TAXON:Polianthes Tuberosa SCORE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies on Variability, Heritability and Genetic Advance in Double Type
International Journal of Chemical Studies 2020; 8(1): 3101-3104 P-ISSN: 2349–8528 E-ISSN: 2321–4902 www.chemijournal.com Studies on variability, heritability and genetic IJCS 2020; 8(1): 3101-3104 © 2020 IJCS advance in double type genotypes of tuberose Received: 26-11-2019 Accepted: 28-12-2019 (Agave amica (Medik.) Syn. Polianthes tuberosa L.) Ratna Priyanka R Ph.D. Scholar, Department of Floriculture and Landscaping, Tamil Nadu Agricultural Ratna Priyanka R, M Kannan, M Ganga and N Kumaravadivel University, Coimbatore, Tamil Nadu, India DOI: https://doi.org/10.22271/chemi.2020.v8.i1au.8741 M Kannan Professor, Directorate of Abstract Research, Tamil Nadu The present study on performance and genetic variability studies in tuberose (Agave amica (Medik.) Syn. Agricultural University, Polianthes tuberosa L.) Double type genotypes was conducted at Botanical Garden, Department of Coimbatore, Tamil Nadu, India Floriculture and Landscape Architecture, Tamil Nadu Agricultural University during the year 2018-2020. Among five double type genotypes, Suvasini followed by Hyderabad Double and Vaibhav showed better M Ganga performance in vegetative, flowering and yield parameters with spike yield of 3.38, 3.31 and 3.25 spikes/ Associate Professor (Hort.), plant respectively and bulb yield of 735.00, 654.75 and 540.75 g/ plant respectively. Among different Department of Floriculture and vegetative and flowering parameters recorded, phenotypic coefficient of variation and genotypic Landscape Architecture, Tamil coefficient of variation were found to -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Manfreda Occidentalis (Agavoideae, Asparagaceae) a New Species from Western Mexico
Phytotaxa 321 (1): 060–070 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.321.1.2 Manfreda occidentalis (Agavoideae, Asparagaceae) a new species from western Mexico ARTURO CASTRO-CASTRO1, GUADALUPE MUNGUÍA-LINO2, PABLO CARRILLO-REYES3,4 & AARÓN RODRIGUEZ3,4,* 1Cátedras CONACYT–Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango (CIIDIR), Sigma #119, Fracc. 20 de Noviembre II, 34220, Durango, Mexico. 2Cátedras CONACYT–Universidad de Guadalajara, Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Camino Ramón Padilla Sánchez 2100, 45110, Nextipac, Zapopan, Jalisco, México. 3Laboratorio Nacional de Identificación y Caracterización Vegetal, Consejo Nacional de Ciencia y Tecnología (CONACyT), Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, 45110 Nextipac, Zapopan, Jalisco, México. 4Herbario Luz María Villarreal de Puga, Instituto de Botánica, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, 45110 Nextipac, Zapopan, Jalisco, México. e-mail: [email protected] *author for correspondence Abstract The genus Manfreda (Asparagaceae) contains 35 species. A species complex includes plants similar to M. gutttata, which are characterized by the protrusion of the ovary into the perigone tube. This feature was found in specimens recently collected in western Mexico. After a morphological analysis, we found that some of the plants differ from the other species in this complex. Hence, we describe a new species named M. occidentalis morphologically similar to M. -
1JAN 2020 Updated
