CITATION EAST KIRKTON QUARRY SITE of SPECIAL SCIENTIFIC INTEREST West Lothian Site Code: 586

Total Page:16

File Type:pdf, Size:1020Kb

CITATION EAST KIRKTON QUARRY SITE of SPECIAL SCIENTIFIC INTEREST West Lothian Site Code: 586 CITATION EAST KIRKTON QUARRY SITE OF SPECIAL SCIENTIFIC INTEREST West Lothian Site code: 586 NATIONAL GRID REFERENCE: NS 990691 OS 1:50,000 SHEET NO: Landranger Series 65 1:25,000 SHEET NO: Explorer Series 349 AREA: 2.43 hectares NOTIFIED NATURAL FEATURES Geological: Palaeontology: Arthropoda (excluding insects and trilobites) Palaeontology: Permian-Carboniferous Fish/Amphibia DESCRIPTION: Situated on the northern outskirts of Bathgate, West Lothian, East Kirkton Quarry is a disused, tree-lined limestone quarry, cut into a gently sloping agricultural landscape. The limestones were formed towards the beginning of the Carboniferous period, between 338 and 340 million years ago, when the area was a hot mineral spring within an active volcanic region. The highly mineralised spring water provided excellent conditions for the fossilisation of organic matter. The site has yielded a rich terrestrial fauna and flora that is remarkably well preserved, including the first fully-articulated amphibians found in Scotland. Seven species of fully land-going amphibians have been recognised to date, the commonest being a primitive form of temnospondyl, similar to Dendrerpeton. At least two species of anthracosaur, the forerunners of reptiles, have also been found within the quarry. Perhaps the best known specimen recovered from the site is Westlothiana lizziae, which bore some resemblance to modern-day lizards. Invertebrate fossils are also present within the East Kirkton limestones, with significant finds including: eurypterids (water scorpions), such as Hibbertopterus; the world’s oldest opilionid (harvestman spider); millipedes; and scorpions. Many of the fossils found significantly pre-date similar remains from other areas of the world. This, combined with the richness of the fossil biota and the exceptionally high quality of the specimens obtained from the quarry, make this a site of international importance for the study of early Carboniferous life. NOTIFICATION HISTORY First notified under the 1981 Act: 20 May 1993 Notification reviewed under the 2004 Act: 24 March 2010 REMARKS Measured area of site corrected (from 2.4 ha) .
Recommended publications
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882829; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The making of calibration sausage exemplified by recalibrating the transcriptomic timetree of jawed vertebrates 1 David Marjanović 2 Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, 3 Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, 4 Germany 5 ORCID: 0000-0001-9720-7726 6 Correspondence: 7 David Marjanović 8 [email protected] 9 Keywords: timetree, calibration, divergence date, Gnathostomata, Vertebrata 10 Abstract 11 Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in 12 inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the 13 fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular 14 evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of 15 the sites the fossils were found in. Paleontologists have therefore tried to help by publishing 16 compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record 17 have made heavy use of such works (in addition to using scattered primary sources
    [Show full text]
  • Proceedings of the Open University Geological Society
    Proceedings of the Open University Geological Society Volume 4 2018 Including lecture articles from the AGM 2017, the Milton Keynes Symposium 2017, OUGS Members’ field trip reports, the Annual Report for 2017, and the 2017 Moyra Eldridge Photographic Competition winning and highly commended photographs Edited and designed by: Dr David M. Jones 41 Blackburn Way, Godalming, Surrey GU7 1JY e-mail: [email protected] The Open University Geological Society (OUGS) and its Proceedings Editor accept no responsibility for breach of copyright. Copyright for the work remains with the authors, but copyright for the published articles is that of the OUGS. ISSN 2058-5209 © Copyright reserved Proceedings of the OUGS 4 2018; published 2018; printed by Hobbs the Printers Ltd, Totton, Hampshire Evolution of life on land: how new Scottish fossils are re-writing our under- standing of this important transition Dr Tim Kearsey BGS Edinburgh Romer’s gap — a hole in our understanding t has long been understood that at some point in the evolution Meanwhile at a quarry called East Kirkton Quarry near Iof vertebrates there was a transition point where they moved Edinburgh in Scotland vertebrate fossils were discovered that are from mainly subsiding in water to living on land. However, until 10 million years younger than the Greenland fossils. These include recently there had been no fossil evidence that documented how Westlothiana, which is thought to be the first amniote (egg-layer) vertebrate life stepped from water to land. This significant hole in or possibly early reptile (Smithson and Rolfe 1990) and scientific knowledge of evolution is referred to as Romer’s gap Balanerpeton an extinct genus of temnospondyl amphibian.
