Feasibility Study of the Implementation of a Space Sunshade Near the First Lagrangian Point

Total Page:16

File Type:pdf, Size:1020Kb

Feasibility Study of the Implementation of a Space Sunshade Near the First Lagrangian Point DEGREE PROJECT IN MECHANICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Feasibility study of the implementation of a space sunshade near the first Lagrangian point MARÍA GARCÍA DE HERREROS MICIANO KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Feasibility study of the implementation of a space sunshade near the first Lagrangian point MARÍA GARCÍA DE HERREROS MICIANO Master in Aerospace Engineering Date: July 15, 2020 Supervisor: Christer Fuglesang Examiner: Christer Fuglesang School of Engineering Sciences Swedish title: Möjlighetsstudie av solparasoll i rymden nära Lagrangepunt L1 III Abstract The lack of strong measures to avoid the possible fatal consequences of global warming is pushing researchers to look for other alternatives such as geoengi- neering. Within geoengineering, this study focuses on the space based solar radiation management methods. More precisely, the project evaluates the fea- sibility of implementing a space sun shade near the first Lagrangian point in the Sun-Earth system within a thirty year period time from now. The study is structured in three main blocks: spacecraft configuration, trajectory definition and launch. An analysis looking at the minimum cost system was carried out, starting with the definition of the mass and size of spacecraft. Furthermore, an optimization of the trajectory was developed in order to minimize the travel time to the vicinity of the Lagrangian point. The shades will be formed by swarms of 10 000 m2 solar sails that will cover an area of 6:3 × 1012 m2 with a total mass of around 5:7 × 1010 kg. The sails will be injected into a LEO and will start a trajectory to the vicinity of the first Lagrangian point that will take around 2.3 years. The total cost of the project is approximated to be 10 trillion dollars. The mission appears to be feasible from a technological point of view, with some development needed in the attitude control subsystem. The main challenge will be the launch of all the spacecraft. A space mission of this dimensions has never been attempted before so it will require a big advance from the launch vehicle industry. IV Sammanfattning Bristen på åtgärder för att undvika de konsekvenser som den globala uppvär- mingen leder till, har drivit forskare att leta efter alternativa lösningar, varav geoengineering är en av dem. Denna studie fokuserar på rymdbaserade strål- hanteringsmetoder, mer specifikt på hur huruvida implementationer av solpa- rasoller nära Lagrangepunkten L1 i sol-jord-systemet är möjlig eller ej. Studi- en är strukturerad i tre huvudsakliga block: rymdskeppskonfiguration, banade- finition och uppskjutning. Med målet att minimera kostnaderna, definierades rymdskeppets utforming, massa och storlek. Vidare så, optimerades vägen till närheten av L1 med avseende på att minimera tiden. Solparasollerna kom- mer vara placerade i svärmar med en area på 10 000 m2 vardera, totalt kom- mer solparasollerna att täcka en yta av 6:3 × 1012 m2 med en total massa på 5:7 × 1010 kg. Solparasollerna kommer skjutas upp till LEO och därefter star- ta sin resa till närheten av L1, vilket kommer ta cirka 2.3 år. Totala kostanden för projektet uppskattas till 10 billioner dollar. Efter genomförd studie visades projektet vara genomförbart sett från en teknisk synvinkel, men vidare studi- er behövs göras för att utveckla och fastställa styrsystemet. Huvudutmaningen kommer att vara uppskjutningen av rymdskeppen, då det kräver stora framsteg och utveckling inom rymdindustrin. Contents 1 Introduction 1 1.1 Current Climate Situation and Policies . .1 1.2 Geoengineering the Climate . .3 1.3 Literature Review on Space Sun Shades . .4 1.4 Present Work . .5 2 Methodology 7 2.1 Initial Assumptions . .7 2.2 Launch . .8 2.2.1 Launcher Selection and Assumptions . .8 2.2.2 Target orbit . .9 2.3 Trajectory . 11 2.3.1 Reference Frames . 11 2.3.2 Solar Sail Dynamics . 12 2.3.3 New Equilibrium Point . 15 2.3.4 Escape Trajectory Optimization . 15 2.3.5 Trajectory to Sub-L1 Optimization . 16 2.4 Spacecraft Configuration . 18 2.4.1 Total Mass and Size Study . 19 2.4.2 Mass Budget . 20 2.4.3 Control . 21 3 Results 24 3.1 Spacecraft Configuration . 24 3.1.1 Total Mass and Size . 24 3.1.2 Mass Budget . 28 3.1.3 Control . 29 3.2 Launch . 31 3.2.1 Launcher Selection . 31 V VI CONTENTS 3.2.2 Launch in Numbers . 32 3.2.3 Target Orbit Definition . 33 3.3 Final Trajectory . 33 3.3.1 Escape Trajectory . 34 3.3.2 Travel to Sub-L1 . 35 4 Cost Analysis 40 4.1 Launch Cost . 40 4.2 Spacecraft Cost . 41 5 Discussion 43 5.1 Spacecraft . 43 5.2 Launch . 46 5.2.1 Launch in Numbers . 