Dyuhei Sato Division of Genetics, Bot. Inst. Faculty of Science, Tokyo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wild Hyacinth (Camassia Scilloides) in Canada
PROPOSED Species at Risk Act Recovery Strategy Series Adopted under Section 44 of SARA Recovery Strategy for the Wild Hyacinth (Camassia scilloides) in Canada Wild Hyacinth 2015 Recommended citation: Environment Canada. 2015. Recovery Strategy for the Wild Hyacinth (Camassia scilloides) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. 21 pp. + Annexes. For copies of the recovery strategy, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry1. Cover illustration: © Gary Allen Également disponible en français sous le titre « Programme de rétablissement de la camassie faux-scille (Camassia scilloides) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2015. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. 1 http://www.registrelep-sararegistry.gc.ca RECOVERY STRATEGY FOR THE WILD HYACINTH (CAMMASSIA SCILLOIDES) IN CANADA 2015 Under the Accord for the Protection of Species at Risk (1996), the federal, provincial, and territorial governments agreed to work together on legislation, programs, and policies to protect wildlife species at risk throughout Canada. In the spirit of cooperation of the Accord, the Government of Ontario has given permission to the Government of Canada to adopt the Recovery Strategy for the Wild Hyacinth (Camassia scilloides) in Ontario (Part 2) under Section 44 of the Species at Risk Act (SARA). -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Complete Chloroplast Genomes Shed Light on Phylogenetic
www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya. -
1 the Global Flower Bulb Industry
1 The Global Flower Bulb Industry: Production, Utilization, Research Maarten Benschop Hobaho Testcentrum Hillegom, The Netherlands Rina Kamenetsky Department of Ornamental Horticulture Agricultural Research Organization The Volcani Center Bet Dagan 50250, Israel Marcel Le Nard Institut National de la Recherche Agronomique 29260 Ploudaniel, France Hiroshi Okubo Laboratory of Horticultural Science Kyushu University 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581, Japan August De Hertogh Department of Horticultural Science North Carolina State University Raleigh, NC 29565-7609, USA COPYRIGHTED MATERIAL I. INTRODUCTION II. HISTORICAL PERSPECTIVES III. GLOBALIZATION OF THE WORLD FLOWER BULB INDUSTRY A. Utilization and Development of Expanded Markets Horticultural Reviews, Volume 36 Edited by Jules Janick Copyright Ó 2010 Wiley-Blackwell. 1 2 M. BENSCHOP, R. KAMENETSKY, M. LE NARD, H. OKUBO, AND A. DE HERTOGH B. Introduction of New Crops C. International Conventions IV. MAJOR AREAS OF RESEARCH A. Plant Breeding and Genetics 1. Breeders’ Right and Variety Registration 2. Hortus Bulborum: A Germplasm Repository 3. Gladiolus 4. Hyacinthus 5. Iris (Bulbous) 6. Lilium 7. Narcissus 8. Tulipa 9. Other Genera B. Physiology 1. Bulb Production 2. Bulb Forcing and the Flowering Process 3. Morpho- and Physiological Aspects of Florogenesis 4. Molecular Aspects of Florogenesis C. Pests, Physiological Disorders, and Plant Growth Regulators 1. General Aspects for Best Management Practices 2. Diseases of Ornamental Geophytes 3. Insects of Ornamental Geophytes 4. Physiological Disorders of Ornamental Geophytes 5. Exogenous Plant Growth Regulators (PGR) D. Other Research Areas 1. Specialized Facilities and Equipment for Flower Bulbs52 2. Transportation of Flower Bulbs 3. Forcing and Greenhouse Technology V. MAJOR FLOWER BULB ORGANIZATIONS A. -
Agave Americana and Furcraea Andina: Key Species to Andean Cultures in Ecuador
