Can Antiviral Activity of Licorice Help Fight COVID-19 Infection?

Total Page:16

File Type:pdf, Size:1020Kb

Can Antiviral Activity of Licorice Help Fight COVID-19 Infection? biomolecules Review Can Antiviral Activity of Licorice Help Fight COVID-19 Infection? Luisa Diomede 1,* , Marten Beeg 1, Alessio Gamba 2 , Oscar Fumagalli 1, Marco Gobbi 1 and Mario Salmona 1,* 1 Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; [email protected] (M.B.); [email protected] (O.F.); [email protected] (M.G.) 2 Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; [email protected] * Correspondence: [email protected] (L.D.); [email protected] (M.S.) Abstract: The phytotherapeutic properties of Glycyrrhiza glabra (licorice) extract are mainly attributed to glycyrrhizin (GR) and glycyrrhetinic acid (GA). Among their possible pharmacological actions, the ability to act against viruses belonging to different families, including SARS coronavirus, is particularly important. With the COVID-19 emergency and the urgent need for compounds to counteract the pandemic, the antiviral properties of GR and GA, as pure substances or as components of licorice extract, attracted attention in the last year and supported the launch of two clinical trials. In silico docking studies reported that GR and GA may directly interact with the key players in viral internalization and replication such as angiotensin-converting enzyme 2 (ACE2), spike protein, the host transmembrane serine protease 2, and 3-chymotrypsin-like cysteine protease. In vitro data indicated that GR can interfere with virus entry by directly interacting with ACE2 and spike, with a nonspecific effect on cell and viral membranes. Additional anti-inflammatory and antioxidant effects of GR cannot be excluded. These multiple activities of GR and licorice extract are critically Citation: Diomede, L.; Beeg, M.; Gamba, A.; Fumagalli, O.; Gobbi, M.; re-assessed in this review, and their possible role against the spread of the SARS-CoV-2 and the Salmona, M. Can Antiviral Activity of features of COVID-19 disease is discussed. Licorice Help Fight COVID-19 Infection? Biomolecules 2021, 11, 855. Keywords: licorice; liquorice; glycyrrhizin; glycyrrhizic acid; glycyrrhetinic acid; enoxolone; virus; https://doi.org/10.3390/biom11060855 SARS-CoV-2; COVID-19 Academic Editor: Koen Vandenbroeck 1. Introduction Received: 31 March 2021 In ancient times, readily available plant extracts were the first sources of “drugs”. Accepted: 2 June 2021 The therapeutic use of Glycyrrhiza glabra (licorice) and its extracts dates back to the dawn Published: 8 June 2021 of time. Scholars of the history of medicine date the first information on its medicinal use to over 4000 years ago [1]. Its use has spread thanks to the ease of agricultural Publisher’s Note: MDPI stays neutral cultivation of its fourteen species in many warm and temperate countries. Therefore, with regard to jurisdictional claims in its therapeutic use has been proposed by many cultures and ethnic groups. The study published maps and institutional affil- of its phytotherapeutic properties reflects the remarkable variety of products with some iations. therapeutic activity present above all in the roots of the plant [2–4]. The pathologies for which these extracts have been used in the past are extremely varied and include disorders of the respiratory, gastrointestinal, cardiovascular, and urinary systems. It was also widely used to treat ocular exenteration and neurodegenerative diseases. Copyright: © 2021 by the authors. Even the toxic effects of these extracts have been duly recorded in tradition. Of interest Licensee MDPI, Basel, Switzerland. is the hypothesis on the death of the philosopher Heraclitus of Ephesus, who had decided This article is an open access article to eat only herbs and roots in the last part of his life. Diogenes Laertius describes his death distributed under the terms and as due to hydropsy because of his vast consumption of licorice roots [5]. conditions of the Creative Commons Only in the last decades, with the development of adequate analytical methods, has it Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ become possible to understand the nature of the molecules present in the extracts. This has 4.0/). had decisive importance in defining the molecules’ therapeutic potential. The knowledge Biomolecules 2021, 11, 855. https://doi.org/10.3390/biom11060855 https://www.mdpi.com/journal/biomolecules Biomolecules 2021, 11, x FOR PEER REVIEW 2 of 20 Biomolecules 2021, 11, 855 2 of 21 has had decisive importance in defining the molecules’ therapeutic potential. The knowledge from the “ancient pharmacopeia” has made it possible to identify plants with potentialfrom therapeutic the “ancient activity pharmacopeia” and describe has thei mader properties