46 5.2.2 Environmental Impact . 47 5.3 Trajectory Results . 49 5.4 Cost . 50 6 Conclusions 52 Chapter 1 Introduction The emissions of greenhouse gases (GHG) have been changing the planet for decades but it was not until fifteen years ago, with the Kyoto Protocol, that climate change started to get attention from governments. Since then, the im- portance of it has been growing. However, up to now actions against it have not been taken with the urgency that the problem requires in order to avoid possible fatal consequences [1] [2]. This is pushing researchers to look for alternatives away from the reduction of greenhouse gases emissions, which as time passes seems harder to achieve on time and requires the commitment of the whole world [3] [4]. 1.1 Current Climate Situation and Policies Since the pre-industrial age, the world’s climate has changed significantly be- cause of the emission of GHG, but there has been a great acceleration of these changes in the past fifty years. The main contribution to the emissions is fossil carbon dioxide (CO2), which mainly comes form energy and industrial use. This explains the acceleration during the industrial era and specially in the last decades. After 2010, GHG emissions have been growing at a rate of 1.5 per cent per year and the peak of these emissions does not seem like it is going to take place any time soon [2]. Every year that this peak is delayed translates into a larger rise of the global mean temperature by the end of the century. Different scenarios are considered by the United Nations–sponsored Intergovernmental Panel on Climate Change concluding that in order to stabilize the mean global temperature around 2◦C above pre-industrial levels by 2100, this peak should 1 2 CHAPTER 1. INTRODUCTION take place between 2020 and 2050 [5]. By 2017 temperature had already risen 1◦C [5] and as a consequence global warming effects are already observable on the planet, although these will be more intense in the following decades [6]. Some of the most important are the rise of sea level as a result of the melting ice, the increase of extreme weather events such as droughts, heavy rainfalls or heatwaves, the extinction of plant and animal species, the reduction of crop fields and the increase of wildfires [7]. All these phenomena translate in large costs for society (increase in mor- tality, consequences in human health) and economy (damage of infrastructure, agriculture, tourism and energy sectors). The most recent international agreement regarding climate change was the Paris Agreement (2016), ratified by 187 countries as of 2019. Here, all signa- tories compromised to: “holding the increase in the global average tempera- ture to well below 2◦C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5◦C" [8]. Therefore, the upper limit that should not be trespassed is nowadays set to 2◦C. It must be kept in mind that the 0.5◦C difference between both limits means a significant increase in the intensity of the global warming effects mentioned above [5]. With the current climate policies and the ones expected to be implemented in the following years, by the end of the century temperature is predicted to rise between 2.6◦C and 3.7◦C, depending on the compliance with these poli- cies [1]. Thus, it seems clear that stronger measures need to be taken to reduce GHG emissions in order to achieve the defined goals. To meet the 1.5◦C limit, global CO2 emissions would need to reach zero by 2050 and keep decreasing afterwards. This means that emissions would need to start dropping immedi- ately at a faster rate than ever and once zero emissions were reached, carbon removal techniques would have to be implemented [9]. The chances of achiev- ing these objectives seem remote, specially keeping in mind that, in order to do so, an international response needs to be coordinated on a global level. Oth- erwise, despite all the climate policies that are being implemented in a lot of countries, the decrease of emissions in these will not be enough to offset the increase in others [2]. CHAPTER 1. INTRODUCTION 3 1.2 Geoengineering the Climate As it has been described before, historically the dominant approach to fight climate change has been the reduction of GHG emissions. While the achieve- ment of the necessary levels of emissions in time is each year further away from reaching the goal, other alternatives are being considered in addition to these reductions. One of the options is so-called geoengineering, which consists on deliberately modifying Earth’s environment in order to counteract climate change. As addressed in Geoengineering the climate. Science, governance and uncertainty [3], these measures are still highly controversial but they are alternatives that can provide help, mitigating both short-term and long-term global warming effects.
