats of Machad Region of Thrissur Nayana Paul1, Presty John2, Baaby Job 3 & P. Lakshmi Devi Menon4 1, 3, 4 Department of Zoology, Vimala College, Thrissur-680009 2 Forest Entomology, Kerala Forest Research Institute, Peechi- 680653 E-mail- [email protected] ABSTRACT We studied the Formicidae diversity of Machad region of Thrissur. Five different habitats paddy, banana, rubber, coconut, vegetables garden (pea, ladies finger and brinjal) were selected. 25 species of Formicidae belonging to four subfamilies (Formicinae, Myrmicinae and Ponerinae) were collected. The distribution of species in the different subfamilies showed a dominance of Formicinae with 4 genus (15 species) followed by Myrmicinae with 5 genera (6 species), Ponerinae with 2 genera (3 species) and Pseudomyrmecinae with least species (1 species). The genus Camponotus (Mayr) was the most abundant genera with 12 species. Findings of this preliminary study indicated that much more detailed study should be conducted to investigate the diversity of ants of Macha region of Thrissur. Keywords: Formicidae, Diversity, Camponotus, Dominance. Received 14.11.2015 Revised 21.12.2015 Accepted 27.12. 2015 INTRODUCTION Ants are one of the most diverse group of insects with approximately 13,152 species [1]. They thrive in most ecosystems, and may form 15-25% of the terrestrial animal biomass [2]. -
Inve R Teb Rate Taxonom Y
Publishing Inve r teb rate Taxonom y An international journal of biodiversity and systematics Volume 15, 2001 © CSIRO 2001 All enquiries and manuscripts should be directed to: Invertebrate Taxonomy CSIRO Publishing PO Box 1139 (150 Oxford St) Collingwood, Vic. 3066, Australia Telephone: +61 3 9662 7629 Fax: +61 3 9662 7611 Email: [email protected] Published by CSIRO Publishing for CSIRO and the Australian Academy of Science www.publish.csiro.au/journals/it © CSIRO Australia 2001 10.1071/IT01001_AC 0818-0164 Invertebrate Taxonomy, 2001, 15(5), 589–665. Accessory Publication Taxonomy, phylogeny and biogeography of the ant genus Tetraponera (Hymenoptera : Formicidae) in the Oriental and Australian regions Philip S. Ward Department of Entomology, University of California, Davis, CA 95616, USA. Email: [email protected] Abstract A revision of the ant genus Tetraponera in the Oriental and Australian regions reveals 33 species (18 new), belonging to four informal species-groups: allaborans-group (T. allaborans (Walker), T. apiculata, sp. nov., T. avia, sp. nov., T. bita, sp. nov., T. brevis, sp. nov., T. conica, sp. nov., T. connectens, sp. nov., T. crassiuscula (Emery) stat. nov., T. extenuata, sp. nov., T. microcarpa Wu & Wang and T. modesta (F. Smith)); nigra-group (T. aitkenii (Forel), T. atra Donisthorpe, T. attenuata F. Smith, T. binghami (Forel), T. buops, sp. nov., T. difficilis (Emery), T. inversinodis, sp. nov., T. laeviceps (F. Smith), T. mimula, sp. nov., T. nigra (Jerdon), T. nitida (F. Smith), T. nixa, sp. nov., T. nodosa, sp. nov., T. notabilis, sp. nov., T. polita, sp. nov., T. punctulata F. Smith, T. rotula, sp. -
Taxonomy, Phylogeny and Biogeography of the Ant Genus Tetraponera
Invertebrate Taxonomy, 2001, 15, 589—665 Taxonomy, phylogeny and biogeography of the ant genus Tetraponera (Hymenoptera : Formicidae) in the Oriental and Australian regions Philip S. Ward Department of Entomology, University of California, Davis, CA 95616, USA. Email: [email protected]. Abstract. A revision of the ant genus Tetraponera in the Oriental and Australian regions reveals 33 species (18 new), belonging to four informal species-groups: allaborans-gmup (T. allaborans (Walker), T. apiculata, sp. nov., T. avia, sp. nov., T. bita, sp. nov., T. brevis, sp. nov, T. conica, sp. nov, T. connectens, sp. nov, T. crassiuscula (Emery) stat. nov., T. extenuata, sp. nov, T. microcarpa Wu & Wang, and T. modesta (F. Smith)); «/gra-group {T. aitkenii (Forel), T. atra Donisthorpe, T. attenuata F. Smith, T. binghami (Forel), T. buops, sp. nov, T. difficilis (Emery), T. inversinodis, sp. nov., T. laeviceps (F. Smith), T. mimula, sp. nov., T. nigra (Jerdon), T. nitida (F. Smith), T. nixa, sp. nov, T. nodosa, sp. nov, T. notabilis, sp. nov., T.polita, sp. nov, T.punctulata F. Smith, T. rotula, sp. nov, T. tucurua, sp. nov, T. vivax, sp. nov., and T. volucris, sp. nov); pilosa-growp (T. pilosa (F. Smith)), and rufonigra- group {T. rufonigra (Jerdon)). Keys are provided for identification of workers, queens and males, although the sexual forms remain unknown in some species. Phylogenetic analysis indicates that the four species-groups represent independent lineages, each with its nearest extant relatives in the Afrotropical region. There have been multiple invasions of Asia from Africa, and at least four west-to-east transgressions of Wallace's line into the Australian region. -
Ants from Vietnam in the Collection of the Institute of Zoology, PAS, Warsaw
