Taxonomy and DNA Barcoding in the Genus Manfreda (Salisb.) Asparagaceae William David Ritchie University of Arkansas, Fayetteville

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy and DNA Barcoding in the Genus Manfreda (Salisb.) Asparagaceae William David Ritchie University of Arkansas, Fayetteville University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2012 Taxonomy and DNA Barcoding in the Genus Manfreda (Salisb.) Asparagaceae William David Ritchie University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Horticulture Commons, Plant Biology Commons, and the Plant Breeding and Genetics Commons Recommended Citation Ritchie, William David, "Taxonomy and DNA Barcoding in the Genus Manfreda (Salisb.) Asparagaceae" (2012). Theses and Dissertations. 576. http://scholarworks.uark.edu/etd/576 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. TAXONOMY AND DNA BARCODING IN THE GENUS MANFREDA SALISB. (ASPARAGACEAE) TAXONOMY AND DNA BARCODING IN THE GENUS MANFREDA SALISB. (ASPARAGACEAE) A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Horticulture By William David Ritchie Royal Botanic Garden Edinburgh Bachelor of Science in Horticulture, 2010 December 2012 University of Arkansas ABSTRACT The genus Manfreda Salisb. of Asparagaceae is a genus of potential horticultural interest and is currently subject to breeding efforts at the University of Arkansas. A lack of taxonomic clarity however undermines the classification of potential inter - and intrageneric hybrids. The study aims to assess existing species delimitation within the genus Manfreda employing morphology while investigating the potential utility of Consortium for the Barcode of Life Plant (CBOL) DNA Barcodes for identification of specific taxa and an External Transcribed Spacer (ETS) - Internal Transcribed Spacer (ITS) DNA barcode for developed hybridized taxa. Observation of 855 herbarium specimens facilitated phylogenetic and Principal Component Analysis of morphology. Phylogenetic analysis employing Maximum Parsimony and Bayesian techniques of qualitative characters failed to identify any interspecific relationships with sufficient confidence. Principal Component Analysis identified 14 species exhibiting uniformity in categorical characters. The residual seven were subjected to further review employing existing literature, biogeographical and morphological data from herbarium specimens. The study supported specific designations of 19 of 21 species studied. A proposal for Manfreda pubescens (Regel & Ortgies) Verh.-Will. ex Espejo & López-Ferr. to be relegated to a varietal rank of Manfreda maculata (Mart) Rose was concluded based on a lack of consistent derived characters as well as biogeographical and ecological continuity. Utility of the CBOL Plant DNA Barcode for identification of Manfreda species was investigated employing phylogenetic and nucleotide networking techniques. The CBOL Plant DNA Barcode failed to identify any interspecific relationships via Maximum Parsimony or Bayesian techniques. Sufficient variation however was available for differentiation of each species of Manfreda via composition of a nucleotide network map. Results allude to minimal divergence between species of Manfreda, yet sufficient derived characters for functionality of CBOL Plant DNA Barcodes. Analysis of an ETS - ITS DNA barcode for identification of intergeneric hybridized taxa of Agave L., Manfreda and Polianthes L. could not be conducted due to inefficiencies in DNA amplification techniques. The ETS gene region could not be amplified, a trial of three different amplification parameters was conducted and a lack of appropriate PCR primers was identified as the cause of no amplification. Amplification of the ITS gene region was successfully achieved; however, subsequent analysis of the electropherogram alluded to intra-individual polymorphisms within the genome. Therefore,it was concluded that the utility of the ITS region is negligible for DNA barcoding of the maag 01-07-13, mapo 01-04-07 and mapo 05-04-02 intergeneric hybrids. This thesis is approved for recommendation to the Graduate Council. Thesis Director: Dr. Jon Lindstrom Thesis Committee: Dr. Brad Murphy Dr. John Clark Dr. Ashley Dowling THESIS DUPLICATION RELEASE I hereby authorize the University of Arkansas Libraries to duplicate this thesis when needed for research and/or scholarship. Agreed William David Ritchie Refused William David Ritchie ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Jon T. Lindstrom for his mentorship throughout this project and for allowing me to work under his tutelage. I would also like to thank my committee members, Dr. John R. Clark, Dr. J. Brad Murphy and Dr. Ashley P.G. Dowling for their assistance and guidance. Finally, I would also like to thank Dr. Johnnie L. Gentry Jr. who facilitated study at the University of Arkansas Herbarium. DEDICATION This thesis is dedicated to those who continue to explain and explore the world of plants in Arkansas, through botanical gardens, herbaria and academia. TABLE OF CONTENTS Page Introduction ................................................................................................................................ 1 Literature Review....................................................................................................................... 8 Morphological Systematic Research ...................................................................................... 8 Morphological Characters .................................................................................................... 15 Roots ................................................................................................................................. 15 Leaves ............................................................................................................................... 15 Stem .................................................................................................................................. 20 Inflorescence ..................................................................................................................... 20 Flowers ............................................................................................................................. 21 Fruit .................................................................................................................................. 24 Seeds ................................................................................................................................. 