Recommended publications
  • Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology
    Achievements of Hayabusa2: Unveiling the World of Asteroid by Interplanetary Round Trip Technology Yuichi Tsuda Project Manager, Hayabusa2 Japan Aerospace ExplorationAgency 58th COPUOS, April 23, 2021 Lunar and Planetary Science Missions of Japan 1980 1990 2000 2010 2020 Future Plan Moon 2007 Kaguya 1990 Hiten SLIM Lunar-A × Venus 2010 Akatsuki 2018 Mio 1998 Nozomi × Planets Mercury (Mars) 2010 IKAROS Venus MMX Phobos/Mars 1985 Suisei 2014 Hayabusa2 Small Bodies Asteroid Ryugu 2003 Hayabusa 1985 Sakigake Asteroid Itokawa Destiny+ Comet Halley Comet Pheton 2 Hayabusa2 Mission ✓ Sample return mission to a C-type asteroid “Ryugu” ✓ 5.2 billion km interplanetary journey. Launch Earth Gravity Assist Ryugu Arrival MINERVA-II-1 Deployment Dec.3, 2014 Sep.21, 2018 Dec.3, 2015 Jun.27, 2018 MASCOT Deployment Oct.3, 2018 Ryugu Departure Nov.13.2019 Kinetic Impact Earth Return Second Dec.6, 2020 Apr.5, 2019 Target Markers Orbiting Touchdown Sep.16, 2019 Jul,11, 2019 First Touchdown Feb.22, 2019 MINERVA-II-2 Orbiting MD [D VIp srvlxp #534<# Oct.2, 2019 Hayabusa2 Spacecraft Overview Deployable Xband Xband Camera (DCAM3) HGA LGA Xband Solar Array MGA Kaba nd Ion Engine HGA Panel RCS thrusters ×12 ONC‐T, ONC‐W1 Star Trackers Near Infrared DLR MASCOT Spectrometer (NIRS3) Lander Thermal Infrared +Z Imager (TIR) Reentry Capsule +X MINERVA‐II Small Carry‐on +Z LIDAR ONC‐W2 +Y Rovers Impactor (SCI) +X Sampler Horn Target +Y Markers ×5 Launch Mass: 609kg Ion Engine: Total ΔV=3.2km/s, Thrust=5-28mN (variable), Specific Impulse=2800- 3000sec. (4 thrusters, mounted on two-axis gimbal) Chemical RCS: Bi-prop.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Attitude Control Dynamics of Spinning Solar Sail “IKAROS” Considering
    Attitude Control Dynamics of Spinning Solar Sail “IKAROS” Considering Thruster Plume Osamu Mori, Yoji Shirasawa, Hirotaka Sawada, Ryu Funase, Yuichi Tsuda, Takanao Saiki and Takayuki Yamamoto (JAXA), Morizumi Motooka and Ryo Jifuku (Univ. of Tokyo) Abstract In this paper, the attitude dynamics of IKAROS, which is spinning solar sail, is presented. First Mode Model of out-of-plane deformation (FMM) and Multi Particle Model (MPM) are introduced to analyze the out-of-plane oscillation mode of spinning solar sail. The out-of-plane oscillation of IKAROS is governed by three modes derived from FMM. FMM is very simple and valid for the design of attitude controller. Considering the thruster configuration of IKAROS, the force on main body and sail by thruster plume as well as reaction force by thruster are integrated into MPM. The attitude motion after sail deployment or reorientation using thrusters can be analyzed by MPM numerical simulations precisely. スラスタプルームを考慮したスピン型ソーラーセイル「IKAROS」の姿勢制御運動 森 治,白澤 洋次,澤田 弘崇,船瀬 龍,津田 雄一,佐伯 孝尚,山本 高行(JAXA), 元岡 範純,地福 亮(東大) 摘要 本論文ではスピン型ソーラーセイル IKAROS の姿勢運動について示す.