Biosynthesis of Food Constituents: Natural Pigments. Part 2 – a Review

Total Page:16

File Type:pdf, Size:1020Kb

Biosynthesis of Food Constituents: Natural Pigments. Part 2 – a Review Czech J. Food Sci. Vol. 26, No. 2: 73–98 Biosynthesis of Food Constituents: Natural Pigments. Part 2 – a Review Jan VELÍšEK, Jiří DAVÍDEK and Karel CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic Abstract Velíšek J., Davídek J., Cejpek K. (2008): Biosynthesis of food constituents: Natural pigments. Part 2 – a review. Czech J. Food Sci., 26: 73–98. This review article is a part of the survey of the generally accepted biosynthetic pathways that lead to the most impor- tant natural pigments in organisms closely related to foods and feeds. The biosynthetic pathways leading to xanthones, flavonoids, carotenoids, and some minor pigments are described including the enzymes involved and reaction schemes with detailed mechanisms. Keywords: biosynthesis; xanthones; flavonoids; isoflavonoids; neoflavonoids; flavonols; (epi)catechins; flavandiols; leu- coanthocyanidins; flavanones; dihydroflavones; flavanonoles; dihydroflavonols; flavones; flavonols; anthocya- nidins; anthocyanins; chalcones; dihydrochalcones; quinochalcones; aurones; isochromenes; curcuminoids; carotenoids; carotenes; xanthophylls; apocarotenoids; iridoids The biosynthetic pathways leading to the tetrapyr- restricted in occurrence to only a few families of role pigments (hemes and chlorophylls), melanins higher plants and some fungi and lichens. The (eumelanins, pheomelanins, and allomelanins), majority of xanthones has been found in basi- betalains (betacyanins and betaxanthins), and cally four families of higher plants, the Clusiaceae quinones (benzoquinones, naphthoquinones, and (syn. Guttiferae), Gentianaceae, Moraceae, and anthraquinones) were described in the first part of Polygalaceae (Peres et al. 2000). Xanthones can this review (Velíšek & Cejpek 2007b). This part be classified based on their oxygenation, prenyla- deals with the biosynthesis of other prominent tion and glucosylation pattern. The majority of natural food colorants, xanthones, flavonoids, xanthones isolated so far are of the tetraoxygen- curcuminoids, carotenoids, isochromenes, and ated-type. Xanthones posses a number of remark- iridoids. able pharmacological activities (Peres et al. 2000) and have been used as, e.g. cardiovascular pro- 5 XanTHONES tective agents (Jiang et al. 2004) and antitumor promotors (Ito et al. 1998). The root of Yellow Xanthones, represented as the C6-C1-C6 system Gentian (Gentiana lutea, Gentianaceae) contains (Figure 30), are a group of about 70 yellow pigments several yellow xanthones, exemplified by gentisin Partly supported by the Ministry of Education, Youth and Sports of the Czech Republic (Project No. MSM 6046137305). 73 Vol. 26, No. 2: 73–98 Czech J. Food Sci. 10 HO O OH 4 5 HO HO O OH O HO O 3 6 ABC O OCH3 2 9 7 OH OH OH OH O 1 8 OH O O OH O HO OH xanthone gentisin mangiferin mangostin Figure 30 (1,3,7-trihydroxyxanthone), that are also found in benzophenone 3'-hydroxylase and converted to the Common Centaury (Centaurium erythraea, the 2,3',4,6-tetrahydroxyphenone intermediate, Gentianaceae) (Figure 31). The Gentiana root is common to both pathways. The crucial step in this bitter and becomes the principal vegetable bitter biosynthesis is the cyclisation of the benzophenone employed in medicine. Before the introduction to a xanthone, catalysed by xanthone synthases. of hops, Gentian, with many other bitter herbs, While in C. erythraea the xanthone synthase con- was used occasionally in brewing. It is a princi- verts this tetrahydroxybenzophenone intermediate pal ingredient in angostura bitters. 