24 Principal Component Analysis ............................................................................................. 25 Molecular Systematic Research ........................................................................................... 27 Molecular Systematic Study of Asparagales Link. and Asparagaceae Juss. .................... 28 Molecular Systematic Study of Agavoideae and Manfreda Salisb. ................................. 31 Phylogenetic Utility of rbcL Gene Region ........................................................................... 33 Phylogenetic Utility of MatkK Gene Region ....................................................................... 34 Maximum Parsimony Analysis ............................................................................................ 35 Bayesian Analysis ................................................................................................................ 35 Nucleotide Network Analysis .............................................................................................. 38 DNA Barcoding Research .................................................................................................... 40 Sufficient Size................................................................................................................... 41 Taxon Discrimination ....................................................................................................... 41 Routine Amplification ...................................................................................................... 42 Universal DNA Barcoding ............................................................................................... 43 Selection of Appropriate Gene Region(s) ........................................................................ 45 Selection of CBOL Plant DNA Barcoding Regions ......................................................... 47 DNA Barcoding for Horticulture ......................................................................................... 48 Potential DNA Barcoding Regions for Horticultural Application ....................................... 52 Internal Transcribed Spacer (ITS) .................................................................................... 52 External Transcribed Spacer (ETS) .................................................................................. 54 Literature Cited ................................................................................................................... 57 Chapter 1: Study of Specific Delimitation for Manfreda Salisb. (Asparagaceae) inferred from Principal Component, Phylogenetic Analysis of Morphology and Geographical Data .......... 72 Introduction .......................................................................................................................... 72 Materials and Methods ......................................................................................................... 74 Results .................................................................................................................................
Recommended publications
  • The Structure of the Perennial Growth of Disa Un/Flora Berg
    THE STRUCTURE OF THE PERENNIAL GROWTH OF DISA UN/FLORA BERG. ( ORCHIDACEAE) HONOURS SYSTEMATICS PROJECT JANET THOMAS OCTOBER 1990 SUPERVISOR: DR . .H.P. LINDER University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town BOLUS LIBRARY 1 ABSTRACT The perennation of orchids is poorly understood, in particular that of the Orchidoidae. The understanding of perennation in the Orchidoidae is important because the root-stem tuberoid .is used as the one character defining the Orchidoidae as a monophyletic group. The root-stem tuberoid has never been examined for variation before. This project focuses on perennial growth in the Diseae in order to study the structbre and function of the root stem tuberoid in relation tp other organs and to contribute to the understanding of Orchidoid phylogeny. , INTRODUCTION Host te1perate monocotyledons have evolved underground resting or perennating organs for the climatically unfavourable season (Holttum 1955). A period of underground existence may allow a plant to escape unfavourable conditions, to counter environmental uncertainty, and to build reserves for flowering episodes (Calvo 1990). This is especially evident in the temperate members of the Orchidaceae and is made possible through sympodial growth· (Withnerj1974). Not .all temperate orchids have a resting period although they do have sympodial growth and do perennate.
    [Show full text]
  • Using DNA Barcodes to Identify and Classify Living Things
    Using DNA Barcodes to Identify and Classify Living Things www.dnabarcoding101.org LABORATORY Using DNA Barcodes to Identify and Classify Living Things OBJECTIVES This laboratory demonstrates several important concepts of modern biology. During this laboratory, you will: • Collect and analyze sequence data from plants, fungi, or animals—or products made from them. • Use DNA sequence to identify species. • Explore relationships between species. In addition, this laboratory utilizes several experimental and bioinformatics methods in modern biological research. You will: • Collect plants, fungi, animals, or products in your local environment or neighborhood. • Extract and purify DNA from tissue or processed material. • Amplify a specific region of the chloroplast, mitochondrial, or nuclear genome by polymerase chain reaction (PCR) and analyze PCR products by gel electrophoresis. • Use the Basic Local Alignment Search Tool (BLAST) to identify sequences in databases. • Use multiple sequence alignment and tree-building tools to analyze phylogenetic relation - ships. INTRODUCTION Taxonomy, the science of classifying living things according to shared features, has always been a part of human society. Carl Linneas formalized biological classifi - cation with his system of binomial nomenclature that assigns each organism a genus and species name. Identifying organisms has grown in importance as we monitor the biological effects of global climate change and attempt to preserve species diversity in the face of accelerating habitat destruction. We know very little about the diversity of plants and animals—let alone microbes—living in many unique ecosystems on earth. Less than two million of the estimated 5–50 million plant and animal species have been identified. Scientists agree that the yearly rate of extinction has increased from about one species per million to 100–1,000 species per million.