Ethnobotany Agave americana and Furcraea andina: Key Species to Andean Cultures in Ecuador LUCÍA DE LA TORRE1*, IAN CUMMINS2, AND ELIOT LOGAN-HINES2 Botanical Sciences 96 (2): 246-266, 2018 Abstract Background: The rich Agaveae-based culture that exists in the Ecuadorian Andes is little known. Wild DOI: 10.17129/botsci.1813 and cultivated rosettes of Agave americana and Furcraea andina coexist in arid Andean landscapes. A. americana is considered an introduced species to Ecuador. Received: Questions: What are Agaveae use patterns and cultural importance in the Ecuadorian Andes? Is the ethno- December 19th, 2017 Accepted: botanical significance of Agave in Ecuador comparable to that in Mexico and other Andean countries? Agave americana, Furcraea andina March 12th, 2018 Species studied: Associated editor: Study site, dates: Ecuadorian Andes, 2016. Salvadro Arias Methods: Semi-structured interviews to Agaveae users (37) and a review of literature on ethnobotanical research conducted in Ecuador since the 18th century. Results: A. americana is more diversely and widely used than F. andina (124 vs 36 uses and 548 vs 140 use records, respectively). The versatility of A. americana lies in its mishki (sap extracted from its heart) which has multiple medicinal, edible and ceremonial applications. We found significant variation of its use patterns throughout the region. The main use of F. andina as a source of fiber is disappearing. Most productive initiatives involve A. americana (92 %, n = 53). Conclusion: The importance of A. americana in the Ecuadorian Andes is comparable to that of agaves in Mexico, but not to its importance in other Andean countries where it is used sporadically. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Landscaping with Native Plants by Stephen L
SHORT-SEASON, HIGH-ALTITUDE GARDENING BULLETIN 862 Landscaping with native plants by Stephen L. Love, Kathy Noble, Jo Ann Robbins, Bob Wilson, and Tony McCammon INTRODUCTION There are many reasons to consider a native plant landscape in Idaho’s short- season, high-altitude regions, including water savings, decreased mainte- nance, healthy and adapted plants, and a desire to create a local theme CONTENTS around your home. Most plants sold for landscaping are native to the eastern Introduction . 1 United States and the moist climates of Europe. They require acid soils, con- The concept of native . 3 stant moisture, and humid air to survive and remain attractive. Most also Landscaping Principles for Native Plant Gardens . 3 require a longer growing season than we have available in the harshest cli- Establishing Native Landscapes and Gardens . 4 mates of Idaho. Choosing to landscape with these unadapted plants means Designing a Dry High-Desert Landscape . 5 Designing a Modified High-Desert Landscape . 6 accepting the work and problems of constantly recreating a suitable artificial Designing a High-Elevation Mountain Landscape . 6 environment. Native plants will help create a landscape that is more “com- Designing a Northern Idaho Mountain/Valley fortable” in the climates and soils that surround us, and will reduce the Landscape . 8 resources necessary to maintain the landscape. Finding Sources of Native Plants . 21 The single major factor that influences Idaho’s short-season, high-altitude climates is limited summer moisture. Snow and rainfall are relatively abun- dant in the winter, but for 3 to 4 months beginning in June, we receive only a YOU ARE A SHORT-SEASON, few inches of rain. -
Plant Propagation Protocol for Camassia Quamash ESRM 412
Plant Propagation Protocol for Camassia quamash ESRM 412 - Native Plant Production Spring 2020 Figure 1 Photo by Gary A Monroe from CalPhotos. Web. 6 May 2020 Figure 2 Plants Database. Camassia quamash. USDA, n.d. Web. Figure 3 Plants Database. Camassia quamash. USDA, n.d. Web. 6 May 2020. 6 May 2020. North American Distribution Washington Distribution TAXONOMY Plant Family Scientific Name Liliaceae1 Common Name Lily family1 Species Scientific Name Scientific Name Camassia quamash (Pursh) Greene1 Varieties No information found Sub-species Camassia quamash ssp. azurea (A. Heller) Gould – small camas Camassia quamash ssp. breviflora Gould – small camas Camassia quamash ssp. intermedia Gould – small camas Camassia quamash ssp. linearis Gould – small camas Camassia quamash ssp. maxima Gould – small camas Camassia quamash ssp. quamash (Pursh) Greene – small camas Camassia quamash ssp. utahensis