    [Show full text]
  • Geological Guide to the Fossil Grove, Glasgow
    A Geological Guide to the Fossil Grove, Glasgow by Iain Allison and David Webster Geological Society of Glasgow About this Guide About this Guide This new booklet on the geology of the Fossil Grove is aimed everyone with an interest in geology, however slight - but it does contain more detail for students, professionals and academics alike and for whom some further reading is suggested. A separate section on the geological framework of the Glasgow area is included, and for the beginner unfamilar with some technical terms, a short glossary is included. This guide includes several localities in the quarry area - which is always open. The Fossil House itself is open on weekend afternoons from April- October. The descriptions of the localities in the guide uses two font styles - the text in italics contains the geological descriptions and interpretations at each locality; whereas the regular font style is used for directions, history and other points of interest. This booklet replaces two booklets (now out-of-print) produced by Glasgow City Council in 1972 and 1995. A new updated Guide to the Geology of Glasgow is being produced by the Geological Society of Glasgow - and this booklet on the Fossil Grove will form an integral part of it which will replace the out-of-print ‘Geological Excursions around Glasgow and Girvan’ published by the Society in 1992. This guide has been produced by the Geological Society of Glasgow with generous support from the Fossil Grove Trust. Technical and editorial contributions from volunteers, friends and supporters are also gratefully acknowledged. Fig. A1. Three Victorian ’gentlemen scientists’ from the Geological Society of Glasgow who first described the fossil trees and recognised their importance.
    [Show full text]
  • (Temnospondyli), and the Evolution of Modern
    THE LOWER PERMIAN DISSOROPHOID DOLESERPETON (TEMNOSPONDYLI), AND THE EVOLUTION OF MODERN AMPHIBIANS Trond Sigurdsen Department of Biology McGill University, Montreal November 2009 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Trond Sigurdsen 2009 1 ACKNOWLEDGMENTS I am deeply grateful to my supervisors Robert L. Carroll and David M. Green for their support, and for revising and correcting the drafts of the individual chapters. Without their guidance, encouragement, and enthusiasm this project would not have been possible. Hans Larsson has also provided invaluable help, comments, and suggestions. Special thanks go to John R. Bolt, who provided specimens and contributed to Chapters 1 and 3. I thank Farish Jenkins, Jason Anderson, and Eric Lombard for making additional specimens available. Robert Holmes, Jean-Claude Rage, and Zbyněk Roček have all provided helpful comments and observations. Finally, I would like to thank present and past members of the Paleolab at the Redpath Museum, Montreal, for helping out in various ways. Specifically, Thomas Alexander Dececchi, Nadia Fröbisch, Luke Harrison, Audrey Heppleston and Erin Maxwell have contributed helpful comments and technical insight. Funding was provided by NSERC, the Max Stern Recruitment Fellowship (McGill), the Delise Allison and Alma Mater student travel grants (McGill), and the Society of Vertebrate Paleontology Student Travel Grant. 2 CONTRIBUTIONS OF AUTHORS Chapters 1 and 3 were written in collaboration with Dr. John R. Bolt from the Field Museum of Chicago. The present author decided the general direction of these chapters, studied specimens, conducted the analyses, and wrote the final drafts.
    [Show full text]
  • Early Vertebrate Evolution New Insights Into the Morphology of the Carboniferous Tetrapod Crassigyrinus Scoticus from Computed Tomography Eva C
    Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109, 157–175, 2019 (for 2018) Early Vertebrate Evolution New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography Eva C. HERBST* and John R. HUTCHINSON Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK. Email: [email protected] *Corresponding author ABSTRACT: The Carboniferous tetrapod Crassigyrinus scoticus is an enigmatic animal in terms of its morphology and its phylogenetic position. Crassigyrinus had extremely reduced forelimbs, and was aquatic, perhaps secondarily. Recent phylogenetic analyses tentatively place Crassigyrinus close to the whatcheeriids. Many Carboniferous tetrapods exhibit several characteristics associated with terrestrial locomotion, and much research has focused on how this novel locomotor mode evolved. However, to estimate the selective pressures and constraints during this important time in vertebrate evolution, it is also important to study early tetrapods like Crassigyrinus that either remained aquatic or secondarily became aquatic. We used computed tomographic scanning to search for more data about the skeletal morphology of Crassigyrinus and discovered several elements previously hidden by the matrix. These elements include more ribs, another neural arch, potential evidence of an ossified pubis and maybe of pleurocentra. We also discovered several additional metatarsals with interesting asymmetrical morphology that may have functional implications. Finally, we reclassify what was previously thought to be a left sacral rib as a left fibula and show previously unknown aspects of the morphology of the radius. These discoveries are examined in functional and phylogenetic contexts. KEY WORDS: evolution, palaeontology, phylogeny, water-to-land transition.