POLSKA AKADEMIA NAUK MUZEUM I INSTYTUT ZOOLOGII ANNALES ZOOLOGICI Tom 44 Warszawa, 15 II 1993 Nr7 Alexander R a d c h e n k o Ants from Vietnam in the collection of the Institute of Zoology, PAS, Warsaw. I. Pseudomyrmicinae, Dorylinae, Ponerinae [With 7 figures in the text) A bstract. A list of 31 species of Pseudomyrmicinae, Dorylinae and Ponerinae from Vietnam, including 8 species new for Vietnam. Two new species (Anochetus mixtus, Brachyponera mesoponeroid.es) as well as unknown ? of Cerapachys sauteri are described. Ants were collected by B. P is a r s k i and J. P r ó s z y ń s k i in 1959 and by B. P is a r s k i and R. B ie l a w s k i in 1966 in the following localities of North Vietnam: 1. Distr. Nghe An. Phu Quy. 16-17 June, 1959: a dry secondary forest (no. 2151-2160): coffee plantations (no. 2162-2163); a dry sandy river terrace (no. 2161-2168). 2. Thanh Hoa, 19 June, 1959: a village. 3. Chine near Hanoi. Biological Station of the Hanoi University, 22-28 June, 1959: a mountain forest (no. 2171, 2181-2195, 2215-2219); a dry river terrace (no. 2172-2180); grasslands and bushes (no. 2196-2214, 2220-2223). 4. Hanoi, 4-5, 14-16, 21-29 May. 1966: gardens and orchards (no. 1-6/66, 54-66/66, 84- 123/66). 5. Co Loa, 40 km N Hanoi, 6-13 May. 1966: agricultural fields (no. 7-53/66). 6. Yen So, 10 km S Hanoi, 17-20 May, 1966: agricultural fields (no. -
Download This PDF File
Biosaintifika 11 (3) (2019) 377-384 Biosaintifika Journal of Biology & Biology Education http://journal.unnes.ac.id/nju/index.php/biosaintifika The Dominance of Tramps Ants in The Settlement Area of Semarang, Central Java Ivan Mahadika Putra, Mochammad Hadi, Rully Rahadian DOI: http://dx.doi.org/10.15294/biosaintifika.v11i3.21026 Department of Biology, Faculty of Science and Mathematic, Universitas Diponegoro, Indonesia History Article Abstract Submitted 12 October 2019 The high rate of urbanization in Semarang have caused the land conversion from Revised 16 November 2019 forest into various human need spaces. The land conversion is not only affect the life Accepted 9 December 2019 of humans but also the animals, including ants. The objectives of this study were to examine the dominance of tramp ants in the settlement area of Semarang City. The Keywords method used was the bait trap method using chicken intestine as a bait. Samples of Tramps Ants; Urban ants were collected from four habitats, i.e., waste disposal area, traditional markets, Pest; Anoplolepis gracilli- house area, and urban parks. This study found four dominant ants, i.e., Anoplolepis pes; Paratrechina longicornis gracilipes, Paratrechina longicornis, Solenopsis geminata and Monomorium pharaonis. Two of them were categorized as tramp ants (Anoplolepis gracillipes and Paratrechina longicornis). The highest diversity of ants was found in house (H’= 2.72). The waste area tends to be an ideal habitat for particular species, which was proved by the low value of Simpson’s dominance index (iD = 0.06) and a high value of evenness index (E=0 0.89). This study provides new information about tramp ants population as pest in urban area. -
Hymenoptera: Formicidae) in Punjab Shivalik Studied Ant Species Richness at Selected Localities of Bangalore Halteres, 2009, 1
Journal of Entomology and Zoology Studies 2016; 4(2): 361-364 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Distribution and diversity of ants (Hymenoptera: JEZS 2016; 4(2): 361-364 © 2016 JEZS Formicidae) around Gautala Autramghat Received: 25-01-2016 Accepted: 26-02-2016 Sanctuary, Aurangabad Maharashtra, India BV Sonune Department of Zoology BV Sonune, RJ Chavan Moreshwar Arts, Science and Commerce College Bhokardan Abstract Tq. Bhokardan Dist. Jalna M.S. The study was carried out to investigate the diversity and distribution of ants in agriculture, grassland, India. forest and human habitats located around Gautala Autramghat Sanctuary Dist. Aurangabad during RJ Chavan February 2010 to January 2012. The ants were randomly collected from the study area, by all out search Department of Zoology Dr. method. A total 17 species of ants belonging to thirteen genera and six subfamilies such as Formicinae, Babasaheb Ambedkar Myrmicinae, Ponerinae, Dolichoderinae, Aenictinae and Pseudomyrmicinae were reported from four Marathwada University, different habitats of present study area. The subfamily Myrmicinae was found to be more diverse with 6 Aurangabad-431004 species, and then followed by Formicinae with 4 species, Pseudomyrmicinae with 3 species, Ponerinae with 6 species and Dolichoderinae & Aenictinae were found least diverse with only one species each. Members of Formicinae, Myrmicinae and Dolichoderinae were reported from all habitats but members of subfamily Ponerinae, Aenictinae and Pseudomyrmicinae were only reported from grassland and forest habitats. A Genus Tetraponera is most diverse comprising three species then followed by Monomorium and Camponotus comprising two species each from the present study area were reported. A genus Tetraponera is most diverse with three species and is followed by Monomorium and Camponotus each with two species.