The Genetic Architecture of UV Floral Patterning in Sunflower
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biosynthesis of Food Constituents: Natural Pigments. Part 2 – a Review
Czech J. Food Sci. Vol. 26, No. 2: 73–98 Biosynthesis of Food Constituents: Natural Pigments. Part 2 – a Review Jan VELÍšEK, Jiří DAVÍDEK and Karel CEJPEK Department of Food Chemistry and Analysis, Faculty of Food and Biochemical Technology, Institute of Chemical Technology in Prague, Prague, Czech Republic Abstract Velíšek J., Davídek J., Cejpek K. (2008): Biosynthesis of food constituents: Natural pigments. Part 2 – a review. Czech J. Food Sci., 26: 73–98. This review article is a part of the survey of the generally accepted biosynthetic pathways that lead to the most impor- tant natural pigments in organisms closely related to foods and feeds. The biosynthetic pathways leading to xanthones, flavonoids, carotenoids, and some minor pigments are described including the enzymes involved and reaction schemes with detailed mechanisms. Keywords: biosynthesis; xanthones; flavonoids; isoflavonoids; neoflavonoids; flavonols; (epi)catechins; flavandiols; leu- coanthocyanidins; flavanones; dihydroflavones; flavanonoles; dihydroflavonols; flavones; flavonols; anthocya- nidins; anthocyanins; chalcones; dihydrochalcones; quinochalcones; aurones; isochromenes; curcuminoids; carotenoids; carotenes; xanthophylls; apocarotenoids; iridoids The biosynthetic pathways leading to the tetrapyr- restricted in occurrence to only a few families of role pigments (hemes and chlorophylls), melanins higher plants and some fungi and lichens. The (eumelanins, pheomelanins, and allomelanins), majority of xanthones has been found in basi- betalains (betacyanins and betaxanthins), and cally four families of higher plants, the Clusiaceae quinones (benzoquinones, naphthoquinones, and (syn. Guttiferae), Gentianaceae, Moraceae, and anthraquinones) were described in the first part of Polygalaceae (Peres et al. 2000). Xanthones can this review (Velíšek & Cejpek 2007b). This part be classified based on their oxygenation, prenyla- deals with the biosynthesis of other prominent tion and glucosylation pattern. -
The Evolutionary Ecology of Ultraviolet Floral Pigmentation
THE EVOLUTIONARY ECOLOGY OF ULTRAVIOLET FLORAL PIGMENTATION by Matthew H. Koski B.S., University of Michigan, 2009 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Biological Sciences University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Matthew H. Koski It was defended on May 4, 2015 and approved by Dr. Susan Kalisz, Professor, Dept. of Biological Sciences, University of Pittsburgh Dr. Nathan Morehouse, Assistant Professor, Dept. of Biological Sciences, University of Pittsburgh Dr. Mark Rebeiz, Assistant Professor, Dept. of Biological Sciences, University of Pittsburgh Dr. Stacey DeWitt Smith, Assistant Professor, Dept. of Ecology and Evolutionary Biology, University of Pittsburgh Dissertation Advisor: Dr. Tia-Lynn Ashman, Professor, Dept. of Biological Sciences, University of Pittsburgh ii Copyright © by Matthew H. Koski 2015 iii THE EVOLUTIONARY ECOLOGY OF ULTRAVIOLET FLORAL PIGMENTATION Matthew H. Koski, PhD University of Pittsburgh, 2015 The color of flowers varies widely in nature, and this variation has served as an important model for understanding evolutionary processes such as genetic drift, natural selection, speciation and macroevolutionary transitions in phenotypic traits. The flowers of many taxa reflect ultraviolet (UV) wavelengths that are visible to most pollinators. Many taxa also display UV reflectance at petal tips and absorbance at petal bases, which manifests as a ‘bullseye’ color patterns to pollinators. Most previous research on UV floral traits has been largely descriptive in that it has identified species with UV pattern and speculated about its function with respect to pollination. -
