Ecology and Conservation of Garra Ghorensis, an Endangered Freshwater Fish in Jordan

Total Page:16

File Type:pdf, Size:1020Kb

Ecology and Conservation of Garra Ghorensis, an Endangered Freshwater Fish in Jordan Ecology and conservation of Garra ghorensis, an endangered freshwater fish in Jordan Nashat A. Hamidan Thesis submitted for the degree of Doctor of Philosophy Bournemouth University April 2016 This copy of the thesis has been supplied on condition that anyone who consults its understood to recognise that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. II Abstract The focal species of the research was the freshwater cyprinid fish Garra ghorensis. Endemic to the southern Dead Sea basin of the Middle East, it is ‘Red listed’ by the IUCN as ‘endangered’. It inhabits the small rivers of the basin (‘wadis’), existing within fish communities of very low species diversity. The aim of the research was to inform conservation strategies for the species through investigations into their phylogeny, current distribution, life history traits and feeding relationships. Analysis of the mitochondrial DNA of G. ghorensis with other fishes of the Garra genus tested two contrasting hypotheses on their biogeographic origin: whether they were descended from Garra tibancia in the Arabian Peninsula or from a common ancestor shared with Garra rufa, which would have indicated dispersal from the Mediterranean basin and Mesopotamia. The phylogenetic tree clearly indicated that G. ghorensis shared a common ancestor with G. rufa and thus was of Mediterranean origin. These phylogenetic analyses were then important for interpreting G. ghorensis biogeography in relation to their natural range and current distribution. Surveys completed in 2010 provided data on their spatial distribution; this distribution was at least partially explained by historical geological and water salinity changes of the proto- lakes of Lake Samra and Lisan. These surveys also revealed that during the 2000s, there had been little change in G. ghorensis distribution, with populations still present in wadis that were recorded in 2002. However, at the surveyed sites, some alterations to the physical habitats and hydrology of the wadis were apparent, such as construction of impoundments. To assess the life history traits and feeding relationships of G. ghorensis, three locally abundant populations were studied. These were an allopatric population, a population sympatric with the native cyprinid Capoeta damascina and a population sympatric with III the invasive cichlid Oreochromis aureus. The allopatric and sympatric native populations were present in wadis with minimal habitat disturbance, whereas the sympatric invasive population was present in a wadi with substantial alteration, including some impoundments that deepened the main channel and reduced the flow. Analyses of ages, growth rates and reproductive traits revealed that life spans, growth rates and reproductive investment were greatest at this disturbed site, despite being relatively altered from the apparently preferred habitat of the species. These results suggested that providing the hydrological disturbance at sites where G. ghorensis is present still enables the completion of their life cycle then their populations can withstand some aspects of habitat disturbances from anthropogenic activities. The feeding relationships of G. ghorensis were then assessed in relation to the presence of C. damascina and O. aureus in two of the sites, and used a combination of stomach contents analyses and stable isotope analysis. Results from both methods revealed whilst there were some overlaps in the trophic niches of the fishes, diets were based mainly on detritus and algae. These items are rarely limiting in freshwaters and thus whilst resources were shared, it was unlikely to result in high levels of inter-specific competition. Thus, an important ecological feature of G. ghorensis populations is their plasticity in life history traits and their resource use that enables some adaptation to disturbed environments. This suggests that their conservation management does not necessarily have to return their habitats to pristine conditions, as their adaptive capacity should enable some adaptation to the new conditions and thus continued population sustainability. Consequently, providing that development schemes prevent the destruction of the key habitats required for the completion of the G. ghorensis lifecycle, then their populations could remain sustainable in the face of continued development in the region. IV Table of Contents List of Tables .............................................................................................. X List of Figures .......................................................................................... XII List of Figures .......................................................................................... XII Dedication ............................................................................................... XVI Acknowledgments ................................................................................ XVII Author’s declaration .............................................................................. XXI Chapter 1. General Introduction ............................................................. 