    [Show full text]
  • Was Mesosaurus a Fully Aquatic Reptile?
    ORIGINAL RESEARCH published: 27 July 2018 doi: 10.3389/fevo.2018.00109 Was Mesosaurus a Fully Aquatic Reptile? Pablo Nuñez Demarco 1,2*, Melitta Meneghel 3, Michel Laurin 4 and Graciela Piñeiro 5* 1 Facultad de Ciencias, Instituto de Ciencias Geológicas, Universidad de la República, Montevideo, Uruguay, 2 Facultad de Ciencias Exactas y Naturales, InGeBa, Universidad de Buenos Aires, Buenos Aires, Argentina, 3 Laboratorio de Sistemática e Historia Natural de Vertebrados, Facultad de Ciencias, IECA, Universidad de la República, Montevideo, Uruguay, 4 CR2P, UMR 7207, Centre National de la Recherche Scientifique/MNHN/UPMC, Sorbonne Universités, Paris, France, 5 Departamento de Paleontología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay Mesosaurs have been considered strictly aquatic animals. Their adaptations to the aquatic environment are well known and include putative viviparity, along with the presence of several skeletal characters such as a long, laterally compressed tail, long limbs, the foot larger than the manus, and presence of pachyosteosclerotic bones. They were also described as possessing non-coossified girdle bones and incompletely ossified epiphyses, although there could be an early fusion of the front girdle bones to form the scapulocoracoid in some specimens. Some of these features, however, are shared by most basal tetrapods that are considered semiaquatic and even some terrestrial ones. The study of vertebral columns and limbs provides essential clues about the locomotor Edited by: system and the lifestyle of early amniotes. In this study, we have found that the variation of Martin Daniel Ezcurra, the vertebral centrum length along the axial skeleton of Mesosaurus tenuidens fits better Museo Argentino de Ciencias Naturales Bernardino Rivadavia, with a semi-aquatic morphometric pattern, as shown by comparisons with other extinct Argentina and extant taxa.
    [Show full text]
  • Edinburgh & West Lothian
    Edinburgh & West Lothian: A landscape fashioned by geology The tranquil appearance of the city of Edinburgh nestling between the surrounding hills and the undulating countryside of West Lothian belies their dramatic volcanic past. The Lothian landscape took over 400 million years to reach its present shape. This book tells the story of its journey from erupting volcanoes, through rivers, seas and ice-caps, to the peaceful parks, restored quarries and level playing fields we see today. West Lothian EDINBURGHA LANDSCAPE FASHIONED & BY GEOLOGY There is probably no place in the world which better exemplifies "A Landscape Fashioned by GEOLOGY Lothian: & West A LANDSCAPEEDINBURGH BY FASHIONED Geology" than the area around Edinburgh. Here you can follow in the footsteps of James Hutton, the Father of Modern Geology, see what he saw, and better understand the processes that formed Edinburgh’s dramatic landscape. This booklet is beautifully accessible, taking you on a journey from today’s familiar hills and valleys to the icy wastes of two million years ago and further back, to the volcanoes and coal swamps of 350 million years ago when Edinburgh lay at the equator. What more exciting story could there be than the story in the rocks and landscapes of Edinburgh. Dr Stuart Monro, Scientific Director, Our Dynamic Earth About the Author David McAdam has spent a lifetime mapping and describing the geology of east central Scotland. He has contributed to three other titles in the `Landscape Fashioned by Geology ' series. Although recently retired, he remains a Visiting Scientist with the British Geological Survey to continue his interest in promoting Scotland's geological heritage.