it possible in a to modern, identify current plants context. with potential Amongtherapeutic the compounds activity and identified, describe their glycyrrhizic properties acid in or a modern,glycyrrhizin current (GR) context. and its me- tabolites, mainlyAmong glycyrrhetinic the compounds acid identified,(GA) or enoxolone, glycyrrhizic are the acid most or glycyrrhizinimportant [1]. (GR) Their and its possiblemetabolites, pharmacological mainly action glycyrrhetinic includes acidthe pa (GA)rticularly or enoxolone, important are ability the mostto act important against [1]. virusesTheir belonging possible to pharmacologicaldifferent families, action including includes the theSARS particularly coronavirus important [6,7]. With ability the to act COVID-19against emergency viruses belonging and the urgent to different need families,for compounds including to theease SARS the pandemic, coronavirus the [6 an-,7]. With tiviralthe properties COVID-19 of GR emergency and GA, and as pure the urgentsubstances need or for as compounds components to of ease licorice the pandemic, extract, the antiviral properties of GR and GA, as pure substances or as components of licorice extract, have attracted fresh attention over the last year. have attracted fresh attention over the last year. This review critically reassesses these aspects, widely investigated over the last year, This review critically reassesses these aspects, widely investigated over the last year, and examines the possible utility of GR and GA against the spread of the SARS-CoV-2 and examines the possible utility of GR and GA against the spread of the SARS-CoV-2 virus. We have reviewed the antiviral properties of GR and GA, as pure substances or as virus. We have reviewed the antiviral properties of GR and GA, as pure substances or components of licorice, from the year 1947 to the date of the search, which involved the as components of licorice, from the year 1947 to the date of the search, which involved following databases: Embase, Medline, and the Cochrane Library. Title, abstract, and key- the following databases: Embase, Medline, and the Cochrane Library. Title, abstract, and word searches were made using Boolean search operators by extract, on the basis of a keyword searches were made using Boolean search operators by extract, on the basis critical systematic analysis of the literature. To retrieve all the pertinent evidence, the of a critical systematic analysis of the literature. To retrieve all the pertinent evidence, search was done on 28 February 2021 with global geographical coverage and time limits the search was done on 28 February 2021 with global geographical coverage and time on the ProQuest search engine: (“licorice” OR “liquorice” OR “glycyrrhiza glabra” OR limits on the ProQuest search engine: (“licorice” OR “liquorice” OR “glycyrrhiza glabra” “glycyrrhizicOR “glycyrrhizic acid” OR glycyrrhizin acid” OR glycyrrhizin OR “glycyrrhetinic OR “glycyrrhetinic acid” OR “enoxolone”) acid” OR “enoxolone”) AND (an- AND tiviral(antiviral OR virus OROR virus hepatitis). OR hepatitis). A total of A 508 total studies of 508 were studies identified were identified after adjusting after adjustingfor duplicates,for duplicates, and then andanalyzed. then analyzed. After applying After applyinga pre-selected a pre-selected inclusion inclusionand exclusion and exclusioncri- teria basedcriteria on based the authors’ on the authors’own experience, own experience, 84 original 84 articles original were articles deemed were pertinent deemed pertinentfor inclusionfor inclusionin this review. in this review. 2. From2. Traditional From Traditional to Medicinal to Medicinal Use of Use Licorice of Licorice Extract Extract The passageThe passage from empirical from empirical and anecdotal and anecdotal “pharmacology “pharmacology and therapy” and therapy” to the to iden- the identi- tificationfication of each of eachcomponent component of the of mixture the mixture has enabled has enabled us to usre-evaluate to re-evaluate licorice licorice extracts extracts in modernin modern terms termsand give and each give component each component potential potential pharmacological pharmacological dignity. dignity. The iden- The identi- tificationfication in the in extracts the extracts of licorice of licorice roots rootsof molecules of molecules with interesting with interesting biological biological activities activities contributedcontributed to its re-evaluation to its re-evaluation (Table (Table 1). The1). diversity The diversity of molecules of molecules described described in these in these extractsextracts makes makes it challenging it challenging to distinguish to distinguish information
Recommended publications
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Lyme Disease (Chronic)
    Dr.