スピン型ソーラーセイル を解析するために一次面外変形モデルおよび多粒子モデルを導入する.まず,一次面外変形モデ ルから導出される 3 つのモードが IKAROS の面外運動を支配していることを示す.このモデルは 非常に簡易であり,姿勢制御設計に有効であると言える.一方,多粒子モデルに対しては, IKAROS のスラスタ配置を考慮して,スラスタの反力だけでなくスラスタプルームが本体や膜面 に及ぼす力を組み込み,セイル展開後およびスラスタによるマヌーバ後の姿勢運動を数値シミュ レーションにより詳細に解析する. 1. Introduction for the numerical model. Considering the thruster configuration of IKAROS, the force on main body and A solar sail 1) is a space yacht that gathers energy for sail by thruster plume as well as reaction force by propulsion from sunlight pressure by means of a thruster are integrated into MPM. The Fast Fourier membrane. The Japan Aerospace Exploration Agency Transform (FFT) results from IKAROS flight data are (JAXA) successfully achieved the world’s first solar sail compared with those from simulation data.
    [Show full text]
  • Echo Exoplanet Characterisation Observatory
    Exp Astron (2012) 34:311–353 DOI 10.1007/s10686-012-9303-4 ORIGINAL ARTICLE EChO Exoplanet characterisation observatory G. Tinetti · J. P. Beaulieu · T. Henning · M. Meyer · G. Micela · I. Ribas · D. Stam · M. Swain · O. Krause · M. Ollivier · E. Pace · B. Swinyard · A. Aylward · R. van Boekel · A. Coradini · T. Encrenaz · I. Snellen · M. R. Zapatero-Osorio · J. Bouwman · J. Y-K. Cho · V. Coudé du Foresto · T. Guillot · M. Lopez-Morales · I. Mueller-Wodarg · E. Palle · F. Selsis · A. Sozzetti · P. A. R. Ade · N. Achilleos · A. Adriani · C. B. Agnor · C. Afonso · C. Allende Prieto · G. Bakos · R. J. Barber · M. Barlow · V. Batista · P. Bernath · B. Bézard · P. Bordé · L. R. Brown · A. Cassan · C. Cavarroc · A. Ciaravella · C. Cockell · A. Coustenis · C. Danielski · L. Decin · R. De Kok · O. Demangeon · P. Deroo · P. Doel · P. Drossart · L. N. Fletcher · M. Focardi · F. Forget · S. Fossey · P. Fouqué · J. Frith · M. Galand · P. Gaulme · J. I. González Hernández · O. Grasset · D. Grassi · J. L. Grenfell · M. J. Griffin · C. A. Griffith · U. Grözinger · M. Guedel · P. Guio · O. Hainaut · R. Hargreaves · P. H. Hauschildt · K. Heng · D. Heyrovsky · R. Hueso · P. Irwin · L. Kaltenegger · P. Kervella · D. Kipping · T. T. Koskinen · G. Kovács · A. La Barbera · H. Lammer · E. Lellouch · G. Leto · M. A. Lopez Valverde · M. Lopez-Puertas · C. Lovis · A. Maggio · J. P. Maillard · J. Maldonado Prado · J. B. Marquette · F. J. Martin-Torres · P. Maxted · S. Miller · S. Molinari · D. Montes · A. Moro-Martin · J. I. Moses · O. Mousis · N. Nguyen Tuong · R.