1,3,6,7-Tet- regioselective to 1,3,5-trihydroxyxanthone, the rahydroxyxanthone, the aglycone of C-glucoside xanthone synthase of H. androsaemum converts mangiferin occurs in mango leaves (Mangifera it to the 1,3,7-trihydroxyxanthone. The last step indica, Anacardiaceae) and has been used as a in the biosynthesis of the tetrahydroxyxanthones yellow textile dye. It is also known to exhibit anti- is the introduction of a hydroxyl group to the inflammatory, antioxidant, and antiviral effects. C-ring of the xanthone skeleton. This reaction Mangostin is the major xanthone constituent of is carried out by the plant-specific cytochrome the mangosteen tree (Garcinia mangostana, Clu- P450-dependend monooxygenase xanthone 6-hy- siaceae) (Bennet et al. 1990). droxylase to form 1,3,5,6-tetrahydroxyxanthone in The biosynthesis of xanthones (Figure 31) origi- C. erythraea and 1,3,6,7-tetrahydroxyxanthone in nates mainly from a mixed shikimate-acetate path- H. androsaemum. Another representative of the way; however xanthones entirely derived from Gentianaceae, chirayta (Swertia chirata), hydroxy- acetate have also been reported in lower plants lates 1,3,5-trihydroxyxanthone in the C-8 position (Peres et al. 2000). The main steps in the xanthone of the C-ring resulting in the major xanthone of biosynthesis involve the condensation of shikimate this species 1,3,5,8-tetrahydroxyxanthone (Wang and acetate moieties, which constitute a benzo- et al. 2003a; BIOCYC 2007). phenone intermediate followed by a regioselective, oxidative mediated intramolecular coupling to 6 FLAVONOIDS form the xanthone ring (Peters et al. 1998). The shikimate derivatives used as entry compounds Flavonoids comprise a widespread group of more for the tetrahydroxyxanthone biosynthesis differ than 4000 higher plant secondary metabolites. in the individual plants. Many flavonoids are easily recognised as water- In the Common Centaury, the biosynthesis of soluble flower pigments in most angiosperm fami- tetrahydroxyxanthone is obtained via 3-hydroxy- lies (flowering plants), which themselves provide benzoic acid (that appears to originate directly the major source of food plants (fruits, vegetables, from the shikimate pathway) by the stepwise con- and grains). Molecules of flavonoids posses fif- densation of 3-hydroxybenzoyl-CoA (formed un- teen carbon atoms and contain two benzene rings der catalysis of 3-hydroxybenzoate-CoA ligase, (rings A and C, respectively) connected with a EC 6.2.1.-) with three malonyl-CoA to form an chain built up of three carbon atoms that becomes intermediate 2,3',4,6-tetrahydroxybenzophenone a part of O-heterocyclic (pyrane) cycle (ring B). (benzophenone synthase, EC 2.3.1.151). In Hyperi- The skeleton of flavonoids can be thus represented cum androsaemum (Clusiaceae), the biosynthesis as the C6-C3-C6 system (1,3-diarylpropanoids). of this tetrahydroxyxanthone proceeds via ben- Many flavonoids are hypothetically derived from zoic acid and benzoyl-CoA (benzoate-CoA ligase, flavan (IUPAC 2006) (Figure 32). EC 6.2.1.25). The new intermediate, 2,4,6-tri- Various subgroups of flavonoids are classified hydroxybenzophenone is further hydroxylated by according to their substitution pattern of the ring B. 74 Czech J. Food Sci. Vol. 26, No. 2: 73–98 HOOC OH HOOC 3-hydroxybenzoic acid benzoic acid ATP + HS-CoA EC 6.2.1.25 ATP + HS-CoA AMP + PP EC 6.2.1.