23 1.1 Research Overview ........................................................................................ 23 1.2 Freshwater fish fauna of Jordan .................................................................. 23 1.3 Fish species declines and status in Jordan, including Garra ghorensis .... 25 1.4 Garra ghorensis: current state of biological and ecological knowledge ... 28 1.5 Conservation of desert fishes ........................................................................ 29 1.6 Research aim and objectives, and thesis structure ..................................... 34 Chapter 2 Study sites, and initial samples collection ............................. 37 2.1 Overview ......................................................................................................... 37 2.2 Sampling sites................................................................................................. 39 V 2.2.1 Geology ............................................................................................................... 42 2.2.2 Hydrology and thermal regimes ......................................................................... 43 2.3 Fish sampling and initial data collection ..................................................... 45 Chapter 3. The biogeographic origin and phylogenetic relationships of Garra ghorensis in the Southern Dead Sea basin ................................... 46 3.1 Overview ......................................................................................................... 47 3.1.1. Presentation of the Chapter ............................................................................... 47 3.1.2 Summary ............................................................................................................. 47 3.2 Introduction ................................................................................................... 48 3.2.1 Phylogeography .................................................................................................. 48 3.2.2 Phylogeography of the Cyprinidae family .......................................................... 49 3.2.3 Historical fish biogeography in Jordan: importance of proto-lakes in the Pleistocene .............................................................................................................. 50 3.2.4 Contemporary knowledge on the biogeography of the Garra genus in Jordan . 54 3.2.5 Biogeographic hypotheses on the origin of the Garra genus in Jordan and the Middle East for testing with phylogeography ......................................................... 57 3.3 Assessing the phylogeography of the Garra genus ..................................... 59 3.3.1 Material and methods ......................................................................................... 59 3.3 Results ............................................................................................................. 66 VI 3.4 Discussion ....................................................................................................... 67 Chapter 4. A revised account of the geographical distribution of the endangered freshwater fish Garra ghorensis in Jordan and implications for conservation ................................................................... 71 4.1 Introduction ................................................................................................... 72 4.2 Materials and Methods ................................................................................. 75 4.2.1 Study area ........................................................................................................... 75 4.2.2 Fish sampling ...................................................................................................... 75 4.3 Results ............................................................................................................. 83 4.4 Discussion ....................................................................................................... 85 Chapter 5. Age structure and somatic growth rates of G. ghorensis in relation to varying levels of environmental disturbance ....................... 88 5.1 Introduction ................................................................................................... 89 5.2 Materials and Methods ................................................................................
Recommended publications
  • Table 7: Species Changing IUCN Red List Status (2014-2015)
    IUCN Red List version 2015.4: Table 7 Last Updated: 19 November 2015 Table 7: Species changing IUCN Red List Status (2014-2015) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2014 (IUCN Red List version 2014.3) and 2015 (IUCN Red List version 2015-4) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered, EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2014) List (2015) change version Category Category MAMMALS Aonyx capensis African Clawless Otter LC NT N 2015-2 Ailurus fulgens Red Panda VU EN N 2015-4
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Scale Deformities in Three Species of the Genus Garra (Actinopterygii: Cyprinidae)