Gould – Utah small camas Camassia quamash ssp. walpolei (Piper) Gould – Walpole's small camas2 Cultivar No information found Common Synonym(s) Camassia esculenta Lindl. Camassia quamash (Pursh) Greene subsp. teapeae (H. St. John) H. St. John Camassia quamash (Pursh) Greene var. azurea (A. Heller) C.L. Hitchc. Camassia quamash (Pursh) Greene var. breviflora (Gould) C.L. Hitchc. Camassia quamash (Pursh) Greene var. intermedia (Gould) C.L. Hitchc. Camassia quamash (Pursh) Greene var. linearis (Gould) J.T. Howell Camassia quamash (Pursh) Greene var. maxima (Gould) B. Boivin Camassia quamash (Pursh) Greene var. quamash Camassia quamash (Pursh) Greene var. utahensis (Gould) C.L. Hitchc. Quamassia quamash (Pursh) Coville4 Common Names Southern Lushootseed (Coast Salish Language) for camas: blue camas, crow potato, Camassia spp.: c̕ábid. camas, Camassia quamash, C. leichtinii: qʷəɬúʔəl. camas roots that are processed and dried: s√x̌əʤəb. -
Agavaceae Subf. Chlorogaloideae)
Taylor, D.W. and D.J. Keil. 2018. Hooveria , a new genus liberated from Chlorogalum (Agavaceae subf. Chlorogaloideae). Phytoneuron 2018-67: 1–6. Published 1 October 2018. ISSN 2153 733X HOOVERIA , A NEW GENUS LIBERATED FROM CHLOROGALUM (AGAVACEAE SUBF. CHLOROGALOIDEAE) DEAN W. TAYLOR Redwood Drive Aptos, California 95003-2517 [email protected] DAVID J. KEIL Professor Emeritus Biological Sciences Department California Polytechnic State University San Luis Obispo, California 93407 [email protected] ABSTRACT Molecular phylogenetic analyses have indicated that Chlorogalum (sensu lato) (Agavaceae subf. Chlorogaloideae) comprises more than one lineage. A recently published study indicated that Chlorogalum is paraphyletic, with two well-supported clades that are successive sister groups to the remainder of the Chlorogaloideae. The first is composed of three vespertine-flowering species (Chlorogalum sensu stricto), and the second comprises two diurnally flowering species. Additional morphological and cytological evidence independently support recognition of two lineages. Hooveria , gen. nov. , is proposed to accommodate the diurnally flowering species of the second lineage. Three taxa are transferred from Chlorogalum to the new genus: Hooveria parviflora (S. Wats.) D.W. Taylor & D.J. Keil, comb. nov. , H. purpurea (Brandeg.) D.W. Taylor & D.J. Keil, comb. nov. , and H. purpurea var. reducta (Hoover) D.W. Taylor & D.J. Keil, comb. nov. A neotype is designated for Chlorogalum parviflorum S. Wats. Chlorogalum Kunth (Agavaceae subf. Chlorogaloideae) as treated traditionally is a genus of five species with nine terminal taxa (Jernstedt 2002; Callahan 2015a, b; Table 1). Chlorogalum is endemic to the California Floristic Province, extending from its northern limit in southern Coos County, Oregon (Callahan 2015b), southward to extreme northwestern Baja California (Rebman et al. -
CAMASSIA Stella Exley
Issue 37 Cornucopia Spring 2016 CAMASSIA Stella Exley I’ve often read in the horticultural press that the genus Camassia is the perfect gap filler in gardens between the end of spring and the beginning of summer. Whilst this is the time of year that camassia are in full flight, I shudder at the thought of these beauties being labelled in such a way. In my opinion, they are worthy of stand-alone recognition for their beauty and grace, and stunning additions to a plethora of planting schemes. Camassia is a genus of bulbous perennials with 5/6 species groups. They are extremely hardy and will thrive in most conditions: sunny and moist, to drier with some shade. I have found they easily adapt and flourish in heavy damp soils as well as drier conditions, and to date I have never experienced problems with pests or diseases. What’s not to love? They hail from North America and at one time many moons ago were, apparently, a food staple for indigenous folk, who used to roast them. Although I haven’t tried this, I’m led to understand that when roasted, they taste something similar to a sweet potato. The name camassia was derived from kamas, used by native Americans. They look fabulous in virtually any planting scheme, from formal to informal, woodland areas, damp meadows and alongside ponds and streams, as well as wildflower meadows. I also use them in containers large and small to brighten up shadier areas. They are a perfect fit for naturalistic planting. Once established, they create a calming visual feast for the eyes as their star-like six-petalled blooms slowly open from the bottom upwards along their lofty spires, reaching heights of between 40cm and 120cm. -