- OO 3 AMP + PP CoA OH malonyl-CoA 4 HS-CoA + 3 CO 2 HO OH S S CoA OH CoA EC 2.3.1.151 O O OH O 3-hydroxybenzoyl-CoA benzoyl-CoA 2,4,6-trihydroxybenzophenone OO NADPH + O2 3 CoA OH malonyl-CoA 4 HS-CoA + 3 NADP + H O EC 2.3.1.151 CO 2 2 HO OH OH OH O NADPH + O2 NADPH + O2 2,3´,4,6-tetrahydroxybenzophenone NADP + 2 NADP + 2 H2O H2O OH HO O HO O OH OH O OH O 1,3,5-trihydroxyxanthone NADPH + O2 1,3,7-trihydroxyxanthone NADPH + O2 NADPH + O2 NADP + H2O NADP + H2O NADP + H2O OH OH HO O HO O OH HO O OH OH OH O OH OH O OH O 1,3,5,8-tetrahydroxyxanthone 1,3,5,6-tetrahydroxyxanthone 1,3,6,7-tetrahydroxyxanthone Figure 31 Both the oxidation state of the heterocyclic ring the three rings and oxidation of the C-4 hydroxyl and the position of the ring B substituents are group. Examples of the seven major subgroups of important in the classification. Derivations include the most important structural types are given in oxidation of the 2(3)-carbon-carbon double bond Figure 33. The compounds are listed according in flavan, hydroxylation at various positions of to their oxidation degree that concerns the three 75 Vol. 26, No. 2: 73–98 Czech J. Food Sci. 3´ nylbenzopyrylium or 2-phenylchromenylium), 2´ 4´ 1 anthocyanidins became the most prominent group 8 C O 5´ of water-soluble plant pigments as they are re- 7 1´ A B 2 6´ sponsible for blue, purple, violet, magenta, pink, 6 3 and red coloration.17 5 4 In a few cases, the six-membered heterocyclic flavan ring B occurs in an isomeric open form (chalcones and dihydrochalcones) or is replaced by a five- Figure 32 membered ring (aurones). Chalcones and aurones belong to the prominent flower pigments that are central carbon atoms (ring B). In the rows, the responsible for their golden and yellow colora- oxidation degree increases from the left to the tion. Isoflavonoids or 3-phenylchromen-4-ones right while in the columns the oxidation degree (1,2-diarylpropanes, colourless to light yellow is equal. In the same direction their coloration compounds derived from isoflavan) and neoflavo- increases, too. Catechins and leucoanthocyanidins noids or 4-phenylcoumarins (1,1-diarylpropanes are uncoloured compounds, flavanones are from derived from neoflavan) are less common flavo- uncoloured to light yellow like flavanonoles, fla- noids having the ring C attached to the ring B at vones and flavonols are yellow. Due to the system C-3 and C-4, respectively (Figure 34). Isoflavonoids of conjugated doubleO bonds (flavilium or 2-pheO - and neoflavonoidsO can be regarded as abnormalO OH OH OH OH OH O O flavanols (catechins) flavandiols
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski Et Al
    USOO9421 180B2 (12) United States Patent (10) Patent No.: US 9.421,180 B2 Zielinski et al. (45) Date of Patent: Aug. 23, 2016 (54) ANTIOXIDANT COMPOSITIONS FOR 6,203,817 B1 3/2001 Cormier et al. .............. 424/464 TREATMENT OF INFLAMMATION OR 6,323,232 B1 1 1/2001 Keet al. ............ ... 514,408 6,521,668 B2 2/2003 Anderson et al. ..... 514f679 OXIDATIVE DAMAGE 6,572,882 B1 6/2003 Vercauteren et al. ........ 424/451 6,805,873 B2 10/2004 Gaudout et al. ....... ... 424/401 (71) Applicant: Perio Sciences, LLC, Dallas, TX (US) 7,041,322 B2 5/2006 Gaudout et al. .............. 424/765 7,179,841 B2 2/2007 Zielinski et al. .. ... 514,474 (72) Inventors: Jan Zielinski, Vista, CA (US); Thomas 2003/0069302 A1 4/2003 Zielinski ........ ... 514,452 Russell Moon, Dallas, TX (US); 2004/0037860 A1 2/2004 Maillon ...... ... 424/401 Edward P. Allen, Dallas, TX (US) 2004/0091589 A1 5, 2004 Roy et al. ... 426,265 s s 2004/0224004 A1 1 1/2004 Zielinski ..... ... 424/442 2005/0032882 A1 2/2005 Chen ............................. 514,456 (73) Assignee: Perio Sciences, LLC, Dallas, TX (US) 2005, 0137205 A1 6, 2005 Van Breen ..... 514,252.12 2005. O154054 A1 7/2005 Zielinski et al. ............. 514,474 (*) Notice: Subject to any disclaimer, the term of this 2005/0271692 Al 12/2005 Gervasio-Nugent patent is extended or adjusted under 35 et al. ............................. 424/401 2006/0173065 A1 8/2006 BeZwada ...................... 514,419 U.S.C. 154(b) by 19 days. 2006/O193790 A1 8/2006 Doyle et al.
