Coming Home : Reentry and Recovery from Space / Roger D
Total Page:16
File Type:pdf, Size:1020Kb
Reentry and Recovery from Space Roger D. Launius and Dennis R. Jenkins Reentry and Recovery from Space Roger D. Launius and Dennis R. Jenkins Library of Congress Cataloging-in-Publication Data Launius, Roger D. Coming home : reentry and recovery from space / Roger D. Launius and Dennis R. Jenkins. p. cm. -- (NASA/SP ; 2011-593) Includes index. 1. Space vehicles--Atmospheric entry. 2. Space vehicles--Design and construction. 3. Aerospace engineering. 4. Outer space--Exploration. I. Jenkins, Dennis R. II. Title. TL1060.L38 2012 629.4’15--dc23 2012022456 ISBN 978-0-16-091064-7 F ro as el t yb eh S epu ir tn e edn tn fo D co mu e tn .U s S G , . evo r emn tn P ir tn i O gn eciff I tn re en :t skoob t ro e . opg . vog enohP : lot l f eer ( 668 ) 215 - 0081 ; D C a er ( a 202 ) 215 - 0081 90000 aF :x ( 202 ) 215 - 4012 aM :li S t I po CCD W , ihsa gn t no D , C 20402 - 1000 ISBN 978-0-16-091064-7 9 780160 910647 ISBN 978-0-16-091064-7 F ro leas b y t eh S pu e ri tn e dn e tn D fo co mu e tn s , .U Svo . e G r mn e tn P ri tn i gn fficeO I tn er en t: koob s t ro e. opg . vog : Plot l nohf ree e ( 668 ) 215 - 0081 ; C Da re a ( 202 ) 215 - 0081 90000 Fa :x ( 202 ) 215 - 4012 il:M S a t po DCI C, W a hs i gn t no , D C 20402 - 1000 ISBN 978-0-16-091064-7 9 780160 910647 Acknowledgments v Introduction vii Chapter 1: Creating Ballistic Reentry .......................................................... 1 Early Ideas About Spaceplanes 2 Sänger, Bredt, and the Silverbird 7 The First Ballistic Missiles 9 The Problem of Reentry 13 Nuclear Warheads and the Blunt-Body Theory 16 Thermal Protection Systems 26 Better Warheads 28 The CORONA Satellite Reconnaissance Program 31 Chapter 2: Human Space Flight and the Problem of Reentry ..................... 35 The X-Planes 37 Round Two X-Planes 39 Faget and Nonlifting Reentry 44 Man in Space Soonest 48 Project Mercury 50 Project Gemini 62 Project Apollo 69 Chapter 3: Landing Under Canopies ............................................................ 81 Pioneering Recovery: Project Mercury 83 Recovery from Long-Duration Earth-Orbital Flight: Project Gemini 90 Pursuit of the Gemini Paraglider 94 Three Canopies Into the Pacific: Project Apollo 117 Chapter 4: Spaceplane Fantasies ................................................................ 125 Choices 127 Lifting Bodies 131 Air Force–Sponsored Research 137 Piloted Lifting Bodies 142 M2-F2 144 M2-F3 147 HL-10 148 iii Air Force Efforts 152 X-24A 153 X-24B 155 Orbital Lifting Bodies 159 BoMi and Brass Bell 160 Rocket-Bomber 164 The Stillborn Round Three X-Plane 169 X-20 Dyna-Soar 171 The 1970 Hypersonic Vehicles Report: Setting the Stage for the Future 182 Chapter 5: Spaceplane Reality .................................................................... 185 Phase B Studies 189 Reusable Surface Insulation 195 Phase C/D Developments 198 Orbiter Contract Award 200 Thermal Protection System 207 Reinforced Carbon-Carbon 208 Reusable Surface Insulation Tiles 210 Space Shuttle Entry 217 Chapter 6: Back to the “Ablative” Future .................................................... 221 The Rise (and Fall) of the X-30 National Aero-Space Plane 221 The X-33/Venturestar™ Program 225 X-34 and the Continuing Challenge of Reentry 234 X-38 Recovery Parafoil 236 Bringing Deep Space Probes Back to Earth: Genesis and Stardust 244 The Orion Capsule as the Next Generation Piloted Vehicle 253 A New President Changes the Paradigm 264 NASA’s Commercial Crew and Cargo Program 270 The Air Force and the X-37B 272 Summary 275 Chapter 7: Summary .................................................................................... 279 About the Authors 287 Index 289 iv As with any published work, the authors of this book inevitably incurred debts to patrons, colleagues, and fellow travelers. In writing Coming Home: Reentry and Recovery from Space, we certainly relied on the help of many people. Most importantly, this project was made possible through a grant from the NASA Aeronautics Mission Directorate, where Tony Springer has been instrumental in sponsoring a large number of important historical studies. We are indebted to the many peer reviewers who offered important suggestions for improving the manuscript. We hope that they will be pleased with the final product. The authors would like to acknowledge several individuals who aided in the preparation of this book. Only through the assistance of these key people were we able to assemble the materials for this volume in some semblance of order. For their many contributions to this project, we especially wish to thank Jane Odom and her staff of archivists at the NASA History Program Office for help- ing to track down information and correct inconsistencies. We would also like to thank Steve Dick, Bill Barry, Steve Garber, and Nadine Andreassen at NASA; the staffs of the NASA