    [Show full text]
  • Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma by Andrea Shergalis
    Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma By Andrea Shergalis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2020 Doctoral Committee: Professor Nouri Neamati, Chair Professor George A. Garcia Professor Peter J. H. Scott Professor Shaomeng Wang Andrea G. Shergalis [email protected] ORCID 0000-0002-1155-1583 © Andrea Shergalis 2020 All Rights Reserved ACKNOWLEDGEMENTS So many people have been involved in bringing this project to life and making this dissertation possible. First, I want to thank my advisor, Prof. Nouri Neamati, for his guidance, encouragement, and patience. Prof. Neamati instilled an enthusiasm in me for science and drug discovery, while allowing me the space to independently explore complex biochemical problems, and I am grateful for his kind and patient mentorship. I also thank my committee members, Profs. George Garcia, Peter Scott, and Shaomeng Wang, for their patience, guidance, and support throughout my graduate career. I am thankful to them for taking time to meet with me and have thoughtful conversations about medicinal chemistry and science in general. From the Neamati lab, I would like to thank so many. First and foremost, I have to thank Shuzo Tamara for being an incredible, kind, and patient teacher and mentor. Shuzo is one of the hardest workers I know. In addition to a strong work ethic, he taught me pretty much everything I know and laid the foundation for the article published as Chapter 3 of this dissertation. The work published in this dissertation really began with the initial identification of PDI as a target by Shili Xu, and I am grateful for his advice and guidance (from afar!).
    [Show full text]
  • Absorption of Dietary Licorice Isoflavan Glabridin to Blood Circulation in Rats
    J Nutr Sci Vitaminol, 53, 358–365, 2007 Absorption of Dietary Licorice Isoflavan Glabridin to Blood Circulation in Rats Chinatsu ITO1, Naomi OI1, Takashi HASHIMOTO1, Hideo NAKABAYASHI1, Fumiki AOKI2, Yuji TOMINAGA3, Shinichi YOKOTA3, Kazunori HOSOE4 and Kazuki KANAZAWA1,* 1Laboratory of Food and Nutritional Chemistry, Graduate School of Agriculture, Kobe University, Rokkodai, Nada-ku, Kobe 657–8501, Japan 2Functional Food Ingredients Division, Kaneka Corporation, 3–2–4 Nakanoshima, Kita-ku, Osaka 530–8288, Japan 3Functional Food Ingredients Division, and 4Life Science Research Laboratories, Life Science RD Center Kaneka Corporation, 18 Miyamae-machi, Takasago, Hyogo 676–8688, Japan (Received February 19, 2007) Summary Bioavailability of glabridin was elucidated to show that this compound is one of the active components in the traditional medicine licorice. Using a model of intestinal absorption, Caco-2 cell monolayer, incorporation of glabridin was examined. Glabridin was easily incorporated into the cells and released to the basolateral side at a permeability coef- ficient of 1.70Ϯ0.16 cm/sϫ105. The released glabridin was the aglycone form and not a conjugated form. Then, 10 mg (30 ␮mol)/kg body weight of standard chemical glabridin and licorice flavonoid oil (LFO) containing 10 mg/kg body weight of glabridin were adminis- tered orally to rats, and the blood concentrations of glabridin was determined. Glabridin showed a maximum concentration 1 h after the dose, of 87 nmol/L for standard glabridin and 145 nmol/L for LFO glabridin, and decreased gradually over 24 h after the dose. The level of incorporation into the liver was about 0.43% of the dosed amount 2 h after the dose.