    [Show full text]
  • 2013 Book Antioxidantpropertie
    Antioxidant Properties of Spices, Herbs and Other Sources Denys J. Charles Antioxidant Properties of Spices, Herbs and Other Sources Denys J. Charles Frontier Natural Products Co-op Norway, IA , USA ISBN 978-1-4614-4309-4 ISBN 978-1-4614-4310-0 (eBook) DOI 10.1007/978-1-4614-4310-0 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012946741 © Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a speci fi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma by Andrea Shergalis
    Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma By Andrea Shergalis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2020 Doctoral Committee: Professor Nouri Neamati, Chair Professor George A. Garcia Professor Peter J. H. Scott Professor Shaomeng Wang Andrea G. Shergalis [email protected] ORCID 0000-0002-1155-1583 © Andrea Shergalis 2020 All Rights Reserved ACKNOWLEDGEMENTS So many people have been involved in bringing this project to life and making this dissertation possible. First, I want to thank my advisor, Prof. Nouri Neamati, for his guidance, encouragement, and patience. Prof. Neamati instilled an enthusiasm in me for science and drug discovery, while allowing me the space to independently explore complex biochemical problems, and I am grateful for his kind and patient mentorship. I also thank my committee members, Profs. George Garcia, Peter Scott, and Shaomeng Wang, for their patience, guidance, and support throughout my graduate career. I am thankful to them for taking time to meet with me and have thoughtful conversations about medicinal chemistry and science in general. From the Neamati lab, I would like to thank so many. First and foremost, I have to thank Shuzo Tamara for being an incredible, kind, and patient teacher and mentor. Shuzo is one of the hardest workers I know. In addition to a strong work ethic, he taught me pretty much everything I know and laid the foundation for the article published as Chapter 3 of this dissertation. The work published in this dissertation really began with the initial identification of PDI as a target by Shili Xu, and I am grateful for his advice and guidance (from afar!).
    [Show full text]
  • The Genetic Architecture of UV Floral Patterning in Sunflower
    Annals of Botany 120: 39–50, 2017 doi:10.1093/aob/mcx038, available online at https://academic.oup.com/aob The genetic architecture of UV floral patterning in sunflower Brook T. Moyers1,2,*,†, Gregory L. Owens1,†, Gregory J. Baute1 and Loren H. Rieseberg1 1Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC V6T 1Z4, Canada and 2Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA *For correspondence. E-mail [email protected] †G. L. Owens and B. T. Moyers are co-first authors. Received: 16 September 2016 Returned for revision: 26 November 2016 Editorial decision: 25 February 2017 Accepted: 14 March 2017 Published electronically: 27 April 2017 Background and Aims The patterning of floral ultraviolet (UV) pigmentation varies both intra- and interspecifi- cally in sunflowers and many other plant species, impacts pollinator attraction, and can be critical to reproductive success and crop yields. However, the genetic basis for variation in UV patterning is largely unknown. This study examines the genetic architecture for proportional and absolute size of the UV bullseye in Helianthus argophyllus, a close relative of the domesticated sunflower. Methods A camera modified to capture UV light (320–380 nm) was used to phenotype floral UV patterning in an F2 mapping population, then quantitative trait loci (QTL) were identified using genotyping-by-sequencing and linkage mapping. The ability of these QTL to predict the UV patterning of natural population individuals was also assessed. Key Results Proportional UV pigmentation is additively controlled by six moderate effect QTL that are predic- tive of this phenotype in natural populations.
    [Show full text]
  • Natural Chalcones in Chinese Materia Medica: Licorice
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2020, Article ID 3821248, 14 pages https://doi.org/10.1155/2020/3821248 Review Article Natural Chalcones in Chinese Materia Medica: Licorice Danni Wang ,1 Jing Liang,2 Jing Zhang,1 Yuefei Wang ,1 and Xin Chai 1 1Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China 2School of Foreign Language, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China Correspondence should be addressed to Xin Chai; [email protected] Received 28 August 2019; Accepted 7 February 2020; Published 15 March 2020 Academic Editor: Veronique Seidel Copyright © 2020 Danni Wang et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. -ese chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hep- atoprotective activities, and so on. -is review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice.