Anthochlor Pigments and Pollination Biology. I. the UV Absorption of Antirrhinum Majus Flowers Ron Scogin Rancho Santa Ana Botanic Garden
Aliso: A Journal of Systematic and Evolutionary Botany Volume 8 | Issue 4 Article 7 1976 Anthochlor Pigments and Pollination Biology. I. The UV Absorption of Antirrhinum majus Flowers Ron Scogin Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Scogin, Ron (1976) "Anthochlor Pigments and Pollination Biology. I. The UV Absorption of Antirrhinum majus Flowers," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 8: Iss. 4, Article 7. Available at: http://scholarship.claremont.edu/aliso/vol8/iss4/7 ALISO VoL. 8, No. 4, pp. 425-427 SEPTEMBER 30, 1976 ANTHOCHLOR PIGMENTS AND POLLINATION BIOLOGY. I. THE UV ABSORPTION OF ANTIRRHINUM MAJUS FLOWERS RoN ScocIN Rancho Santa Ana Botanic Garden Claremont, California 91711 INTRODUCTION The existence of UV-absorbing, floral pigmentation patterns invisible to the human eye, but visible to insect pollinators, was photographically docu mented early in this century ( Richtmyer, 1923; Lutz, 1924). Identification of the chemical compounds responsible for producing these patterns was accomplished only recently when Thompson et al. ( 1972) demonstrated that flavonol glycosides produced the floral UV-absorption pattern present in Rudbeckia hirta L. Those workers noted ( their footnote 16) that the antho chlor pigments ( aurones and chalcones) also possess absorption maxima appropriate for participation in floral UV-absorption phenomena. This paper presents the first experimental demonstration of the involvement of aurones in imparting UV absorption to a flower. MATERIALS AND METHODS Bedding plants of a yellow, garden variety ( unknown genetic stock) of Antirrhinum mafus L. ( Scrophulariaceae) were purchased from a local nursery supplier. -
Insights for the Valorization of Biomass from Portuguese Invasive Acacia Spp
Review Insights for the Valorization of Biomass from Portuguese Invasive Acacia spp. in a Biorefinery Perspective Ricardo Correia 1 , José Carlos Quintela 2, Maria Paula Duarte 1 and Margarida Gonçalves 1,3,* 1 Mechanical Engineering and Resources Sustainability Centre, Department of Sciences and Technology of Biomass, Faculty of Sciences and Technology, New University of Lisbon, 1099-085 Caparica, Portugal; [email protected] (R.C.); [email protected] (M.P.D.) 2 Natac Biotech, C/Electrónica 7, 28923 Alcorcón, Madrid, Spain; [email protected] 3 VALORIZA-Research Center for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-555 Portalegre, Portugal * Correspondence: [email protected] Received: 25 November 2020; Accepted: 10 December 2020; Published: 16 December 2020 Abstract: Acacia spp. are widespread all over the Portuguese territory, representing a threat to local biodiversity and to the productivity of the forest sector. The measures adopted in some countries for their eradication or to control their propagation are expensive, have been considered unfeasible from practical and economical perspectives, and have generated large amounts of residue that must be valorized in a sustainable way. This review brings together information on the valorization of bark, wood, leaves, flowers, pods, seeds, roots, and exudates from Acacia spp., through the production of high-value bioactive extracts (e.g., antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antiviral, anthelmintic, or pesticidal agents, suitable to be explored by pharmaceutical, nutraceutical, cosmetics, and food and feed industries), its incorporation in innovative materials (e.g., polymers and composites, nanomaterials, low-cost adsorbents), as well as through the application of advanced thermochemical processes (e.g., flash pyrolysis) and pre-treatments to decompose biomass in its structural components, regarding the production of biofuels along with valuable chemicals derived from cellulose, hemicellulose, and lignin. -
