Reassessment of the Taxonomic Position of Iranocypris Typhlops Bruun & Kaiser, 1944 (Actinopterygii, Cyprinidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table 7: Species Changing IUCN Red List Status (2014-2015)
IUCN Red List version 2015.4: Table 7 Last Updated: 19 November 2015 Table 7: Species changing IUCN Red List Status (2014-2015) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2014 (IUCN Red List version 2014.3) and 2015 (IUCN Red List version 2015-4) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered, EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2014) List (2015) change version Category Category MAMMALS Aonyx capensis African Clawless Otter LC NT N 2015-2 Ailurus fulgens Red Panda VU EN N 2015-4 -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
Scale Deformities in Three Species of the Genus Garra (Actinopterygii: Cyprinidae)
Scale deformities in three species of the genus Garra (Actinopterygii: Cyprinidae) Halimeh Zareian1,2, Hamid Reza Esmaeili1, Ali Gholamhosseini1* 1. Developmental Biosystematics Research Laboratory, Zoology Section, Department of Biology, School of Science, Shiraz University, Shiraz, Iran 2. Zand Institute of Higher Education, Shiraz, Iran *Corresponding author’s E-mail: [email protected] ABSTRACT Different types of scale deformities have been reported from fishes worldwide, however there is no available study on the abnormal scales in the genus Garra except for G. variabilis. In the present study, scale deformities of three species of Garra including G. rufa, G. persica and Garra sp. from 6 sites of the Iranian drainages were examined and described. Different deformations were observed in focus, anterior, posterior and lateral sides of scales in the studied species, showing both slight and severe abnormalities. The occurrence of twin scales was one of the most interesting cases among various types of scale deformities observed on G. persica and Garra sp. Genetic disorders, diseases (including infection and lesions), developmental anomalies, incomplete regeneration after wounding, physical, and chemical environmental variables including pollutions might be considered as potential factors for scale abnormalities remained to be investigated. Keywords: Garra, Scale morphology, Taxonomy, Abnormal scale, Iranian drainage basins. INTRODUCTION Among the morphological abnormalities reported in fishes (e.g. Poppe et al. 1997; Corrales -
Genetic Differentiation Between Two Sympatric Morphs of the Blind Iran Cave Barb Iranocypris Typhlops
Journal of Fish Biology (2012) 81, 1747–1753 doi:10.1111/j.1095-8649.2012.03389.x, available online at wileyonlinelibrary.com BRIEF COMMUNICATIONS Genetic differentiation between two sympatric morphs of the blind Iran cave barb Iranocypris typhlops I. Hashemzadeh Segherloo*†, L. Bernatchez‡, K. Golzarianpour§, A. Abdoli, C. R. Primmer¶ and M. Bakhtiary** *Department of Aquaculture, Faculty of Natural Resources and Earth Sciences, University of Shahre Kord, Shahre Kord 115, Iran, ‡Institut de Biologie Int´egrative et des Syst`emes (IBIS), Pavillion Charles-Eugene-Marchant Universit´e Laval, Qu´ebec, GIV 046 Canada, §Department of Biology, Faculty of Science, Gonbad-e Kavous University, Golestan, Iran, Department of Biodiversity and Ecosystem Management, Environmental Science Research Institute, Shahid Beheshti University, G. C. Velenjak, Tehran, Iran, ¶Department of Biology, University of Turku, Turku 20014, Finland and **Department of Fisheries and Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj 411, Iran (Received 11 April 2011, Accepted 29 May 2012) The phylogenetic relationship between two sympatric morphotypes of the Iran cave barb Iranocypris typhlops,andGarra rufa, was investigated by sequencing the cytochrome c oxidase I (coI ) region (788 bp) providing the first molecular evidence of their phylogeny. Consistent with their morpho- logical differences, the mean genetic distance between the two forms of I. typhlops was significantly higher than generally reported for intraspecific divergence in freshwater fishes. They were phyloge- netically closer to G. rufa than to any other species. © 2012 The Authors Journal of Fish Biology © 2012 The Fisheries Society of the British Isles Key words: cytochrome c oxidase; Garra rufa; morphotypes; phylogenetic relationship. -