Be sure to read Kim Andrews article in this issue on The Uniqueness of Mangaves. Pictured is Mangave ‘Pineapple Express.’ CACSS 1 of 23 January 2020 DYANA HESSON Photos and Text by Dyana Hesson Join Dyana on January 12, at 2 p.m., in Dorrance Hall at the Desert Botanical Garden for our monthly program. Botanical artist Dyana Hesson loves a good adventure. She was born and raised in the gold country of Northern California. As a kid, she was always happiest exploring outdoors and rarely settled down to read a book all the way through. Left: Dyana with saguaro blossoms. Right: Lion and the Lamb, Agave and Sego Lily, Sedona. When Dyana’s father gave her his old 35mm film camera in elementary school, her skinned knees and grass-stained clothes gave way to a quiet appreciation of aesthetic beauty. She was interested in the landscape but more than just scenic vistas. At close range, the hues and contours of flowers and plants caught her eye. Some of the first things she photographed were the succulents growing in her mother’s garden. A hard worker but a struggling student, Hesson found her gift of painting in an art class in college. She changed her major and studied art at Arizona State University where she developed her style of applying thin layers of oil paint with very little texture. After graduating with honors, Dyana combined her newly found skills with the work ethic of CACSS 2 of 23 January 2020 her childhood, and soon art collectors eagerly invested in her radiant paintings. -
Asparagaceae, Agavoideae) from Jalisco, Mexico
Phytotaxa 201 (2): 140–148 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.201.2.4 A new species of Polianthes subgenus Bravoa (Asparagaceae, Agavoideae) from Jalisco, Mexico ARTURO CASTRO-CASTRO1, JESÚS GUADALUPE GONZÁLEZ-GALLEGOS2,3 & AARÓN RODRIGUEZ4,* 1Doctorado en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas (BEMARENA), Universidad de Guadalajara. Apartado postal 1–139, Zapopan 45101, Jalisco, México. 2Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Instituto Politécnico Nacional (IPN), Unidad Durango. Sigma 119, Fraccionamiento 20 de Noviembre II, Durango 34220, Durango, México. 3Cátedras CONACYT. 4Herbario Luz María Villarreal de Puga del Instituto de Botánica de la Universidad de Guadalajara (IBUG), Departamento de Botáni- ca y Zoología. Apartado postal 1–139, Zapopan 45101, Jalisco, México; e-mail: [email protected], [email protected] *author for correspondence Abstract During recent botanical explorations in western Mexico, otherwise known as the Nueva Galicia region, a new species of Polianthes subgenus Bravoa was discovered. The new taxon is described and illustrated. It resembles P. bicolor and P. gemi- niflora var. clivicola, but differs from both by its oblong-obovate and generally prostrate leaves, (3–)4–6(–9) floral nodes, pedicels recurved and 1.1–1.7 cm long in anthesis, perigone tubular, not curved, depressed, and bicolor with imbricate and erect lobes in anthesis, and filaments 1.4–1.6 mm long, inserted in the perigone 1–1.5 mm above ovary tip. Notes on phenol- ogy, geographic distribution and habitat of the new species and an identification key to the species of Polianthes subgenus Bravoa growing in western Mexico are also provided. -
AGAVACEAE Abisaí Josué García-Mendoza*
FLORA DEL VALLE DE TEHUACÁN-CUICATLÁN Fascículo 88. AGAVACEAE Abisaí Josué García-Mendoza* *Jardín Botánico Instituto de Biología INSTITUTO DE BIOLOGÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO 2011 Primera edición: 19 de septiembre de 2011 D.R. © 2011 Universidad Nacional Autónoma de México Instituto de Biología. Departamento de Botánica ISBN 968-36-3108-8 Flora del Valle de Tehuacán-Cuicatlán ISBN 978-607-02-2566-6 Fascículo 88 Este fascículo se publica gracias al apoyo económico recibido de la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Dirección del autor: Universidad Nacional Autónoma de México Jardín Botánico, Instituto de Biología 3er. Circuito de Ciudad Universitaria Coyoacán, 04510. México, D.F. 1 En la portada: 2 1. Mitrocereus fulviceps (cardón) 2. Beaucarnea purpusii (soyate) 3 4 3. Agave peacockii (maguey fibroso) 4. Agave stricta (gallinita) Dibujo de Elvia Esparza FLORA DEL VALLE DE TEHUACÁN-CUICATLÁN 88: 1-95. 