    [Show full text]
  • DNA Barcoding Distinguishes Pest Species of the Black Fly Genus <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 11-2013 DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae) I. M. Confitti University of Toronto K. P. Pruess University of Nebraska-Lincoln A. Cywinska Ingenomics, Inc. T. O. Powers University of Nebraska-Lincoln D. C. Currie University of Toronto and Royal Ontario Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Confitti, I. M.; Pruess, K. P.; Cywinska, A.; Powers, T. O.; and Currie, D. C., "DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae)" (2013). Faculty Publications: Department of Entomology. 616. http://digitalcommons.unl.edu/entomologyfacpub/616 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MOLECULAR BIOLOGY/GENOMICS DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae) 1,2 3 4 5 1,2,6 I. M. CONFLITTI, K. P. PRUESS, A. CYWINSKA, T. O. POWERS, AND D. C. CURRIE J. Med. Entomol. 50(6): 1250Ð1260 (2013); DOI: http://dx.doi.org/10.1603/ME13063 ABSTRACT Accurate species identiÞcation is essential for cost-effective pest control strategies. We tested the utility of COI barcodes for identifying members of the black ßy genus Cnephia Enderlein (Diptera: Simuliidae). Our efforts focus on four Nearctic Cnephia speciesÑCnephia dacotensis (Dyar & Shannon), Cnephia eremities Shewell, Cnephia ornithophilia (Davies, Peterson & Wood), and Cnephia pecuarum (Riley)Ñthe latter two being current or potential targets of biological control programs.
    [Show full text]
  • Studies on Variability, Heritability and Genetic Advance in Double Type
    International Journal of Chemical Studies 2020; 8(1): 3101-3104 P-ISSN: 2349–8528 E-ISSN: 2321–4902 www.chemijournal.com Studies on variability, heritability and genetic IJCS 2020; 8(1): 3101-3104 © 2020 IJCS advance in double type genotypes of tuberose Received: 26-11-2019 Accepted: 28-12-2019 (Agave amica (Medik.) Syn. Polianthes tuberosa L.) Ratna Priyanka R Ph.D. Scholar, Department of Floriculture and Landscaping, Tamil Nadu Agricultural Ratna Priyanka R, M Kannan, M Ganga and N Kumaravadivel University, Coimbatore, Tamil Nadu, India DOI: https://doi.org/10.22271/chemi.2020.v8.i1au.8741 M Kannan Professor, Directorate of Abstract Research, Tamil Nadu The present study on performance and genetic variability studies in tuberose (Agave amica (Medik.) Syn. Agricultural University, Polianthes tuberosa L.) Double type genotypes was conducted at Botanical Garden, Department of Coimbatore, Tamil Nadu, India Floriculture and Landscape Architecture, Tamil Nadu Agricultural University during the year 2018-2020. Among five double type genotypes, Suvasini followed by Hyderabad Double and Vaibhav showed better M Ganga performance in vegetative, flowering and yield parameters with spike yield of 3.38, 3.31 and 3.25 spikes/ Associate Professor (Hort.), plant respectively and bulb yield of 735.00, 654.75 and 540.75 g/ plant respectively. Among different Department of Floriculture and vegetative and flowering parameters recorded, phenotypic coefficient of variation and genotypic Landscape Architecture, Tamil coefficient of variation were found to
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Arthur Monrad Johnson Colletion of Botanical Drawings
    http://oac.cdlib.org/findaid/ark:/13030/kt7489r5rb No online items Arthur Monrad Johnson colletion of botanical drawings 1914-1941 Processed by Pat L. Walter. Louise M. Darling Biomedical Library History and Special Collections Division History and Special Collections Division UCLA 12-077 Center for Health Sciences Box 951798 Los Angeles, CA 90095-1798 Phone: 310/825-6940 Fax: 310/825-0465 Email: [email protected] URL: http://www.library.ucla.edu/libraries/biomed/his/ ©2008 The Regents of the University of California. All rights reserved. Arthur Monrad Johnson colletion 48 1 of botanical drawings 1914-1941 Descriptive Summary Title: Arthur Monrad Johnson colletion of botanical drawings, Date (inclusive): 1914-1941 Collection number: 48 Creator: Johnson, Arthur Monrad 1878-1943 Extent: 3 boxes (2.5 linear feet) Repository: University of California, Los Angeles. Library. Louise M. Darling Biomedical Library History and Special Collections Division Los Angeles, California 90095-1490 Abstract: Approximately 1000 botanical drawings, most in pen and black ink on paper, of the structural parts of angiosperms and some gymnosperms, by Arthur Monrad Johnson. Many of the illustrations have been published in the author's scientific publications, such as his "Taxonomy of the Flowering Plants" and articles on the genus Saxifraga. Dr. Johnson was both a respected botanist and an accomplished artist beyond his botanical subjects. Physical location: Collection stored off-site (Southern Regional Library Facility): Advance notice required for access. Language of Material: Collection materials in English Preferred Citation [Identification of item], Arthur Monrad Johnson colletion of botanical drawings (Manuscript collection 48). Louise M. Darling Biomedical Library History and Special Collections Division, University of California, Los Angeles.