Monograph of the Cyprinid Fis~Hes of the Genus Garra Hamilton (173)
MONOGRAPH OF THE CYPRINID FIS~HES OF THE GENUS GARRA HAMILTON By A. G. K. MENON, Zoologist, ,Zoological Surt1ey of India, Oalcutta. (With 1 Table, 29 Text-figs. and 6 Plates) CONTENTS Page I-Introduction 175 II-Purpose and general results 176 III-Methods and approaches 176 (a) The definition of Measurements 176 (b) The analysis of Intergradation 178 (c) The recognition of subspecies. 179 (d) Procedures in the paper 180 (e) Evaluation of systematic characters 181 (I) Abbreviations of names of Institutions 181 IV-Historical sketch 182 V-Definition of the genus 187 VI-Systematic section 188 (a) The variabilis group 188 (i) The variabilis Complex 188 1. G. variabilis 188 2. G. rossica 189 (b) The tibanica group 191 (i) The tibanica Complex 191 3. G. tibanica. 191 4. G. quadrimaculata 192 5. G. ignestii 195 6. G. ornata 196 7. G. trewavasi 198 8. G. makiensis 198 9. G. dembeensis 199 10. G. ethelwynnae 202 (ii) The rufa complex 203 11. G. rufa rufa 203 12. G. rufa obtusa 205 13. O. barteimiae 206 (iii) The lamta complex 208 14. G. lamta 208 15. G. mullya 212 16. G. 'ceylonensis ceylonensis 216 17. G. c. phillipsi 216 18. G. annandalei 217 (173) 174 page (iv) The lissorkynckus complex 219 19. G. lissorkynchus 219 20. G. rupecula 220 ~ (v) The taeniata complex 221 21. G. taeniata. 221 22" G. borneensis 224 (vi) The yunnanensis complex 224 23. G. yunnanensis 225 24. G. gracilis 229 25. G. naganensis 226 26. G. kempii 227 27. G. mcOlellandi 228 28. G. -
Safety and Hygiene of Ichthyotherapy with G. Rufa Fish
Arch Phys Glob Res 2019; 23 (2): 37-44 ORIGINAL PAPER DOI 10.15442/apgr.23.2.5 Safety and hygiene of ichthyotherapy with G. rufa fish Małgorzata Gorzel*, Anna Kiełtyka-Dadasiewicz** * Faculty of Health Sciences, Vincent Pol University, ** Research and Science Innovation Center, Lublin Abstract Today, biotherapies (therapies using animals, plants or their secretions) are becoming increasingly popular. In medicine and cosmetology, leeches, fish, insect larvae, mucus fromH. aspersa snail, bee products are used. Among them, ichthyotherapy - therapy with the use of Garra rufa (Heckel 1843), which is gaining popularity not only in the exotic resorts of Turkey, Iran and Jordan, but also in Poland, deserves attention. In view of the growing interest in ichthyotherapy, the question arises: Are cosmetic and therapeutic procedures using this vertebrate completely safe for humans? This question became a contribution to taking up this topic of study. Ichthyotherapy is the use of freshwater, sedentary benthopelagic fish of the cyprinid family, red garra (G. rufa), commercially referred to as “the doctor fish”. This fish has a suction apparatus that allows removal of calloused epidermis in patients undergoing therapy. This treatment has been used mainly in cosmetics as so-called fish pedicure, but also in medicine. Scientific reports indicate that this fish may be helpful in treating some skin diseases, i.e. in alleviating the symptoms of psoriasis or atopic dermatitis. Treatments using the red garra have to be performed in full compliance with hygiene rules. In 2011, the British Health Protect Agency (BHPA) published the guidelines for carrying out treatments using these fish. It specified the indications and contraindications for performing the procedure, the way it should be performed, as well as the threats that could result from possible non-compliance with the principles of occupational health and safety during the procedures. -
A Review of Freshwater Fish Fauna in Jordan