Use of Chrysantellum Americanum ( L.) Vatke As Supplement
European Scientific Journal December 2013 edition vol.9, No.36 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 USE OF CHRYSANTELLUM AMERICANUM ( L.) VATKE AS SUPPLEMENT Lydia Ferrara Chair of Hydrology Chemistry, Department of Pharmacy, University of Naples "Federico II”, Naples Abstract The Chrysantellum americanum (L.) Vatke is a plant belonging to the family of Compositae long used in traditional medicine as hepatoprotector, biliary drainage, analgesic, rheumatic pains and kidney, as vasoprotector capillary and venous endothelium.The analysis of the protein fraction of Chrysantellum americanum (L.)Vatke revealed a content of crude proteins determined by the method of Kjeldahl equal to 10%. After acid hydrolysis of proteins, by GC-MS, were identified fifteen amino acids: glycine, valine, leucine, isoleucine, proline, methionine, serine, threonine, phenylalanine, aspartic acid, glutamic acid, arginine, lysine, histidine, tyrosine, and also the GABA The action tonic, hepatoprotective, lipid- lowering and venotropic of phytocomplex also makes it suitable as a supplement to the established tolerability devoid of toxic and teratogenic effects Keywords: Chrysanthellum americanum, hepatoprotective herb, protein analysis Introduction The Chrysantellum americanum (L).Vatke is a herbaceous plant of the Compositae family that grows in the tropical zone of Africa from Senegal to Nigeria and tropical America from southern Mexico to northern Brazil preferring the wastelands, dry and rocky. The plant grows up to 30 cm tall, erect or prostrate with very jagged leaves, three or five lobes deeply incised, each lobe is in turn divided and ends in a pointed shape . The flowers are yellow heads with peduncles 3-5 cm up to 6 cm, the fruits are achenes flattened, dark-colored, flared walls at the top and surrounded by a bract whitish. -
4-Deoxyaurone Formation in Bidens Ferulifolia (Jacq.) DC
4-Deoxyaurone Formation in Bidens ferulifolia (Jacq.) DC Silvija Miosic1, Katrin Knop2, Dirk Ho¨ lscher3,Ju¨ rgen Greiner1, Christian Gosch1, Jana Thill1, Marco Kai3, Binita Kumari Shrestha1, Bernd Schneider3, Anna C. Crecelius2, Ulrich S. Schubert2, Alesˇ Svatosˇ3, Karl Stich1, Heidi Halbwirth1* 1 Institut fu¨r Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, Technische Universita¨t Wien, Wien, Austria, 2 Institut fu¨r Organische Chemie und Makromolekulare Chemie (IOMC, Lehrstuhl II/Schubert), Friedrich-Schiller Universita¨t of Jena, Jena, Germany, 3 Max-Planck-Institut fu¨r chemische O¨ kologie, Jena, Germany Abstract The formation of 4-deoxyaurones, which serve as UV nectar guides in Bidens ferulifolia (Jacq.) DC., was established by combination of UV photography, mass spectrometry, and biochemical assays and the key step in aurone formation was studied. The yellow flowering ornamental plant accumulates deoxy type anthochlor pigments (69-deoxychalcones and the corresponding 4-deoxyaurones) in the basal part of the flower surface whilst the apex contains only yellow carotenoids. For UV sensitive pollinating insects, this appears as a bicoloured floral pattern which can be visualized in situ by specific ammonia staining of the anthochlor pigments. The petal back side, in contrast, shows a faintly UV absorbing centre and UV absorbing rays along the otherwise UV reflecting petal apex. Matrix-free UV laser desorption/ionisation mass spectrometric imaging (LDI-MSI) indicated the presence of 9 anthochlors in the UV absorbing areas. The prevalent pigments were derivatives of okanin and maritimetin. Enzyme preparations from flowers, leaves, stems and roots of B. ferulifolia and from plants, which do not accumulate aurones e.g. Arabidopsis thaliana, were able to convert chalcones to aurones.