    Scale deformities in three species of the genus Garra (Actinopterygii: Cyprinidae) Halimeh Zareian1,2, Hamid Reza Esmaeili1, Ali Gholamhosseini1* 1. Developmental Biosystematics Research Laboratory, Zoology Section, Department of Biology, School of Science, Shiraz University, Shiraz, Iran 2. Zand Institute of Higher Education, Shiraz, Iran *Corresponding author’s E-mail: [email protected] ABSTRACT Different types of scale deformities have been reported from fishes worldwide, however there is no available study on the abnormal scales in the genus Garra except for G. variabilis. In the present study, scale deformities of three species of Garra including G. rufa, G. persica and Garra sp. from 6 sites of the Iranian drainages were examined and described. Different deformations were observed in focus, anterior, posterior and lateral sides of scales in the studied species, showing both slight and severe abnormalities. The occurrence of twin scales was one of the most interesting cases among various types of scale deformities observed on G. persica and Garra sp. Genetic disorders, diseases (including infection and lesions), developmental anomalies, incomplete regeneration after wounding, physical, and chemical environmental variables including pollutions might be considered as potential factors for scale abnormalities remained to be investigated. Keywords: Garra, Scale morphology, Taxonomy, Abnormal scale, Iranian drainage basins. INTRODUCTION Among the morphological abnormalities reported in fishes (e.g. Poppe et al. 1997; Corrales
    [Show full text]
  • Genetic Differentiation Between Two Sympatric Morphs of the Blind Iran Cave Barb Iranocypris Typhlops
    Journal of Fish Biology (2012) 81, 1747–1753 doi:10.1111/j.1095-8649.2012.03389.x, available online at wileyonlinelibrary.com BRIEF COMMUNICATIONS Genetic differentiation between two sympatric morphs of the blind Iran cave barb Iranocypris typhlops I. Hashemzadeh Segherloo*†, L. Bernatchez‡, K. Golzarianpour§, A. Abdoli, C. R. Primmer¶ and M. Bakhtiary** *Department of Aquaculture, Faculty of Natural Resources and Earth Sciences, University of Shahre Kord, Shahre Kord 115, Iran, ‡Institut de Biologie Int´egrative et des Syst`emes (IBIS), Pavillion Charles-Eugene-Marchant Universit´e Laval, Qu´ebec, GIV 046 Canada, §Department of Biology, Faculty of Science, Gonbad-e Kavous University, Golestan, Iran, Department of Biodiversity and Ecosystem Management, Environmental Science Research Institute, Shahid Beheshti University, G. C. Velenjak, Tehran, Iran, ¶Department of Biology, University of Turku, Turku 20014, Finland and **Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj 411, Iran (Received 11 April 2011, Accepted 29 May 2012) The phylogenetic relationship between two sympatric morphotypes of the Iran cave barb Iranocypris typhlops,andGarra rufa, was investigated by sequencing the cytochrome c oxidase I (coI ) region (788 bp) providing the first molecular evidence of their phylogeny. Consistent with their morpho- logical differences, the mean genetic distance between the two forms of I. typhlops was significantly higher than generally reported for intraspecific divergence in freshwater fishes. They were phyloge- netically closer to G. rufa than to any other species. © 2012 The Authors Journal of Fish Biology © 2012 The Fisheries Society of the British Isles Key words: cytochrome c oxidase; Garra rufa; morphotypes; phylogenetic relationship.
    [Show full text]
  • Phylogenetic Relationships of Freshwater Fishes of the Genus Capoeta (Actinopterygii, Cyprinidae) in Iran
    Received: 3 May 2016 | Revised: 8 August 2016 | Accepted: 9 August 2016 DOI: 10.1002/ece3.2411 ORIGINAL RESEARCH Phylogenetic relationships of freshwater fishes of the genus Capoeta (Actinopterygii, Cyprinidae) in Iran Hamid Reza Ghanavi | Elena G. Gonzalez | Ignacio Doadrio Museo Nacional de Ciencias Naturales, Biodiversity and Evolutionary Abstract Biology Department, CSIC, Madrid, Spain The Middle East contains a great diversity of Capoeta species, but their taxonomy re- Correspondence mains poorly described. We used mitochondrial history to examine diversity of the Hamid Reza Ghanavi, Department of algae- scraping cyprinid Capoeta in Iran, applying the species- delimiting approaches Biology, Lund University, Lund, Sweden. Email: [email protected] General Mixed Yule- Coalescent (GMYC) and Poisson Tree Process (PTP) as well as haplotype network analyses. Using the BEAST program, we also examined temporal divergence patterns of Capoeta. The monophyly of the genus and the existence of three previously described main clades (Mesopotamian, Anatolian- Iranian, and Aralo- Caspian) were confirmed. However, the phylogeny proposed novel taxonomic findings within Capoeta. Results of GMYC, bPTP, and phylogenetic analyses were similar and suggested that species diversity in Iran is currently underestimated. At least four can- didate species, Capoeta sp4, Capoeta sp5, Capoeta sp6, and Capoeta sp7, are awaiting description. Capoeta capoeta comprises a species complex with distinct genetic line- ages. The divergence times of the three main Capoeta clades are estimated to have occurred around 15.6–12.4 Mya, consistent with a Mio- Pleistocene origin of the di- versity of Capoeta in Iran. The changes in Caspian Sea levels associated with climate fluctuations and geomorphological events such as the uplift of the Zagros and Alborz Mountains may account for the complex speciation patterns in Capoeta in Iran.