    [Show full text]
  • Natural Chalcones in Chinese Materia Medica: Licorice
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2020, Article ID 3821248, 14 pages https://doi.org/10.1155/2020/3821248 Review Article Natural Chalcones in Chinese Materia Medica: Licorice Danni Wang ,1 Jing Liang,2 Jing Zhang,1 Yuefei Wang ,1 and Xin Chai 1 1Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China 2School of Foreign Language, Chengdu University of Traditional Chinese Medicine, Sichuan 611137, China Correspondence should be addressed to Xin Chai; [email protected] Received 28 August 2019; Accepted 7 February 2020; Published 15 March 2020 Academic Editor: Veronique Seidel Copyright © 2020 Danni Wang et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. -ese chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hep- atoprotective activities, and so on. -is review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice.
    [Show full text]
  • Biotransformation of Hydroxychalcones As a Method of Obtaining Novel and Unpredictable Products Using Whole Cells of Bacteria
    catalysts Article Biotransformation of Hydroxychalcones as a Method of Obtaining Novel and Unpredictable Products Using Whole Cells of Bacteria Joanna Kozłowska 1,* , Bartłomiej Potaniec 1,2 and Mirosław Anioł 1 1 Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; [email protected] (B.P.); [email protected] (M.A.) 2 Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland * Correspondence: [email protected] Received: 27 September 2020; Accepted: 8 October 2020; Published: 12 October 2020 Abstract: The aim of our study was the evaluation of the biotransformation capacity of hydroxychalcones—2-hydroxy-40-methylchalcone (1) and 4-hydroxy-40-methylchalcone (4) using two strains of aerobic bacteria. The microbial reduction of the α,β-unsaturated bond of 2-hydroxy-40- methylchalcone (1) in Gordonia sp. DSM 44456 and Rhodococcus sp. DSM 364 cultures resulted in isolation the 2-hydroxy-40-methyldihydrochalcone (2) as a main product with yields of up to 35%. Additionally, both bacterial strains transformed compound 1 to the second, unexpected product of reduction and simultaneous hydroxylation at C-4 position—2,4-dihydroxy-40-methyldihydrochalcone (3) (isolated yields 12.7–16.4%). During biotransformation of 4-hydroxy-40-methylchalcone (4) we observed the formation of three products: reduction of C=C bond—4-hydroxy-40-methyldihydrochalcone (5), reduction of C=C bond and carbonyl group—3-(4-hydroxyphenyl)-1-(4-methylphenyl)propan-1-ol (6) and also unpredictable 3-(4-hydroxyphenyl)-1,5-di-(4-methylphenyl)pentane-1,5-dione (7).
    [Show full text]
  • Isoflavone Supplements for Menopausal Women
    nutrients Review Isoflavone Supplements for Menopausal Women: A Systematic Review 1,2, 1, 3,4, Li-Ru Chen y, Nai-Yu Ko y and Kuo-Hu Chen * 1 Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 10449, Taiwan; [email protected] (L.-R.C.); [email protected] (N.-Y.K.) 2 Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan 3 Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 23142, Taiwan 4 School of Medicine, Tzu-Chi University, Hualien 970, Taiwan * Correspondence: [email protected]; Tel.: +886-2-6628-9779 These authors contributed equally to this work. y Received: 17 September 2019; Accepted: 29 October 2019; Published: 4 November 2019 Abstract: Isoflavones have gained popularity as an alternative treatment for menopausal symptoms for people who cannot or are unwilling to take hormone replacement therapy. However, there is still no consensus on the effects of isoflavones despite over two decades of vigorous research. This systematic review aims to summarize the current literature on isoflavone supplements, focusing on the active ingredients daidzein, genistein, and S-equol, and provide a framework to guide future research. We performed a literature search in Ovid Medline using the search terms “isoflavone” and “menopause”, which yielded 95 abstracts and 68 full-text articles. We found that isoflavones reduce hot flashes even accounting for placebo effect, attenuate lumbar spine bone mineral density (BMD) loss, show beneficial effects on systolic blood pressure during early menopause, and improve glycemic control in vitro. There are currently no conclusive benefits of isoflavones on urogenital symptoms and cognition.