Libyan Agriculture Research Center Journal International 1 (5): 320-324, 2010 ISSN 2219-4304 © IDOSI Publications, 2010 A Review of Freshwater Fish Fauna in Jordan Saleh Ahmad Al-Quran Department of Biology, Faculty of Science, Mutah University, Karak, Jordan Abstract: A total of 27 fish species belonging to ten families were recorded. The fish fauna distribution in two rivers (Jordan and Yarmouk) and some dams and tributaries in Jordan was examined. The rivers surveyed were generally shallow, fast flowing with clear water and rocky and sandy substrate. At the time of survey, the rivers gave excellent water quality data. Cyprinidae has the highest diversity 0.296% with 8 species; while the lowest one are Anguillidae, Blennidae, Clariidae, Mugilidae and Pseudocrenilabrinae; each represented only by one species (0.037%). Cichlidae represented by 6 species (0.222%), Balitoridae and Cyprinodontidae are represented by three species (0.111%) and finally Acanthuridae is represented by two species (0.074%). Key words: Review % Freshwater % Fish % Fauna % Jordan INTRODUCTION drains into the Dead Sea which, at 407 meters below sea level, is the lowest point on earth. The river is between Location, Topography and Climate: Jordan is a relatively 20 and 30 meters wide near its endpoint. Its flow has been small country situated at the junction of the Levantine much reduced and its salinity increased because and Arabian areas of the Middle East. The country is significant amounts have been diverted for irrigational bordered on the north by Syria, to the east by Iraq and by uses. Several degrees warmer than the rest of the country, Saudi Arabia on the east and south. -
Embryonic Development of a Mountainous Fish Species Garra
J Anim Behav Biometeorol (2020) 8:88-94 ISSN 2318-1265 SHORT COMMUNICATION Embryonic development of a mountainous fish species Garra cambodgiensis (Tirant, 1883) in southern Thailand Supaporn Sutin ▪ Fahmida Wazed Tina S SutinA (Corresponding author) ▪ FW TinaA,B AFaculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand. email: [email protected] B Language Center, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand. Received: December 14, 2019 ▪ Accepted: January 19, 2020 ▪ Published Online: February 04, 2020 Abstract This study examined the artificial breeding and flowing water in small- and medium-sized streams (Jaisuk and embryonic development of a mountainous fish species Garra Senanan 2018a). They are widely distributed in Southeast cambodgiensis (Tirant, 1883) found in Promlok waterfall in Asia (especially in Chao Phraya basin and Mekong basin Khaoluang National park, Phromkhiri district, Nakhon Si (Lothongkham 2008; Kulabtong and Mahaprom 2016)), Thammarat province. The fishes were collected from June Southern China, India, Middle East and northern and central 2017- January 2018 and kept in aquaria. Afterward, the brood Africa (Kullander and Fang 2004). In Thailand, G. males and females were selected and injected with buserelin cambodgiensis are found in Nan river drainage basin in (LHRHa) (10 µg/kg body weight) and domperidone (10 mg/kg northern Thailand (Jaisuk and Senanan 2018ab), watersheds body weight). After the injections, both females and males in eastern region in central Thailand (Beamish et al 2006), were kept together in the water at a proportion of 3 females: 1 cyber stream in west Thailand (Kulabtong and Mahaprom male. -
Adding Nuclear Rhodopsin Data Where Mitochondrial COI Indicates Discrepancies – Can This Marker Help to Explain Conflicts in Cyprinids?
DNA Barcodes 2015; 3: 187–199 Research Article Open Access S. Behrens-Chapuis*, F. Herder, H. R. Esmaeili, J. Freyhof, N. A. Hamidan, M. Özuluğ, R. Šanda, M. F. Geiger Adding nuclear rhodopsin data where mitochondrial COI indicates discrepancies – can this marker help to explain conflicts in cyprinids? DOI 10.1515/dna-2015-0020 or haplotype sharing (12 species pairs) with presumed Received February 27, 2015; accepted October 1, 2015 introgression based on mtCOI data. We aimed to test Abstract: DNA barcoding is a fast and reliable tool for the utility of the nuclear rhodopsin marker to uncover species identification, and has been successfully applied reasons for the high similarity and haplotype sharing in to a wide range of freshwater fishes. The limitations these different groups. The included labeonine species reported were mainly attributed to effects of geographic belonging to Crossocheilus, Hemigrammocapoeta, scale, taxon-sampling, incomplete lineage sorting, or Tylognathus and Typhlogarra were found to be nested mitochondrial introgression. However, the metrics for within the genus Garra based on mtCOI. This specific the success of assigning unknown samples to species or taxonomic uncertainty was also addressed by the use genera also depend on a suited taxonomic framework. of the additional nuclear marker. As a measure of the A simultaneous use of the mitochondrial COI and the delineation success we computed barcode gaps, which nuclear RHO gene turned out to be advantageous for were present in 75% of the species based on mtCOI, but the barcode efficiency in a few previous studies. Here, in only 39% based on nuclear rhodopsin sequences. -