    [Show full text]
  • Biotransformation of Hydroxychalcones As a Method of Obtaining Novel and Unpredictable Products Using Whole Cells of Bacteria
    catalysts Article Biotransformation of Hydroxychalcones as a Method of Obtaining Novel and Unpredictable Products Using Whole Cells of Bacteria Joanna Kozłowska 1,* , Bartłomiej Potaniec 1,2 and Mirosław Anioł 1 1 Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; [email protected] (B.P.); [email protected] (M.A.) 2 Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland * Correspondence: [email protected] Received: 27 September 2020; Accepted: 8 October 2020; Published: 12 October 2020 Abstract: The aim of our study was the evaluation of the biotransformation capacity of hydroxychalcones—2-hydroxy-40-methylchalcone (1) and 4-hydroxy-40-methylchalcone (4) using two strains of aerobic bacteria. The microbial reduction of the α,β-unsaturated bond of 2-hydroxy-40- methylchalcone (1) in Gordonia sp. DSM 44456 and Rhodococcus sp. DSM 364 cultures resulted in isolation the 2-hydroxy-40-methyldihydrochalcone (2) as a main product with yields of up to 35%. Additionally, both bacterial strains transformed compound 1 to the second, unexpected product of reduction and simultaneous hydroxylation at C-4 position—2,4-dihydroxy-40-methyldihydrochalcone (3) (isolated yields 12.7–16.4%). During biotransformation of 4-hydroxy-40-methylchalcone (4) we observed the formation of three products: reduction of C=C bond—4-hydroxy-40-methyldihydrochalcone (5), reduction of C=C bond and carbonyl group—3-(4-hydroxyphenyl)-1-(4-methylphenyl)propan-1-ol (6) and also unpredictable 3-(4-hydroxyphenyl)-1,5-di-(4-methylphenyl)pentane-1,5-dione (7).
    [Show full text]
  • Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti–Acute Myeloid Leukemia Efficacy in Vitro and in Vivo
    1521-0111/96/5/589–599$35.00 https://doi.org/10.1124/mol.119.116129 MOLECULAR PHARMACOLOGY Mol Pharmacol 96:589–599, November 2019 Copyright ª 2019 by The American Society for Pharmacology and Experimental Therapeutics Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti–Acute Myeloid Leukemia Efficacy In Vitro and In Vivo Zhi-Xing Cao,1 Yi Wen,1 Jun-Lin He, Shen-Zhen Huang, Fei Gao, Chuan-Jie Guo, Qing-Qing Liu, Shu-Wen Zheng, Dao-Yin Gong, Yu-Zhi Li, Ruo-Qi Zhang, Jian-Ping Chen, and Cheng Peng Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization Downloaded from of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.) molpharm.aspetjournals.org Received February 19, 2019; accepted August 20, 2019 ABSTRACT Licorice is a medicinal herb widely used to treat inflammation- AML cells.
    [Show full text]
  • Pharmacological Effects of Glycyrrhiza Spp. and Its Bioactive Constituents: Update and Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE PHYTOTHERAPY RESEARCH provided by Qazvin University of Medical Sciences Repository Phytother. Res. 29: 1868–1886 (2015) Published online 13 October 2015 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ptr.5487 REVIEW Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review Hossein Hosseinzadeh1 and Marjan Nassiri-Asl2* 1Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran 2Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, P.O. Box: 341197-5981, Qazvin, Iran The roots and rhizomes of various species of the perennial herb licorice (Glycyrrhiza) are used in traditional medicine for the treatment of several diseases. In experimental and clinical studies, licorice has been shown to have several pharmacological properties including antiinflammatory, antiviral, antimicrobial, antioxidative, antidiabetic, antiasthma, and anticancer activities as well as immunomodulatory, gastroprotective, hepatoprotective, neuroprotective, and cardioprotective effects. In recent years, several of the biochemical, molecular, and cellular mechanisms of licorice and its active components have also been demonstrated in experimental studies. In this review, we summarized the new phytochemical, pharmacological, and toxicological data from recent experimental and clinical
    [Show full text]
  • WO 2017/131957 Al 3 August 2017 (03.08.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/131957 Al 3 August 2017 (03.08.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 8/35 (2006.01) A61Q 5/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 8/97 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2017/012985 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (22) International Filing Date: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, 11 January 2017 ( 11.01 .2017) MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (25) Filing Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, (26) Publication Language: English TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/287,501 27 January 2016 (27.01.2016) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: ELC MANAGEMENT LLC [US/US]; 155 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Pinelawn Road, Suite 345 South, Melville, New York TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 11747 (US).