    [Show full text]
  • Sg423finalreport.Pdf
    Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA). Any opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home page at www.iaaweb.org. Copyright 2019 by the International Academy of Astronautics. All rights reserved. The International Academy of Astronautics (IAA), an independent nongovernmental organization recognized by the United Nations, was founded in 1960. The purposes of the IAA are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in areas related to astronautics, and to provide a program through which the membership can contribute to international endeavours and cooperation in the advancement of aerospace activities. © International Academy of Astronautics (IAA) May 2019. This publication is protected by copyright. The information it contains cannot be reproduced without written authorization. Title: A Handbook for Post-Mission Disposal of Satellites Less Than 100 kg Editors: Darren McKnight and Rei Kawashima International Academy of Astronautics 6 rue Galilée, Po Box 1268-16, 75766 Paris Cedex 16, France www.iaaweb.org ISBN/EAN IAA : 978-2-917761-68-7 Cover Illustration: credit A Handbook for Post-Mission Disposal of Satellites
    [Show full text]
  • Science Exploration and Instrumentation of the OKEANOS Mission to a Jupiter Trojan Asteroid Using the Solar Power Sail
    Planetary and Space Science xxx (2018) 1–8 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail Tatsuaki Okada a,b,*, Yoko Kebukawa c,d, Jun Aoki d, Jun Matsumoto a, Hajime Yano a, Takahiro Iwata a, Osamu Mori a, Jean-Pierre Bibring e, Stephan Ulamec f, Ralf Jaumann g, Solar Power Sail Science Teama a Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, 252-5210, Japan b The University of Tokyo, Hongo, Bunkyo, Tokyo, Japan c Faculty of Engineering, Yokohama National University, Japan d Graduate School of Science, Osaka University, Toyonaka, Japan e Institut dʼAstrophysique Spatiale, Orsay, France f German Aerospace Center, Cologne, Germany g German Aerospace Center, Berlin, Germany ARTICLE INFO ABSTRACT Keywords: An engineering mission OKEANOS to explore a Jupiter Trojan asteroid, using a Solar Power Sail is currently under Solar system formation study. After a decade-long cruise, it will rendezvous with the target asteroid, conduct global mapping of the Jupiter trojans asteroid from the spacecraft, and in situ measurements on the surface, using a lander. Science goals and enabling Solar power sail instruments of the mission are introduced, as the results of the joint study between the scientists and engineers Lander from Japan and Europe. Mass spectrometry OKEANOS 1. Introduction ocean water and life. Lucy (Levison et al., 2017), a Jupiter Trojan multi-flyby mission, has Jupiter Trojan asteroids are located in the long-term stable orbits been selected as a NASA Discovery class mission, which aims for un- around the Sun-Jupiter Lagrange points (L4 or L5) Most of them are derstanding the variation and diversity of Jupiter Trojans.