2011 AGAVACEAE1 Dumort. Abisaí Josué García-Mendoza Bibliografía. Angiosperm Phylogeny Group III. 2009. An update of the Angiosperm Phylogeny Group classification for orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105-121. Bogler, D.J. & B.B. Simpson. 1995. A chloroplast DNA study of the Agavaceae. Syst. Bot. 20(2): 191-205. Bogler, D.J. & B.B. Simpson. 1996. Phylogeny of Agavaceae based on its rDNA sequence variation. Amer. J. Bot. 83(9): 1225-1235. Bogler, D.J., J.C. Pires & J. Francisco-Ortega. 2006. Phylogeny of Agavaceae based on ndhF, rbcL, and its sequences: Implications of molecular data for classifications. Aliso 22: 313- 328. Dahlgren, R.M.T., H.T. -
Cam) in the Agavoideae (Asparagaceae
EVOLUTIONARY PHYSIOLOGY AND TRANSCRIPTOMICS OF CRASSULACEAN ACID METABOLISM (CAM) IN THE AGAVOIDEAE (ASPARAGACEAE) by CAROLINE HEYDUK (Under the Direction of Jim Leebens-Mack) ABSTRACT Crassulacean acid metabolism (CAM) is a mode of photosynthesis found in ~6% of flowering plants and serves as an adaptation to water-limited habitats. CAM plants open their stomata for gas exchange at night, when transpiration rates are lower, and fix CO2 via an alternative pathway. Carbon is stored as organic acids during the night, then decarboxylated during the day behind closed stomata. CAM results in high levels of CO2 around RuBisCO, the primary carbon-fixing enzyme in all green plants, with minimal water loss. Although CAM occurs in at least 35 separate lineages, its evolutionary trajectory from C3 is unknown. Here we explore the evolutionary patterns of CAM across the Agavoideae, a subfamily of species that includes Agave and Yucca. Anatomical observations paired with character evolution show that species of the Agavoideae may have been preadapted to the CAM syndrome, with many C3 species showing CAM-like morphology. Comparative physiology was explored in more detail in a Yucca hybrid system, where a CAM and C3 species hybridized to form a C3-CAM intermediate. The parents and hybrid offspring were characterized for anatomical and physiological traits and show the hybrid is able to convert from C3 carbon fixation to 100% CAM uptake under periods of drought stress. Finally, the hybrid system in Yucca was used to understand the transcriptional regulation of the CAM pathway; despite lacking any CAM anatomy or physiology, the C3 parental species shows similar gene expression patterns as the CAM species, indicating perhaps an ancestral gene expression pattern that enabled the evolution of CAM in a subset of Yucca species. -
A New Species of Polianthes Subgenus Bravoa (Asparagaceae, Agavoideae) from Jalisco, Mexico
Phytotaxa 201 (2): 140–148 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.201.2.4 A new species of Polianthes subgenus Bravoa (Asparagaceae, Agavoideae) from Jalisco, Mexico ARTURO CASTRO-CASTRO1, JESÚS GUADALUPE GONZÁLEZ-GALLEGOS2,3 & AARÓN RODRIGUEZ4,* 1Doctorado en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas (BEMARENA), Universidad de Guadalajara. Apartado postal 1–139, Zapopan 45101, Jalisco, México. 2Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Instituto Politécnico Nacional (IPN), Unidad Durango. Sigma 119, Fraccionamiento 20 de Noviembre II, Durango 34220, Durango, México. 3Cátedras CONACYT. 