    [Show full text]
  • Can Antiviral Activity of Licorice Help Fight COVID-19 Infection?
    biomolecules Review Can Antiviral Activity of Licorice Help Fight COVID-19 Infection? Luisa Diomede 1,* , Marten Beeg 1, Alessio Gamba 2 , Oscar Fumagalli 1, Marco Gobbi 1 and Mario Salmona 1,* 1 Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; [email protected] (M.B.); [email protected] (O.F.); [email protected] (M.G.) 2 Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; [email protected] * Correspondence: [email protected] (L.D.); [email protected] (M.S.) Abstract: The phytotherapeutic properties of Glycyrrhiza glabra (licorice) extract are mainly attributed to glycyrrhizin (GR) and glycyrrhetinic acid (GA). Among their possible pharmacological actions, the ability to act against viruses belonging to different families, including SARS coronavirus, is particularly important. With the COVID-19 emergency and the urgent need for compounds to counteract the pandemic, the antiviral properties of GR and GA, as pure substances or as components of licorice extract, attracted attention in the last year and supported the launch of two clinical trials. In silico docking studies reported that GR and GA may directly interact with the key players in viral internalization and replication such as angiotensin-converting enzyme 2 (ACE2), spike protein, the host transmembrane serine protease 2, and 3-chymotrypsin-like cysteine protease. In vitro data indicated that GR can interfere with virus entry by directly interacting with ACE2 and spike, with a nonspecific effect on cell and viral membranes.
    [Show full text]
  • The Evolutionary Ecology of Ultraviolet Floral Pigmentation
    THE EVOLUTIONARY ECOLOGY OF ULTRAVIOLET FLORAL PIGMENTATION by Matthew H. Koski B.S., University of Michigan, 2009 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Biological Sciences University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Matthew H. Koski It was defended on May 4, 2015 and approved by Dr. Susan Kalisz, Professor, Dept. of Biological Sciences, University of Pittsburgh Dr. Nathan Morehouse, Assistant Professor, Dept. of Biological Sciences, University of Pittsburgh Dr. Mark Rebeiz, Assistant Professor, Dept. of Biological Sciences, University of Pittsburgh Dr. Stacey DeWitt Smith, Assistant Professor, Dept. of Ecology and Evolutionary Biology, University of Pittsburgh Dissertation Advisor: Dr. Tia-Lynn Ashman, Professor, Dept. of Biological Sciences, University of Pittsburgh ii Copyright © by Matthew H. Koski 2015 iii THE EVOLUTIONARY ECOLOGY OF ULTRAVIOLET FLORAL PIGMENTATION Matthew H. Koski, PhD University of Pittsburgh, 2015 The color of flowers varies widely in nature, and this variation has served as an important model for understanding evolutionary processes such as genetic drift, natural selection, speciation and macroevolutionary transitions in phenotypic traits. The flowers of many taxa reflect ultraviolet (UV) wavelengths that are visible to most pollinators. Many taxa also display UV reflectance at petal tips and absorbance at petal bases, which manifests as a ‘bullseye’ color patterns to pollinators. Most previous research on UV floral traits has been largely descriptive in that it has identified species with UV pattern and speculated about its function with respect to pollination.
    [Show full text]
  • Zolghadri, Samaneh, Bahrami, Asieh, Hassan Khan, Mahmud Tareq, Munoz, Jose, Garcia-Molina, Francisco, Garcia-Canovas, F
    Citation: Zolghadri, Samaneh, Bahrami, Asieh, Hassan Khan, Mahmud Tareq, Munoz, Jose, Garcia-Molina, Francisco, Garcia-Canovas, F. and Saboury, Ali Akbar (2019) A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34 (1). pp. 279-309. ISSN 1475-6366 Published by: Taylor & Francis URL: https://doi.org/10.1080/14756366.2018.1545767 <https://doi.org/10.1080/14756366.2018.1545767> This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/37532/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.) Journal of Enzyme Inhibition and Medicinal Chemistry ISSN: 1475-6366 (Print) 1475-6374 (Online) Journal homepage: http://tandfonline.com/loi/ienz20 A comprehensive review on tyrosinase inhibitors Samaneh Zolghadri, Asieh Bahrami, Mahmud Tareq Hassan Khan, J.
    [Show full text]