Fish-Released Kairomones Affect Culiseta Longiareolata Oviposition and Larval Life History
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.423951; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Fish-released kairomones affect Culiseta longiareolata oviposition and larval life history Alon Silberbush Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa, Israel Abstract: Several species of mosquitoes respond to the presence of kairomones released by larval predators during oviposition habitat selection and larval development. These responses may differ among mosquito species and do not always correlate with larval survival. This study examined the responses of the mosquito Culiseta longiareolata Macquart to kairomones released by three species of fish during oviposition, Gambusia affinis Baird and Girard, Aphanius mento Heckel and Garra rufa Heckel. In addition, the study examined the effects of kairomones released by G. affinis on larval development. Results show that ovipositing female avoided cues from larvivorous, but not algivorous fish. In addition, developing larvae metamorphosed slower and showed increased mortality when exposed to fish-released kairomones. Results suggest that the responses of this mosquito species to fish-released kairomones may be explained by its competitive ability. Keywords: Predator-released kairomones, life history, oviposition habitat selection. Introduction: Semiochemicals indicating the presence of predators are often an important part of predator detection mechanisms in addition to visual, audio and tactical cues (Kats and Dill 1998). Aquatic organisms often rely specifically on kairomones or other predator associated semiochemicals, bioRxiv preprint doi: https://doi.org/10.1101/2020.12.22.423951; this version posted December 22, 2020. -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. -
2019. Gada Darbības Pārskats
RĪGAS NACIONĀLAIS ZOOLOĢISKAIS DĀRZS 2O19 RĪGAS NACIONĀLAIS ZOOLOĢISKAIS DĀRZS 2019. GADĀ Rīgas zoodārzs atvērts 1912. gada 14. oktobrī. Paš- zā vairojās 15 EEP sugas, t.sk. trīs savvaļā izmirušas glie- reizējā teritorija – 20 ha. mežu partulu sugas. 1992. gadā Rīgas zoodārzs iestājās Eiropas Zoodār- 2019. gada beigās 79 sugas iekļautas Pasaules Sarkana- zu un akvāriju asociācijā – EAZA (European Associa- jā grāmatā kā apdraudētas (kategorijas VU, EN, CR, EW). tion of Zoos and Aquaria). 2019. gadā Rīgas zoodārzā vairojās 18 no tām. 1993. gadā izveidota Rīgas zoodārza filiāle “Cīruļi” Sīkāk par aizsargājamajām sugām zoodārza kolekcijā – Aizputes novada Kalvenes pagastā (pašreizējā terito- 70. lpp. rija – 132 ha). Zoodārzā notiek dzīvnieku uzvedības pētījumi, 2019. gadā sākti ekotoksikoloģiskie pētījumi. Apmeklētāji Sīkāk par pētījumiem zoodārzā – 21. lpp. Apmeklētāju skaits 2019. gadā – 327 403. Sugu saglabāšana un pētījumi dabā Jaunas ekspozīcijas Rīgas zoodārza līdzšinējais svarīgākais ieguldī jums Āfrikas Savannas ekspozīcija. bioloģiskās daudzveidības saglabāšanā ir 1988.– Invazīvo sugu ekspozīcijas – invazīvo bezmugur- 1992. gadā veiktā Eiropas kokvardes populācijas at- kaulnieku un zivju ekspozīcija Akvārijā un šakāļu ekspo - jaunošana Kurzemē. zīcija. 2019. gadā Rīgas zoodārzs uzsāka atjaunotās kokvaržu Sīkāk par būvdarbiem un remontdarbiem 2019. gadā – populācijas monitoringu. Zoodārzs aicināja Latvijas iedzī- 5. lpp. votājus ziņot par kokvaržu atradnēm, un zoodārza speciā- listi veica kokvaržu uzskaiti un ekoloģijas pētījumus. Dzīvnieku kolekcija Sīkāk par kokvaržu projektu – rakstā 51. lpp. 2019. gada 31. decembrī dzīvnieku kolekcijā bija 398 sugu 2314 dzīvnieki. Dzīvnieku rehabilitācija 2019. gadā vairojās 129 sugu dzīvnieki, piedzima vai 2019. gadā zoodārza karantīnā tika uzņemti 48 ne- izšķīlās 540 mazuļi. laimē nokļuvuši savvaļas dzīvnieki, kā arī 86 konfiscēti Sīkāk par dzīvnieku kolekciju – 22.