    [Show full text]
  • Monograph of the Cyprinid Fis~Hes of the Genus Garra Hamilton (173)
    MONOGRAPH OF THE CYPRINID FIS~HES OF THE GENUS GARRA HAMILTON By A. G. K. MENON, Zoologist, ,Zoological Surt1ey of India, Oalcutta. (With 1 Table, 29 Text-figs. and 6 Plates) CONTENTS Page I-Introduction 175 II-Purpose and general results 176 III-Methods and approaches 176 (a) The definition of Measurements 176 (b) The analysis of Intergradation 178 (c) The recognition of subspecies. 179 (d) Procedures in the paper 180 (e) Evaluation of systematic characters 181 (I) Abbreviations of names of Institutions 181 IV-Historical sketch 182 V-Definition of the genus 187 VI-Systematic section 188 (a) The variabilis group 188 (i) The variabilis Complex 188 1. G. variabilis 188 2. G. rossica 189 (b) The tibanica group 191 (i) The tibanica Complex 191 3. G. tibanica. 191 4. G. quadrimaculata 192 5. G. ignestii 195 6. G. ornata 196 7. G. trewavasi 198 8. G. makiensis 198 9. G. dembeensis 199 10. G. ethelwynnae 202 (ii) The rufa complex 203 11. G. rufa rufa 203 12. G. rufa obtusa 205 13. O. barteimiae 206 (iii) The lamta complex 208 14. G. lamta 208 15. G. mullya 212 16. G. 'ceylonensis ceylonensis 216 17. G. c. phillipsi 216 18. G. annandalei 217 (173) 174 page (iv) The lissorkynckus complex 219 19. G. lissorkynchus 219 20. G. rupecula 220 ~ (v) The taeniata complex 221 21. G. taeniata. 221 22" G. borneensis 224 (vi) The yunnanensis complex 224 23. G. yunnanensis 225 24. G. gracilis 229 25. G. naganensis 226 26. G. kempii 227 27. G. mcOlellandi 228 28. G.
    [Show full text]
  • New Data on the Distribution and Conservation Status of the Two Endemic Scrapers in the Turkish Mediterranean Sea Drainages (Teleostei: Cyprinidae)
    International Journal of Zoology and Animal Biology ISSN: 2639-216X New Data on the Distribution and Conservation Status of the Two Endemic Scrapers in the Turkish Mediterranean Sea Drainages (Teleostei: Cyprinidae) Kaya C1*, Kucuk F2 and Turan D1 Research Article 1 Recep Tayyip Erdogan University, Turkey Volume 2 Issue 6 2Isparta University of Applied Sciences, Turkey Received Date: October 31, 2019 Published Date: November 13, 2019 *Corresponding author: Cuneyt Kaya, Faculty of Fisheries and Aquatic Sciences, DOI: 10.23880/izab-16000185 Recep Tayyip Erdogan University, 53100 Rize, Turkey, Tel: +904642233385; Email: [email protected] Abstract In the scope of this study, exact distribution of the two endemic Capoeta species in the Turkish Mediterranean Sea drainages was presented. Fishes were caught with pulsed DC electro-fishing equipment from 28 sampling sites throughout Turkish Mediterranean Sea drainages between Göksu River and stream Boğa. The findings of the study demonstrate that Capoeta antalyensis inhabits in Köprüçay and Aksu rivers, and streams Boğa and Gündoğdu, all around Antalya. Capoeta caelestis widely distributed in coastal stream and rivers between Stream Dim (Alanya) in the west and Göksu River (Silifke) in the east. Metric and meristic characters were collected from the fish samples which obtained in the field for Capoeta caelestis and Capoeta antalyensis, and museum material for Capoeta damascina. In this way, morphologic features of the species revealed and Capoeta caelestis compared with Capoeta damascina to remove the hesitations about the validity of the species. The conservation status of Capoeta antalyensis was recommended to uplist from Vulnerable to Endangered. Keywords: Freshwater Fish Species; Anatolia; Pisces; Capoeta antalyensis; C.
