Modelling of Microgrid Energy Systems with Concentrated Solar Power
Total Page:16
File Type:pdf, Size:1020Kb
Modelling of microgrid energy systems with concentrated solar power Niccolò Oggioni Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2019-MJ232X Division of Heat and Power Technology SE-100 44 STOCKHOLM Ai miei genitori, per il loro costante e indiscusso supporto, A mio fratello Jacopo, per essersi preso cura di mamma e papà in questi due anni, A te, Elena, per esserci sempre stata. Master of Science Thesis EGI 2019: MJ232X Modelling of microgrid energy systems with concentrated solar power Niccolò Oggioni Approved Examiner Supervisor 31/07/19 Björn Laumert Rafael E. Guédez Mata Commissioner Contact person Azelio Martin Nilsson Abstract This master’s thesis presents the work performed during a four-month long internship at Azelio AB in Gothenburg. Energy performance models for common energy technologies in microgrid energy systems were developed and validated. The investigated technologies are traditional and bifacial PV modules, wind turbines, Li-ion battery energy storage systems and diesel generators. Subsequently, they were utilised to simulate the energy supply of two remote communities in Queensland, Australia. Azelio’s CSP technology, which combines heliostats, thermal energy storage with phase change materials and Stirling engine, was introduced as well. By means of scenarios and key performance indicators, the possibility of disconnecting such towns from the local electricity distribution network was investigated. Both technical and economic aspects were analysed. This led to the conclusion that 10 MW CSP system would be sufficient to achieve grid independence if extra backup capacity, e.g. diesel generators, or demand- side control strategies, are introduced. Sensitivity analysis performed on the possibility of dividing the CSP park into two clusters, the smaller one being subject to a power threshold, was investigated as well. In terms of economic feasibility, off-grid systems resulted more expensive than maintaining the grid connection. Sammanfattning Denna master’s uppsats presenterar alla resultat från examensarbetet hos Azelio AB i Göteborg. Energy performance models för de vanligaste energiteknologerna i microgrid energisystemen designades och validerades. De forskade energiteknologerna var traditionella och bifacial solpaneler, vindkraft, energilagring genom Li- ion batterier och dieselgeneratorer. Modellerna användes för att simulera energiförsörjning av olika energisystem som representerar två isolerade byar i Queensland, Australia. Azelio’s CSP teknologi, som består av heliostater, värmenergilagring med phase change material och en Stirlingmotor, introducerades också. Genom att designa olika scenarier och key perfomance indicators, möjligheten att koppla av byarna ifrån det lokala kraftnätsystemet utforskades. Båda tekniska och ekonomiska synpunkter värderades. Det beslutades att 10 MW CSP kapacitet kan vara nog i mycket för att nå energisjälvständighet om ytterligare backupkapacitet, t.ex. en dieselgenerator, eller demand side control strategies introducerades. Känslighetsanalys utforskade möjligheten att dela CSP systemet i två olika delar, där den med lägre kapacitet kunde avkopplas för att undvika onödig energiförsörjning. Om ekonomiska utförbarhet, off-grid system verkade dyrare än sådana system där byarna var fortfarande kopplat till det lokala kraftnätet. Acknowledgements I would like to thank my KTH supervisor, Rafael Guédez, for his support and helpful insights, and, most importantly, for having given me the chance to collaborate with him and Azelio AB. Special thanks to my supervisor at Azelio AB, Martin Nilsson. Without him I would have never been able to complete this project. His help and feedbacks have always been treasured, especially his patience in introducing me to Modelica. I would also like to thank the entire Azelio team at the Gothenburg office, for the warm welcome and inclusion, for all the shared lunchbreaks and laughs. ii Table of Contents List of figures ................................................................................................................................................................ iv List of tables ................................................................................................................................................................. vii Abbreviations and nomenclature ............................................................................................................................... ix 1 Introduction .......................................................................................................................................................... 1 1.1 Objective and methodology ...................................................................................................................... 3 2 Literature review ................................................................................................................................................... 4 2.1 Modelling language and software ............................................................................................................. 4 2.2 Azelio’s CSP technology ............................................................................................................................ 4 2.2.1 Stirling engine ..................................................................................................................................... 4 2.2.2 Phase Change Materials and Thermal Energy Storage ................................................................ 5 2.3 Solar PV modules and bifacial PV modules ........................................................................................... 6 2.4 Wind turbines .............................................................................................................................................. 8 2.5 Diesel generators ......................................................................................................................................... 9 2.6 Battery storage ............................................................................................................................................. 9 2.7 Microgrids ..................................................................................................................................................11 3 System modelling ................................................................................................................................................12 3.1 Azelio AB’s CSP with integrated TES ...................................................................................................12 3.2 Solar PV and bifacial PV modules .........................................................................................................14 3.2.1 PV modules and arrays....................................................................................................................14 3.2.2 Bifacial PV modules and arrays .....................................................................................................16 3.2.3 Inverter ..............................................................................................................................................18 3.3 Wind turbines and wind farm .................................................................................................................19 3.3.1 Wind shear ........................................................................................................................................19 3.3.2 Wind turbine .....................................................................................................................................20 3.3.3 Wind farm .........................................................................................................................................25 3.4 Diesel generators .......................................................................................................................................27 3.4.1 Estimated fuel consumption ..........................................................................................................27 3.4.2 Manufacturer fuel consumption ....................................................................................................28 3.5 Battery storage ...........................................................................................................................................29 3.5.1 Power model .....................................................................................................................................29 3.5.2 Thermal model .................................................................................................................................30 3.6 Grid connection ........................................................................................................................................32 3.7 Examples of integrated model ................................................................................................................32 3.7.1 Energy system without CSP ...........................................................................................................32 3.7.2 CSP integrated energy system ........................................................................................................33 4 Case study: remote communities in Queensland, Australia ........................................................................34 iii 4.1 Introduction ...............................................................................................................................................34