Headquarters Library and the Scientific and Technical Information Program who provided assistance in locating materials; Marilyn Graskowiak and her staff at the National Air and Space Museum (NASM) Archives; and the many archivists and scholars throughout NASA and other organizations whose work was used to complete this manuscript. Archivists at the National Archives and Records Administration were also instrumental in making this study possible. Patricia Graboske, head of publications at NASM, provided important guidance for this project. Thanks to Tom Watters, Bruce Campbell, John Grant, and Jim Zimbelman of NASM’s Center for Earth and Planetary Studies for information on science missions. We also thank Karen McNamara for information about the Genesis and Stardust missions. In addition to these individuals, we wish to acknowledge the following people who aided in a variety of ways: Debbora Battaglia, David Brandt, William E. Burrows, Erik Conway, Bob Craddock, Tom D. Crouch, Gen. John R. Dailey, David H. DeVorkin, Robert Farquhar, Jens Feeley, James Rodger Fleming, James Garvin, Lori B. Garver, G. Michael Green, Barton C. Hacker, James R. Hansen, Wes Huntress, Peter Jakab, Violet Jones-Bruce, Sylvia K. Kraemer, John Krige, Alan M. Ladwig, W. Henry Lambright, Jennifer Levasseur, John M. Logsdon, W. Patrick McCray, Howard E. McCurdy, Jonathan C. McDowell, v Coming Home Ted Maxwell, Valerie Neal, Allan A. Needell, Michael J. Neufeld, Frederick I. Ordway III, Scott Pace, Robert Poole, Alan Stern, Harley Thronson, and Margaret Weitekamp. All of these people would disagree with some of this book’s observations, but such is the boon and bane of scholarly inquiry. vi Saturday morning, February 1, 2003, dawned as most other weekend days in America in the early 21st century. People went about their morning routines and perhaps turned on their radios or televisions to catch the latest news. Those that did so learned of a tragic story that captured the Nation’s atten- tion throughout that day as well as the days that followed. At 8:51:14 eastern standard time (EST), during what most people believed to be a routine landing of the Space Shuttle Columbia at the Kennedy Space Center, FL, the vehicle started breaking apart. By 8:58:19 EST, a large-scale wing deformation had taken place, and a fraction of second later Mission Control at the Johnson Space Center in Houston, TX, lost all telemetry. Thereafter, the main vehicle disintegrated at 9:00:18 EST, based on video imagery. In the process, a crew of seven astronauts lost their lives; debris from the Shuttle scattered across the American South, from the Pacific coast to the Gulf states; the National Aeronautics and Space Administration (NASA) grounded the Shuttle fleet pending an investigation; and as the Nation grieved, many in technical com- munities worked to determine what had taken place and, most importantly, why it had happened. The subsequent Columbia Accident Investigation Board (CAIB), under the leadership of Retired Admiral Harold W. Gehman, Jr., identified the technical cause of the accident as taking place during launch when the External Tank’s foam insulation struck the leading edge of the left wing and damaged the thermal protection system. Equally important, the CAIB explored the non- technical managerial, organizational, and cultural issues that had allowed the technical problems that led to the wing breech to go unchecked for the life of the Shuttle program. At a fundamental level, those larger issues emerged as more significant than the technical factors leading to the Columbia accident. The tragic loss of Columbia brought to the fore one of the most difficult issues NASA has had to deal with since the beginning of space flight: how its space systems operate while transiting the atmosphere as they return to Earth. The technologies for the reentry and recovery from space might change over time, but the challenge remains one of the most important and vexing in the rigorous efforts to bring spacecraft and their crews and cargo home successfully. Returning to Earth after a flight into space is a fundamental challenge, and contributions from the NASA Aeronautics Research Mission Directorate in aerodynamics, thermal protection, guidance and control, stability, propulsion, vii Coming Home and landing systems have proven critical to the success of the human space flight and other space programs. Without this base of fundamental and applied research, the capability to fly into space would not exist. Accordingly, this study represents a means of highlighting the myriad of technological developments that made possible the safe reentry and return from space and the landing on Earth. This story extends back at least to the work of Walter Hohmann and Eugen Sänger in Germany in the 1920s and involved numerous aerospace engineers at the National Advisory Committee for Aeronautics (NACA)/NASA Langley and the Lewis (now the John H.