    [Show full text]
  • Article Taxonomic Review of the Genus Capoeta Valenciennes, 1842 (Actinopterygii, Cyprinidae) from Central Iran with the Description of a New Species
    FishTaxa (2016) 1(3): 166-175 E-ISSN: 2458-942X Journal homepage: www.fishtaxa.com © 2016 FISHTAXA. All rights reserved Article Taxonomic review of the genus Capoeta Valenciennes, 1842 (Actinopterygii, Cyprinidae) from central Iran with the description of a new species Arash JOULADEH-ROUDBAR1, Soheil EAGDERI1, Hamid Reza GHANAVI2*, Ignacio DOADRIO3 1Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Alborz, Iran. 2Department of Biology, Lund University, Lund, Sweden. 3Biodiversity and Evolutionary Biology Department, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain. Corresponding author: *E-mail: [email protected] Abstract The genus Capoeta in Iran is highly diversified with 14 species and is one of the most important freshwater fauna components of the country. Central Iran is a region with high number of endemism in other freshwater fish species, though the present species was recognized as C. aculeata (Valenciennes, 1844), widely distributed within Kavir and Namak basins. However previous phylogenetic and phylogeographic studies found that populations of Nam River, a tributary of the Hableh River in central Iran are different from the other species. In this study, the mentioned population is described as a new species based on morphologic and genetic characters. Keywords: Inland freshwater of Iran, Nam River, Algae-scraping cyprinid, Capoeta. Zoobank: urn:lsid:zoobank.org:pub:3697C9D3-5194-4D33-8B6B-23917465711D urn:lsid:zoobank.org:act:7C7ACA92-B63D-44A0-A2BA-9D9FE955A2D0 Introduction There are 257 fish species in Iranian inland waters under 106 genera, 29 families and Cyprinidae with 111 species (43.19%) is the most diverse family in the country (Jouladeh-Roudbar et al.
    [Show full text]
  • Safety and Hygiene of Ichthyotherapy with G. Rufa Fish
    Arch Phys Glob Res 2019; 23 (2): 37-44 ORIGINAL PAPER DOI 10.15442/apgr.23.2.5 Safety and hygiene of ichthyotherapy with G. rufa fish Małgorzata Gorzel*, Anna Kiełtyka-Dadasiewicz** * Faculty of Health Sciences, Vincent Pol University, ** Research and Science Innovation Center, Lublin Abstract Today, biotherapies (therapies using animals, plants or their secretions) are becoming increasingly popular. In medicine and cosmetology, leeches, fish, insect larvae, mucus fromH. aspersa snail, bee products are used. Among them, ichthyotherapy - therapy with the use of Garra rufa (Heckel 1843), which is gaining popularity not only in the exotic resorts of Turkey, Iran and Jordan, but also in Poland, deserves attention. In view of the growing interest in ichthyotherapy, the question arises: Are cosmetic and therapeutic procedures using this vertebrate completely safe for humans? This question became a contribution to taking up this topic of study. Ichthyotherapy is the use of freshwater, sedentary benthopelagic fish of the cyprinid family, red garra (G. rufa), commercially referred to as “the doctor fish”. This fish has a suction apparatus that allows removal of calloused epidermis in patients undergoing therapy. This treatment has been used mainly in cosmetics as so-called fish pedicure, but also in medicine. Scientific reports indicate that this fish may be helpful in treating some skin diseases, i.e. in alleviating the symptoms of psoriasis or atopic dermatitis. Treatments using the red garra have to be performed in full compliance with hygiene rules. In 2011, the British Health Protect Agency (BHPA) published the guidelines for carrying out treatments using these fish. It specified the indications and contraindications for performing the procedure, the way it should be performed, as well as the threats that could result from possible non-compliance with the principles of occupational health and safety during the procedures.
    [Show full text]
  • A Review of Freshwater Fish Fauna in Jordan
    Libyan Agriculture Research Center Journal International 1 (5): 320-324, 2010 ISSN 2219-4304 © IDOSI Publications, 2010 A Review of Freshwater Fish Fauna in Jordan Saleh Ahmad Al-Quran Department of Biology, Faculty of Science, Mutah University, Karak, Jordan Abstract: A total of 27 fish species belonging to ten families were recorded. The fish fauna distribution in two rivers (Jordan and Yarmouk) and some dams and tributaries in Jordan was examined. The rivers surveyed were generally shallow, fast flowing with clear water and rocky and sandy substrate. At the time of survey, the rivers gave excellent water quality data. Cyprinidae has the highest diversity 0.296% with 8 species; while the lowest one are Anguillidae, Blennidae, Clariidae, Mugilidae and Pseudocrenilabrinae; each represented only by one species (0.037%). Cichlidae represented by 6 species (0.222%), Balitoridae and Cyprinodontidae are represented by three species (0.111%) and finally Acanthuridae is represented by two species (0.074%). Key words: Review % Freshwater % Fish % Fauna % Jordan INTRODUCTION drains into the Dead Sea which, at 407 meters below sea level, is the lowest point on earth. The river is between Location, Topography and Climate: Jordan is a relatively 20 and 30 meters wide near its endpoint. Its flow has been small country situated at the junction of the Levantine much reduced and its salinity increased because and Arabian areas of the Middle East. The country is significant amounts have been diverted for irrigational bordered on the north by Syria, to the east by Iraq and by uses. Several degrees warmer than the rest of the country, Saudi Arabia on the east and south.