4Herbario Luz María Villarreal de Puga del Instituto de Botánica de la Universidad de Guadalajara (IBUG), Departamento de Botáni- ca y Zoología. Apartado postal 1–139, Zapopan 45101, Jalisco, México; e-mail: [email protected], [email protected] *author for correspondence Abstract During recent botanical explorations in western Mexico, otherwise known as the Nueva Galicia region, a new species of Polianthes subgenus Bravoa was discovered. The new taxon is described and illustrated. It resembles P. bicolor and P. gemi- niflora var. clivicola, but differs from both by its oblong-obovate and generally prostrate leaves, (3–)4–6(–9) floral nodes, pedicels recurved and 1.1–1.7 cm long in anthesis, perigone tubular, not curved, depressed, and bicolor with imbricate and erect lobes in anthesis, and filaments 1.4–1.6 mm long, inserted in the perigone 1–1.5 mm above ovary tip. Notes on phenol- ogy, geographic distribution and habitat of the new species and an identification key to the species of Polianthes subgenus Bravoa growing in western Mexico are also provided. -
Manfreda Maculosa Leaf Extracts and Their Effects on Whole and Selected Myotoxic Components in Crotalid Venom
University of Texas at El Paso ScholarWorks@UTEP Open Access Theses & Dissertations 2019-01-01 Manfreda Maculosa Leaf Extracts And Their Effects On Whole And Selected Myotoxic Components In Crotalid Venom Charles Steven Gilbert University of Texas at El Paso Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Botany Commons, and the Environmental Sciences Commons Recommended Citation Gilbert, Charles Steven, "Manfreda Maculosa Leaf Extracts And Their Effects On Whole And Selected Myotoxic Components In Crotalid Venom" (2019). Open Access Theses & Dissertations. 2857. https://digitalcommons.utep.edu/open_etd/2857 This is brought to you for free and open access by ScholarWorks@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of ScholarWorks@UTEP. For more information, please contact [email protected]. MANFREDA MACULOSA LEAF EXTRACTS AND THEIR EFFECT ON WHOLE AND SELECTED MYOTOXIC COMPONENTS IN CROTALID VENOM CHARLES STEVEN GILBERT Master’s Program in Environmental Science APPROVED: Carl S. Lieb, Ph.D., Chair Robert A. Kirken, Ph.D. Chuan Xiao, Ph.D. Stephen L. Crites., Ph.D. Dean of the Graduate School Copyright by Charles Steven Gilbert 2019 Dedication As I have become older, I have come to realize that none of us have really achieved everything we have without having learned something from other people. It is said we stand on the shoulders of giants. I want to thank the "giants" that have helped me get to where I am today: To my wife, Debbie for lessons about loyalty, stubbornness, and especially love. To my boys: Michael, Jared, and Jorel for patience. -
Bradleya 33/2015 Pages 82–83
Bradleya 33/2015 pages 82–83 Transfers from Polianthes into Agave (Asparagaceae/Agavaceae): new combinations Joachim Thiede Schenefelder Holt 3, 22589 Hamburg, Germany (email: [email protected]) Summary : For two recently published species of Polianthes , P. alboaustralis E.Solano & Ríos- Gómez and P. cernua Art.Castro, J.G.González & Aarón Rodr., binomials in Agave are proposed: Agave alboaustralis (E.Solano & Ríos-Gómez) Thiede comb. nov. and Agave neocernua Thiede nom. nov. Zusammenfassung : Für zwei kürzlich veröf - fentlichte Arten von Polianthes , P. alboaustralis E.Solano & Ríos-Gómez und P. cernua Art.Castro, J.G.González & Aarón Rodr., werden Binomen in Agave veröffentlicht: Agave alboaustralis (E.Solano & Ríos-Gómez) Thiede comb. nov. und Agave neocernua Thiede nom. nov. Most phylogenetic studies of Agave L. and re - lated genera (Asparagaceae/Agavaceae) thus far published, based on molecular data (Bogler & Simpson, 1996; Bogler et al ., 2006; Good-Ávila et al ., 2006) or morphological data (Hernández-San - doval, 1995; Tambutti in Eguiarte et al ., 2006), showed that the small genera Manfreda Salisb., Polianthes L. and Prochnyanthes S.Watson are nested within the large genus Agave , thus ren - dering Agave as traditionally circumscribed para - phyletic. The sole exception is the molecular AFLP study of Gil-Vega et al . (2007) which groups Manfreda , Polianthes and Prochnyanthes sepa - rate from and not nested within Agave . For a taxonomic synopsis, Thiede (2001) con - verted these phylogenetic results into classifica - tion and suggested a monophyletic re-circum- scription of Agave : Manfreda , Polianthes and Prochnyanthes were included in Agave and to - gether classified as Agave Subgenus Manfreda Figure 1 Agave coetocapnia (M. -