    [Show full text]
  • TAXON:Polianthes Tuberosa SCORE
    TAXON: Polianthes tuberosa SCORE: -9.0 RATING: Low Risk Taxon: Polianthes tuberosa Family: Asparagaceae Common Name(s): tuberosa Synonym(s): Agave polianthes Thiede & Eggli tuberose Crinum angustifolium Houtt. Polianthes gracilis Link Tuberosa amica Medik. Assessor: Chuck Chimera Status: Assessor Approved End Date: 30 Mar 2015 WRA Score: -9.0 Designation: L Rating: Low Risk Keywords: Herbaceous, Ornamental, Fragrant, White-flowered, Vegetatively-Propagated Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 y 102 Has the species become naturalized where grown? y=1, n=-1 n 103 Does the species have weedy races? y=1, n=-1 n Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed
    [Show full text]
  • AGCBC Seedlist2019booklet
    ! Alpine Garden Club of British Columbia Seed Exchange 2019 Alpine Garden Club of British Columbia Seed Exchange 2019 We are very grateful to all those members who have made our Seed Exchange possible through donating seeds. The number of donors was significantly down this year, which makes the people who do donate even more precious. We particularly want to thank the new members who donated seed in their first year with the Club. A big thank-you also to those living locally who volunteer so much time and effort to packaging and filling orders. READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE FILLING IN THE REQUEST FORM. PLEASE KEEP YOUR SEED LIST, packets will be marked by number only. Return the enclosed request form by mail or, if you have registered to do so, by the on-line form, as soon as possible, but no later than DECEMBER 8. Allocation: Donors may receive up to 60 packets and non-donors 30 packets, limit of one packet of each selection. Donors receive preference for seeds in short supply (USDA will permit no more than 50 packets for those living in the USA). List first choices by number only, in strict numerical order, from left to right on the order form. Enter a sufficient number of second choices in the spaces below, since we may not be able to provide all your first choices. Please print clearly. Please be aware that we have again listed wild collected seed (W) and garden seed (G) of the same species separately, which is more convenient for people ordering on-line.
    [Show full text]
  • Identification of Anoectochilus Based on Rdna ITS Sequences Alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5
    Int. J. Biol. Sci. 2009, 5 727 International Journal of Biological Sciences 2009; 5(7):727-735 © Ivyspring International Publisher. All rights reserved Research Paper Identification of Anoectochilus based on rDNA ITS sequences alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5 1. Institute of Medicinal Plant Development, Beijing Union Medical College/Chinese Academy of Medicinal Sciences, Beijing 100193, China; 2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 3. Institute of Beijing Pharmacochemistry, Beijing 102205, China; 4. Central Laboratory of 306 Hospital of PLA, Beijing 100083, China; 5. Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Corresponding authors: [email protected] (Guo SX); [email protected] (Shao HB). Posting address: Dr. Professor Shao Hongbo, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Received: 2009.08.28; Accepted: 2009.11.26; Published: 2009.12.02 Abstract The internal transcribed spacer (ITS) sequences alignment and proteomic difference of Anoectochilus interspecies have been studied by means of ITS molecular identification and surface enhanced laser desorption ionization time of flight mass spectrography. Results showed that variety certification on Anoectochilus by ITS sequences can not determine spe- cies, and there is proteomic difference among Anoectochilus interspecies. Moreover, pro- teomic finger printings of five Anoectochilus species have been established for identifying spe- cies, and genetic relationships of five species within Anoectochilus have been deduced ac- cording to proteomic differences among five species. Key words: Anoectochilus, ITS, proteomic finger printing, SELDI sterile condition.