    [Show full text]
  • Download/4084574/Burrow Young1999.Pdf 1262 Burrow, C
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882829; this version posted December 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 1aCC-BY-ND 4.0 International license. Recalibrating the transcriptomic timetree of jawed vertebrates 1 David Marjanović 2 Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, 3 Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, 4 Germany 5 Correspondence: 6 David Marjanović 7 [email protected] 8 Keywords: timetree, calibration, divergence date, Gnathostomata, Vertebrata 9 Abstract 10 Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in 11 inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the 12 fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular 13 evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of 14 the sites the fossils were found in. Paleontologists have therefore tried to help by publishing 15 compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record 16 have made heavy use of such works. Using a recent example of a large timetree inferred from 17 molecular data, I demonstrate that calibration dates cannot be taken from published compendia 18 without risking strong distortions to the results, because compendia become outdated faster than they 19 are published. The present work cannot serve as such a compendium either; in the slightly longer 20 term, it can only highlight known and overlooked problems.
    [Show full text]
  • Reptile Family Tree Peters 2021 1909 Taxa, 235 Characters
    Turinia Enoplus Chondrichtyes Jagorina Gemuendina Manta Chordata Loganellia Ginglymostoma Rhincodon Branchiostoma Tristychius Pikaia Tetronarce = Torpedo Palaeospondylus Craniata Aquilolamna Tamiobatis Myxine Sphyrna Metaspriggina Squalus Arandaspis Pristis Poraspis Rhinobatos Drepanaspis Cladoselache Pteromyzon adult Promissum Chlamydoselachus Pteromyzon hatchling Aetobatus Jamoytius Squatina Birkenia Heterodontus Euphanerops Iniopteryx Drepanolepis Helodus Callorhinchus Haikouichthys Scaporhynchus Belantsea Squaloraja Hemicyclaspis Chimaera Dunyu CMNH 9280 Mitsukurina Rhinochimaera Tanyrhinichthys Isurus Debeerius Thelodus GLAHM–V8304 Polyodon hatchling Cetorhinus Acipenser Yanosteus Oxynotus Bandringa PF8442 Pseudoscaphirhynchus Isistius Polyodon adult Daliatus Bandringa PF5686 Gnathostomata Megachasma Xenacanthus Dracopristis Akmonistion Ferromirum Strongylosteus Ozarcus Falcatus Reptile Family Tree Chondrosteus Hybodus fraasi Hybodus basanus Pucapampella Osteichthyes Orodus Peters 2021 1943 taxa, 235 characters Gregorius Harpagofututor Leptolepis Edestus Prohalecites Gymnothorax funebris Doliodus Gymnothorax afer Malacosteus Eurypharynx Amblyopsis Lepidogalaxias Typhlichthys Anableps Kryptoglanis Phractolaemus Homalacanthus Acanthodes Electrophorus Cromeria Triazeugacanthus Gymnotus Gorgasia Pholidophorus Calamopleurus Chauliodus Bonnerichthys Dactylopterus Chiasmodon Osteoglossum Sauropsis Synodus Ohmdenia Amia Trachinocephalus BRSLI M1332 Watsonulus Anoplogaster Pachycormus Parasemionotus Aenigmachanna Protosphyraena Channa Aspidorhynchus
    [Show full text]
  • Earliest Carboniferous Tetrapod and Arthropod Faunas from Scotland Populate Romerts
    Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s Gap Timothy R. Smithsona, Stanley P. Wood1, John E. A. Marshallb, and Jennifer A. Clacka,2 aUniversity Museum of Zoology Cambridge, Cambridge CB2 3EJ, United Kingdom; and bOcean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, SO14 3ZH, United Kingdom Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved January 6, 2012 (received for review October 20, 2011) Devonian tetrapods (limbed vertebrates), known from an increas- later than the mid-Viséan (11, 12). Among recent discoveries ingly large number of localities, have been shown to be mainly from the mid-Viséan is the small amniote-like Casineria kiddi (3) aquatic with many primitive features. In contrast, the post- documenting the earliest known pentadactyl forelimb. Thus, al- Devonian record is marked by an Early Mississippian temporal though the “gap” is closing, we have lacked information about gap ranging from the earliest Carboniferous (Tournaisian and the crucial early part of the period during which terrestriality, early Viséan) to the mid-Viséan. By the mid-Viséan, tetrapods had defined simply as the ability to support the body and locomote become effectively terrestrial as attested by the presence of stem completely out of water, may have been achieved. amniotes, developed an essentially modern aspect, and given rise Among several explanations for the hiatus is one that took the to the crown group. Up to now, only two localities have yielded fossil record to reflect the actual pattern of evolution, marked by tetrapod specimens from the Tournaisian stage: one in Scotland the absence of animals from terrestrial ecosystems (13).
    [Show full text]