    [Show full text]
  • Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti–Acute Myeloid Leukemia Efficacy in Vitro and in Vivo
    1521-0111/96/5/589–599$35.00 https://doi.org/10.1124/mol.119.116129 MOLECULAR PHARMACOLOGY Mol Pharmacol 96:589–599, November 2019 Copyright ª 2019 by The American Society for Pharmacology and Experimental Therapeutics Isoliquiritigenin, an Orally Available Natural FLT3 Inhibitor from Licorice, Exhibits Selective Anti–Acute Myeloid Leukemia Efficacy In Vitro and In Vivo Zhi-Xing Cao,1 Yi Wen,1 Jun-Lin He, Shen-Zhen Huang, Fei Gao, Chuan-Jie Guo, Qing-Qing Liu, Shu-Wen Zheng, Dao-Yin Gong, Yu-Zhi Li, Ruo-Qi Zhang, Jian-Ping Chen, and Cheng Peng Pharmacy College, Chengdu University of Traditional Chinese Medicine, Ministry of Education Key Laboratory of Standardization Downloaded from of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China (Z.-X.C., J.-L.H., C.-J.G., S.-W.Z., D.-Y.G., Y.-Z.L., R.-Q.Z., J.-P.C., C.P.);School of Chinese Medicine, University of Hong Kong, Hong Kong, China (Y.W., F.G., Q.-Q.L., J.-P.C.); College, Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China (Y.W., F.G., Q.-Q.L., J.-P.C.); and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China (S.-Z.H.) molpharm.aspetjournals.org Received February 19, 2019; accepted August 20, 2019 ABSTRACT Licorice is a medicinal herb widely used to treat inflammation- AML cells.
    [Show full text]
  • Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin
    Review Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin Rashida Ginwala, Raina Bhavsar, DeGaulle I. Chigbu, Pooja Jain and Zafar K. Khan * Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; [email protected] (R.G.); [email protected] (R.B.); [email protected] (D.I.C.); [email protected] (P.J.) * Correspondence: [email protected] Received: 28 November 2018; Accepted: 30 January 2019; Published: 5 February 2019 Abstract: Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination.
    [Show full text]
  • Biosynthesis of Food Constituents: Natural Pigments. Part 2 – a Review
    Czech J. Food Sci. Vol. 26, No. 2: 73–98 Biosynthesis of Food Constituents: Natural Pigments. Part 2 – a Review Jan VELÍšEK, Jiří DAVÍDEK and Karel CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic Abstract Velíšek J., Davídek J., Cejpek K. (2008): Biosynthesis of food constituents: Natural pigments. Part 2 – a review. Czech J. Food Sci., 26: 73–98. This review article is a part of the survey of the generally accepted biosynthetic pathways that lead to the most impor- tant natural pigments in organisms closely related to foods and feeds. The biosynthetic pathways leading to xanthones, flavonoids, carotenoids, and some minor pigments are described including the enzymes involved and reaction schemes with detailed mechanisms. Keywords: biosynthesis; xanthones; flavonoids; isoflavonoids; neoflavonoids; flavonols; (epi)catechins; flavandiols; leu- coanthocyanidins; flavanones; dihydroflavones; flavanonoles; dihydroflavonols; flavones; flavonols; anthocya- nidins; anthocyanins; chalcones; dihydrochalcones; quinochalcones; aurones; isochromenes; curcuminoids; carotenoids; carotenes; xanthophylls; apocarotenoids; iridoids The biosynthetic pathways leading to the tetrapyr- restricted in occurrence to only a few families of role pigments (hemes and chlorophylls), melanins higher plants and some fungi and lichens. The (eumelanins, pheomelanins, and allomelanins), majority of xanthones has been found in basi- betalains (betacyanins and betaxanthins), and cally four families of higher plants, the Clusiaceae quinones (benzoquinones, naphthoquinones, and (syn. Guttiferae), Gentianaceae, Moraceae, and anthraquinones) were described in the first part of Polygalaceae (Peres et al. 2000). Xanthones can this review (Velíšek & Cejpek 2007b). This part be classified based on their oxygenation, prenyla- deals with the biosynthesis of other prominent tion and glucosylation pattern.