Scilla Peruviana 'Caribbean Jewels Sapphire Blue'
CULTURE CONNECTION PERENNIAL SOLUTIONS Scilla peruviana By Paul Pilon ‘Caribbean Jewels Sapphire Blue’ THIS UNIQUE PERENNIAL MAKES A STATEMENT WITH DEEP-BLUE, STARRY BLOSSOMS ATOP LARGE, CONE-SHAPED FLOWERS. he Peruvian lily is a striking evergreen perennial that has great potential as a spring flowering container crop. This underutilized bulb crop can be grown an marketed alongside other spring flowering bulbT crops such as daffodils, hyacinths and tulips. Several years ago Golden State Bulb Growers intro- duced Scilla peruviana ‘Caribbean Jewels Sapphire Blue’ to the industry. Sapphire Blue produces large striking blue conical-shaped flowers atop slim, lance-shaped leaves in mid to late spring. The flower stalks produce 50 to 100 deep blue, starry blossoms. These unique flowers have an impressively long bloom time. In the landscape, mature plantings of Sapphire Blue grow to 18 to 22 inches in height. They should be grown in locations with full sun to light shade. In the northern United States, scilla are can be grown and marketed as potted plants or in combination containers, but they can be sold as perennials in USDA Hardiness Zones 7 to 10. They are relatively cold hardy and can tolerate light frosts down to 28° F without experiencing plant damage. Perennial growers should consider adding scilla to their tender perennial programs to supplement their current offerings with this novelty plant. Additionally, ‘Caribbean Jewels Sapphire Blue’ is relatively easy to produce, has few cultural problems and can be grown with cool tem- peratures. These attributes, along with its unique flowers, make scilla a great addition to any perennial program. -
11 Emes RESPONSE of Ornithogalum Saundersiae Bak. TO
ISSN 1644-0692 www.acta.media.pl Acta Sci. Pol. Hortorum Cultus, 15(1) 2016, 123-134 RESPONSE OF Ornithogalum saundersiae BAK. TO SALINITY STRESS Piotr Salachna, Agnieszka Zawadzi ńska, Cezary Podsiadło 1 West Pomeranian University of Technology in Szczecin Abstract. Most of the studies on the effects of salinity stress are conducted on ornamental bedding plants and perennials but little is known on flower bulbs response to this stress factor. Ornithogalum saundersiae is an attractive bulbous plant recommended for grow- ing in pots, gardens and green areas. The study conducted in the years 2013–2014 investi- gated the effects of NaCl on the growth, flowering, photosynthetic activity, pigment con- tent, and macro- and micronutrient content in the leaves of O. saundersiae . The plants were grown in pots in a plastic tunnel. NaCl was applied once a week for six weeks at concentration of 100 mM or 200 mM. The salt treatment did not cause chlorosis and did not affect flowering rate and number of inflorescences. The plants exposed to salinity stress had lower fresh weight of leaves, inflorescences and bulbs and their flowering be- gan later than in the control plants. Photosynthesis and transpiration intensity decreased as NaCl concentration increased. The content of chlorophyll and carotenoids in NaCl treated plants was significantly higher than in the control plants. Salinity stress increased the leaf content of nitrogen, potassium, sodium and chlorine and reduced the concentration of cal- cium, zinc and iron. Key words: Giant Chincherinchee, NaCl, gas exchange, mineral content, photosynthetic pig- ments INTRODUCTION The issue of salinity stress in the cultivation of ornamental plants is receiving global attention [Niu and Cabrera 2010, Cassaniti et al.