    [Show full text]
  • Embryonic Development of a Mountainous Fish Species Garra
    J Anim Behav Biometeorol (2020) 8:88-94 ISSN 2318-1265 SHORT COMMUNICATION Embryonic development of a mountainous fish species Garra cambodgiensis (Tirant, 1883) in southern Thailand Supaporn Sutin ▪ Fahmida Wazed Tina S SutinA (Corresponding author) ▪ FW TinaA,B AFaculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand. email: [email protected] B Language Center, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand. Received: December 14, 2019 ▪ Accepted: January 19, 2020 ▪ Published Online: February 04, 2020 Abstract This study examined the artificial breeding and flowing water in small- and medium-sized streams (Jaisuk and embryonic development of a mountainous fish species Garra Senanan 2018a). They are widely distributed in Southeast cambodgiensis (Tirant, 1883) found in Promlok waterfall in Asia (especially in Chao Phraya basin and Mekong basin Khaoluang National park, Phromkhiri district, Nakhon Si (Lothongkham 2008; Kulabtong and Mahaprom 2016)), Thammarat province. The fishes were collected from June Southern China, India, Middle East and northern and central 2017- January 2018 and kept in aquaria. Afterward, the brood Africa (Kullander and Fang 2004). In Thailand, G. males and females were selected and injected with buserelin cambodgiensis are found in Nan river drainage basin in (LHRHa) (10 µg/kg body weight) and domperidone (10 mg/kg northern Thailand (Jaisuk and Senanan 2018ab), watersheds body weight). After the injections, both females and males in eastern region in central Thailand (Beamish et al 2006), were kept together in the water at a proportion of 3 females: 1 cyber stream in west Thailand (Kulabtong and Mahaprom male.
    [Show full text]
  • Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq
    Vol. 2 (2): 180-218, 2018 Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq Furhan T. Mhaisen1*, Kefah N. Abdul-Ameer2 & Zeyad K. Hamdan3 1Tegnervägen 6B, 641 36 Katrineholm, Sweden 2Department of Biology, College of Education for Pure Science, University of Baghdad, Iraq 3Department of Biology, College of Education for Pure Science, University of Tikrit, Iraq *Corresponding author: [email protected] Abstract: Literature reviews of reports concerning the parasitic fauna of fishes of Salah Al-Din province, Iraq till the end of 2017 showed that a total of 115 parasite species are so far known from 25 valid fish species investigated for parasitic infections. The parasitic fauna included two myzozoans, one choanozoan, seven ciliophorans, 24 myxozoans, eight trematodes, 34 monogeneans, 12 cestodes, 11 nematodes, five acanthocephalans, two annelids and nine crustaceans. The infection with some trematodes and nematodes occurred with larval stages, while the remaining infections were either with trophozoites or adult parasites. Among the inspected fishes, Cyprinion macrostomum was infected with the highest number of parasite species (29 parasite species), followed by Carasobarbus luteus (26 species) and Arabibarbus grypus (22 species) while six fish species (Alburnus caeruleus, A. sellal, Barbus lacerta, Cyprinion kais, Hemigrammocapoeta elegans and Mastacembelus mastacembelus) were infected with only one parasite species each. The myxozoan Myxobolus oviformis was the commonest parasite species as it was reported from 10 fish species, followed by both the myxozoan M. pfeifferi and the trematode Ascocotyle coleostoma which were reported from eight fish host species each and then by both the cestode Schyzocotyle acheilognathi and the nematode Contracaecum sp.
    [Show full text]