Phylogeny of Agavaceae Based on Ndhf, Rbcl, and Its Sequences David J
Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 26 2006 Phylogeny of Agavaceae Based on ndhF, rbcL, and its Sequences David J. Bogler Missouri Botanical Garden J. Chris Pires University of Wisconsin-Madison; University of Missouri Javier Francisco-Ortega Florida International University Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Bogler, David J.; Pires, J. Chris; and Francisco-Ortega, Javier (2006) "Phylogeny of Agavaceae Based on ndhF, rbcL, and its Sequences," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 26. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/26 Asparagales Agavaceae and MONOCOTS Xanthorrhoeaceae Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 313-328 © 2006, Rancho Santa Ana Botanic Garden PHYLOGENY OF AGAVACEAE BASED ON ndhF, rbcL, AND ITS SEQUENCES: IMPLICATIONS OF MOLECULAR DATA FOR CLASSIFICATION 1 3 DAVID J. BOGLER, •4 J. CHRIS PIRES,2·5 AND JAVIER FRANCISC0-0RTEGA 1Missouri Botanical Garden, Box 299, St. Louis, Missouri 63166, USA; 2Department of Agronomy, 1575 Linden Drive, University of Wisconsin, Madison, Wisconsin 53706, USA; 3Department of Biological Sciences, Florida International University, University Park, Miami, Florida 33199, and Fairchild Tropical Botanic Garden, 11935 Old Cutler Road, Coral Gables, Florida 33156, USA 4 Corresponding author ([email protected]) ABSTRACT Great advances have been made in our understanding of the phylogeny and classification of Aga vaceae in the last 20 years. In older systems Agavaceae were paraphyletic due to overemphasis of ovary position or habit. Discovery of a unique bimodal karyotype in Agave and Yucca eventually led to a reexamination of concepts and relationships in all the lilioid monocots, which continues to the present day. -
Taxonomy and DNA Barcoding in the Genus Manfreda (Salisb.) Asparagaceae William David Ritchie University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2012 Taxonomy and DNA Barcoding in the Genus Manfreda (Salisb.) Asparagaceae William David Ritchie University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Horticulture Commons, Plant Biology Commons, and the Plant Breeding and Genetics Commons Recommended Citation Ritchie, William David, "Taxonomy and DNA Barcoding in the Genus Manfreda (Salisb.) Asparagaceae" (2012). Theses and Dissertations. 576. http://scholarworks.uark.edu/etd/576 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. TAXONOMY AND DNA BARCODING IN THE GENUS MANFREDA SALISB. (ASPARAGACEAE) TAXONOMY AND DNA BARCODING IN THE GENUS MANFREDA SALISB. (ASPARAGACEAE) A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Horticulture By William David Ritchie Royal Botanic Garden Edinburgh Bachelor of Science in Horticulture, 2010 December 2012 University of Arkansas ABSTRACT The genus Manfreda Salisb. of Asparagaceae is a genus of potential horticultural interest and is currently subject to breeding efforts at the University of Arkansas. A lack of taxonomic clarity however undermines the classification of potential inter - and intrageneric hybrids. The study aims to assess existing species delimitation within the genus Manfreda employing morphology while investigating the potential utility of Consortium for the Barcode of Life Plant (CBOL) DNA Barcodes for identification of specific taxa and an External Transcribed Spacer (ETS) - Internal Transcribed Spacer (ITS) DNA barcode for developed hybridized taxa.