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Dyuhei Sato Division of Genetics, Bot. Inst. Faculty of Science, Tokyo
    ANALYSIS OF THE KARYOTYPES IN YUCCA, A GA VE AND THE RELATED GENERA WITH SPECIAL REFERENCE TO THE PHYLOGENETIC SIGNIFICANCEI~ Dyuhei SATo Divisionof Genetics, Bot. Inst. Faculty of Science, Tokyo Imperial University McKelvey and Sax (2933) have called attention to the existence of taxonomic and cytological similarities of the genera Yucca, Hesperoyucca, Gleistvucca,Hesperoaloe and Samuela of the Liliaceae with the genera Agave and Fourcroya which belong to a related family, Amaryllidaceae. Wh.itaker (1934) also has reported that Polianhes and Fourcroya have exactly the same chromosome constitution as the Yucca-Abave karyotype (5 long and 25 short chromosomes) (Figs. 1, 2). These observations when considered in respect to taxonomic resemblances, seem to indicate that the genera mentioned above are more closely related than it is shown by their classifica- tion into distinct families. Whitaker also has remarked that Dasylirion (2n=38) and ATolina(2n=36) in Yucceae and Doryanthes (2n=36) in Agavoideae are of different karyotypes from the Yucca-Agave type. In the present work an analysis of the karyotypes in Liliaceous plants has been attempted and several karyotypes have been found in Scilloideae. Eucornis and Carassia have been selected with the purpose of discovering a possible connecting link between these genera and the Yucca-Agave group. In the present paper an analysis of the karyotypes of the following species is given. LILIACEAE Scilloideae 211 Fig. Euconis undulata 60=8L+8M+44S (4b)2) 3 Euconsispallidi ora 60=8L+8M+44S (4b) 4 Eucomispunctata 60=8L±8M+44S (4b) 5 Camassiaescrema 30=6L+24S (2b) 6 Yucceae Yuccafilamentosa 30 60=1OL+50S (2b) 1, 7 Yuccarecurvifolia 30 60=1OL+50S (2b) 2, 8 Yuccaaloifolia 60=1OL+50S (2b) 9 „ var.
    [Show full text]
  • Key to Table Abbreviations
    Key to Abbreviations Height Soil Type Height of plant, in feet1 - varies from state to state, A Average moisture, soil type soil, growing season, other factors a mixture of loam, humis D Dry soil, average type Cl Clay soil H1 Smallest average height M Moist soil, average type H2 Largest average height W Wet soil, average type .08' = 1" Wa Water's edge or in water .16' = 2" Wd Well-drained soil .25' = 3" .33' = 4" Tolerance .5' = 6" DT Drought Tolerant .66' = 8" WT Wet Tolerant .75' = 9" .83' = 10" Color Spread A All colors, see description Diameter of full grown plant, B Blue in feet, (see above) - Br Brown varies from state to state, soil, G Green growing season, other factors O Orange Determines spacing needs. Pn Pink Spr1 Smallest average spread Pr Purple Spr2 Largest average spread R Red Y Yellow Sunlight W White Amount of sunlight preferred by plant. Usually has range of Attraction sunlight requirements. Follow B Attracts birds requirements carefully. Usually H Attracts hummingbirds Partial Sun plants prefer afternoon Bt Y, attracts butterflies sun, while Partial Shade plants Y1, attracts moths prefer morning sun. GW Y, attracts general wildlife FS Full Sun N, may repel wildlife PS Partial Sun PSh Partial Shade FSh Full Shade Bloomtime Usual time plant blooms, may vary slightly from state to state Bloomtime listed by Month Page 1 TABLE 1 Partial Listing of Kentucky Wildflowers by Common Name See KEY for abbreviation explanation Common Name Scientific Name H1 H2 Spr1 Spr2 S1 S2 Bl1 Bl2 So1 So2 C1 C2 C3 B H Bt GW Aloe, American, or
    [Show full text]