    [Show full text]
  • Tetsuya Nakano Safety and Mission Assurance Department Japan Aerospace Exploration Agency (JAXA)
    JAXA Approach for Mission Success ~close coordination with contractors~ Tetsuya Nakano Safety and Mission Assurance Department Japan Aerospace Exploration Agency (JAXA) 2010.10.21 NASA Supply Chain Conference@NASA GSFC 1 JAXA Approach for Mission Success ~close coordination with contractors~ Contents 1. Recent JAXA Space Flights 2. JAXA’s Role and Responsibility 3. Major S&MA Activities 4. Technical Improvement Activities in Development Projects 2 1. Recent JAXA Space Flights Currently-operating JAXA’s satellites on-orbit CY2000 CY2005 CY2010 2005 Daichi (ALOS: Land observation) 2002 2009 Kodama (DRTS: Data relay) Ibuki(GOSAT: Greenhouse gas observation) 2006 Kiku8 (ETS-8: Technical Testing) 2008 Kizuna(WINDS: Super high-speed internet) 2010 2005 Michibiki (QZSS-1: Suzaku (Astro-EII:X-ray Astronomy) Global Positioning) 2006 2010 Akari (Astro-F: Infrared Akatsuki (Planet-C: Imaging) Venus Climate) 2006 2010 Hinode (SOLAR-B: Ikaros (Solar Power Solar Physics) Sail) 2003 Hayabusa (asteroid explorer) 2007 3 Kaguya (Lunar observation) 1. Recent JAXA Space Flights Japanese Launch vehicles H-2A (Standard) H-2B Epsilon(under development) GTO 4.0ton 8ton LEO 10ton 16.5ton (ISS orbit) 1.2ton 4 4 1. Recent JAXA Space Flights International Space Station Program “HTV” ISS “KIBO” Transportation Vehicle Japanese Experience Module (JEM) ©NASA ©NASA ©NASA Yamazaki 2010.4 Furukawa Noguchi Wakata 2011.Spring - 2009.12 – 2010.6 2009.3 – 2009.7 5 2. JAXA’s Role and Responsibility Emphasizing upstream process and front-loading • Apply Systems Engineering (SE) that emphasizes upstream process management in the project lifecycle • Allocate adequate resource to upstream process (front-loading) Define appropriate level of JAXA responsibilities and roles in development projects • JAXA is responsible for requirements/specification definition, and flight operations.
    [Show full text]
  • Planet Earth Taken by Hayabusa-2
    Space Science in JAXA Planet Earth May 15, 2017 taken by Hayabusa-2 Saku Tsuneta, PhD JAXA Vice President Director General, Institute of Space and Astronautical Science 2017 IAA Planetary Defense Conference, May 15-19,1 Tokyo 1 Brief Introduction of Space Science in JAXA Introduction of ISAS and JAXA • As a national center of space science & engineering research, ISAS carries out development and in-orbit operation of space science missions with other directorates of JAXA. • ISAS is an integral part of JAXA, and has close collaboration with other directorates such as Research and Development and Human Spaceflight Technology Directorates. • As an inter-university research institute, these activities are intimately carried out with universities and research institutes inside and outside Japan. ISAS always seeks for international collaboration. • Space science missions are proposed by researchers, and incubated by ISAS. ISAS plays a strategic role for mission selection primarily based on the bottom-up process, considering strategy of JAXA and national space policy. 3 JAXA recent science missions HAYABUSA 2003-2010 AKARI(ASTRO-F)2006-2011 KAGUYA(SELENE)2007-2009 Asteroid Explorer Infrared Astronomy Lunar Exploration IKAROS 2010 HAYABUSA2 2014-2020 M-V Rocket Asteroid Explorer Solar Sail SUZAKU(ASTRO-E2)2005- AKATSUKI 2010- X-Ray Astronomy Venus Meteorogy ARASE 2016- HINODE(SOLAR-B)2006- Van Allen belt Solar Observation Hisaki 2013 4 Planetary atmosphere Close ties between space science and space technology Space Technology Divisions Space
    [Show full text]
  • Science Instruments on Hayabusa Follow-On Missions
    Science Instruments on Hayabusa follow-on missions Yasuhiko Takagi (Aichi Toho University) (prepared by Masanao Abe (JAXA)) 1 Science instruments under examination Others 2 Basic concept of Hayabusa-IF* camera • Use Navigation camera as a scientific imager • Similar optics and CCD as AMICA, but with minor modifications on – Filters • ECAS -> special set for C-type • Remove ND flter , polarizer on CCD – Electronics • More flexible and autonomous operation • More effective compression • Larger onboard storage • Onboard data analysis 3 *Hayabusa-IF: Hayabusa Immediate Follow-on mission AMICA on Hayabysa Polarizer 4 Ground-based ECAS Quasi ECAS filters on AMICA5 A new filter set • Narrower band width (5~20 nm) – Remove ND filter – More accurate colorimetry • UV absorption as a thermal metamorphism indicator? • Phyllosilicate absorption around 700nm (430nm ?) • Nearby reference bands • Wide filter for imaging stars and the artificial orbiters (~TM) • Natural RGB for outreach purpose? • Several common bands with previous missions? (SSI/Galileo, MSI/NEAR, AMICA/Hayabusa, FC/ Dawn, NAC/Stardust, ??