    [Show full text]
  • Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens
    International Journal of Molecular Sciences Review Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens Anna Helena Mazurek 1 , Łukasz Szeleszczuk 1,* , Thomas Simonson 2 and Dariusz Maciej Pisklak 1 1 Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; [email protected] (A.H.M.); [email protected] (D.M.P.) 2 Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France; [email protected] * Correspondence: [email protected]; Tel.: +48-501-255-121 Received: 21 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure–activity relationship (QSAR) analyses to examine estrogen’s structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations.
    [Show full text]
  • Studies on the Inclusion Complexes of Daidzein with Β-Cyclodextrin and Derivatives
    Article Studies on the Inclusion Complexes of Daidzein with β-cyclodextrin and Derivatives Shujing Li 1,2,*, Li Yuan 1, Yong Chen 3, Wei Zhou 1,2 and Xinrui Wang 1,2 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; [email protected] (L.Y.); [email protected] (W.Z.); [email protected] (X.W.) 2 Department of Chemistry, School of Science, Beijing Technology and Business University, Beijing 100048, China 3 Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6898-5573 Received: 31 October 2017; Accepted: 5 December 2017; Published: 8 December 2017 Abstract: The inclusion complexes between daidzein and three cyclodextrins (CDs), namely β- cyclodextrin (β-CD), methyl-β-cyclodextrin (Me-β-CD, DS = 12.5) and (2-hydroxy)propyl-β- cyclodextrin (HP-β-CD, DS = 4.2) were prepared. The effects of the inclusion behavior of daidzein with three kinds of cyclodextrins were investigated in both solution and solid state by methods of phase-solubility, XRD, DSC, SEM, 1H-NMR and 2D ROESY methods. Furthermore, the antioxidant activities of daidzein and daidzein-CDs inclusion complexes were determined by the 1,1-diphenyl- 2-picryl-hydrazyl (DPPH) method. The results showed that daidzein formed a 1:1 stoichiometric inclusion complex with β-CD, Me-β-CD and HP-β-CD. The results also showed that the solubility of daidzein was improved after encapsulating by CDs.
    [Show full text]
  • Estrogenicity of Glabridin in Ishikawa Cells
    RESEARCH ARTICLE Estrogenicity of Glabridin in Ishikawa Cells Melissa Su Wei Poh1, Phelim Voon Chen Yong1☯, Navaratnam Viseswaran2, Yoke Yin Chia1☯* 1 School of Biosciences, Division of Medicine, Pharmacy and Health Sciences, Taylor’s University, No. 1, Jln Taylor’s, 47500 Subang Jaya, Malaysia, 2 Postgraduates, Research and Strategic Development, Taylor’s University, No. 1, Jln Taylor’s, 47500 Subang Jaya, Malaysia ☯ These authors contributed equally to this work. * [email protected] Abstract a11111 Glabridin is an isoflavan from licorice root, which is a common component of herbal reme- dies used for treatment of menopausal symptoms. Past studies have shown that glabridin resulted in favorable outcome similar to 17β-estradiol (17β-E2), suggesting a possible role as an estrogen replacement therapy (ERT). This study aims to evaluate the estrogenic ef- fect of glabridin in an in-vitro endometrial cell line -Ishikawa cells via alkaline phosphatase α OPEN ACCESS (ALP) assay and ER- -SRC-1-co-activator assay. Its effect on cell proliferation was also evaluated using Thiazoyl blue tetrazolium bromide (MTT) assay. The results showed that Citation: Su Wei Poh M, Voon Chen Yong P, glabridin activated the ER-α-SRC-1-co-activator complex and displayed a dose-dependent Viseswaran N, Chia YY (2015) Estrogenicity of Glabridin in Ishikawa Cells. PLoS ONE 10(3): increase in estrogenic activity supporting its use as an ERT. However, glabridin also in- e0121382. doi:10.1371/journal.pone.0121382 duced an increase in cell proliferation. When glabridin was treated together with 17β-E2, Academic Editor: Jae-Wook Jeong, Michigan State synergistic estrogenic effect was observed with a slight decrease in cell proliferation as University, UNITED STATES compared to treatment by 17β-E2 alone.
    [Show full text]