/Rosetta,etc, ) 6 Ground-based ECAS Thermal alteration Phyllosilicate absorption 7 8 Hayabusa NIRS • Wavelength range: 764-2247nm (△λ23.56nm) • FOV: 0.1x0.1deg(9m@5km distance) • Detector: InGaAs Liner Array (64channels) • F value: 1.00 • Effective diameter: 27mm • Operating temperature: 260K • A/D resolution (dynamic range) : 14bits 1 Average 0.1 Output [V] [V] Output Output 0.01 Standard Deviation 0.001 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 9 Wavelength
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • Iii. History of the Mission
    III. HISTORY OF THE MISSION 2011 Development phase 2014 Dec 3 Launch 5 Critical operations Launch 6 Initial function check Rocket - H-IIA-26 (type 202) Planned launch date - 30 Nov 2014 13:24:48 (Delayed due to weather) 2015 Actual launch date - 3 Dec 2014 13:22:04 Possible launch window - 30 Nov~9 Dec 2014 Mar Cruising phase Launch location - Tanegashima Space Center 2 Sub-payloads accompanying launch Dec Earth swing-by - Shin‘en 2 (Kyushu Institute of Technology) 3 - ARTSAT2-DESPATCH (Tama Art University) Southern hemisphere 4 - PROCYON (co-research by University of Tokyo and JAXA) station operations 2016 Critical operations - Solar array panel deployment, sun acquisition control - Sampling device horn extension Mar - Release launch lock on the retaining mechanism 22 Phase-1 Apr ion engine operation for the gimbal that controls ion engine direction - Confirm spacecraft tri-axial attitude control functions May 21 - Ground-based confirmation of functions for Nov precise trajectory determination system 22 Phase-2 ion engine operation Initial functional confirmation 2017 - Confirmation of ion engine, communications, power supply, attitude control, observation devices, etc. - Precise trajectory determination Apr 26 2018 Jan 10 Phase-3 Jun ion engine operation 3 27 Asteroid arrival HISTORY OF THE MISSION 23 H-IIA LAuNcH VEHIcLE H2A202 [Standard] 50m Satellite fairing (type 4S) H-IIA naming: H2A 1st/2nd stage / number of LRB / number of SRB-A Length - 53 m Mass - 289 ton Satellite fairing 2nd Stage - 1 SRB-A - 2 12m Hayabusa 2 1st Stage -
    [Show full text]
  • Roger Angel University of Arizona
    NIAC Fellows meeting Atlanta March 7 2007 Phase I report Practicality of a solar shield in space to counter global warming Roger Angel University of Arizona Pete Worden and Kevin Parkin NASA Ames Research Center Dave Miller MIT Planet Earth driver’s test 1) You are zipping along happily, when you see warning lights ahead in the distance but visibility is not so great. What should you do? a) Just floor it b) take you foot off the accelerator c) apply the brakes 2) You find you have no brakes. What should you do now? The warning CO2 in atmosphere works just like water vapor • Lets in warming sunlight in the day • when humidity is high heat is trapped and nights stay warm • when humidity is low heat escapes and nights are cold • But unlike water vapor, CO2 hangs around – added CO2 in the atmosphere takes a century or two to dissipate Geoengineering solutions could be really useful • Needed if current CO2 level already beyond “tipping point” • Even extreme conservation may not be able to stop abrupt and disastrous changes e.g. – changes in ocean circulation – Greenland melts (20’ permanent sea level rise) • Many leading scientists seriously worried • Probability of disaster 10% - 20%? – Geoengineering like taking out insurance against unlikely but catastrophic event) Geoengineering has been taboo • People worry it will take off the pressure for permanent solution of not burning fossil fuel – Administration pointed to possibility of geoengineering and space mirrors just before recent IPCC report • If used for an extended period, would lead to seriously unstable planet Earth, ever more hooked on carbon • But if we don’t look at it, we have no insurance Heating reversible by reducing solar flux • Govindasamy, B.
    [Show full text]