(Temnospondyli), and the Evolution of Modern

Total Page:16

File Type:pdf, Size:1020Kb

(Temnospondyli), and the Evolution of Modern THE LOWER PERMIAN DISSOROPHOID DOLESERPETON (TEMNOSPONDYLI), AND THE EVOLUTION OF MODERN AMPHIBIANS Trond Sigurdsen Department of Biology McGill University, Montreal November 2009 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Trond Sigurdsen 2009 1 ACKNOWLEDGMENTS I am deeply grateful to my supervisors Robert L. Carroll and David M. Green for their support, and for revising and correcting the drafts of the individual chapters. Without their guidance, encouragement, and enthusiasm this project would not have been possible. Hans Larsson has also provided invaluable help, comments, and suggestions. Special thanks go to John R. Bolt, who provided specimens and contributed to Chapters 1 and 3. I thank Farish Jenkins, Jason Anderson, and Eric Lombard for making additional specimens available. Robert Holmes, Jean-Claude Rage, and Zbyněk Roček have all provided helpful comments and observations. Finally, I would like to thank present and past members of the Paleolab at the Redpath Museum, Montreal, for helping out in various ways. Specifically, Thomas Alexander Dececchi, Nadia Fröbisch, Luke Harrison, Audrey Heppleston and Erin Maxwell have contributed helpful comments and technical insight. Funding was provided by NSERC, the Max Stern Recruitment Fellowship (McGill), the Delise Allison and Alma Mater student travel grants (McGill), and the Society of Vertebrate Paleontology Student Travel Grant. 2 CONTRIBUTIONS OF AUTHORS Chapters 1 and 3 were written in collaboration with Dr. John R. Bolt from the Field Museum of Chicago. The present author decided the general direction of these chapters, studied specimens, conducted the analyses, and wrote the final drafts. Dr. John Bolt made many of the relevant specimens available, provided additional observations, data, and photographs, and corrected drafts. 3 TABLE OF CONTENTS Acknowledgments 2 Contributions of Authors 3 General abstract / Résumé 7 General introduction 9 CHAPTER 1. The Lower Permian Amphibamid Doleserpeton (Temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of modern amphibians Abstract 15 Introduction 16 Systematic paleontology 19 Materials and methods 21 Description 22 Phylogenetic analyses 48 Discussion 52 Bridging text 1 64 CHAPTER 2. The otic region of Doleserpeton (Temnospondyli) and its implications for the evolutionary origin of frogs Abstract 65 Introduction 66 Materials and methods 68 Description 69 Discussion 88 4 Bridging text 2 98 CHAPTER 3. The lissamphibian humerus and elbow joint, and the origins of modern amphibians Abstract 99 Introduction 100 Materials and methods 102 Results 104 Discussion 115 Bridging text 3 123 CHAPTER 4. The anuran humerus and the evolution of jumping in early salientians Abstract 125 Introduction 126 Materials and methods 128 Results 130 Discussion 142 Bridging text 4 145 CHAPTER 5. The origin of modern amphibians: a reevaluation Abstract 147 Introduction 148 Materials and methods 151 Results 154 Discussion 169 5 CONCLUSIONS 175 BIBLIOGRAPHY 179 APPENDIX 1 199 APPENDIX 2 201 APPENDIX 3 211 APPENDIX 4 216 APPENDIX 5 217 APPENDIX 6 224 APPENDIX 7 229 APPENDIX 8 230 APPENDIX 9 241 APPENDIX 10 246 6 ABSTRACT The origin and evolution of modern amphibians is still a subject of controversy. The amphibamid temnospondyl Doleserpeton has often been suggested as a close relative of modern amphibians, but the skeletal morphology of this important taxon has never been fully described. In this thesis, a study of the skeletal anatomy of Doleserpeton is presented, and the interrelationships of dissorophoids are discussed. The relationships of modern amphibians and Paleozoic tetrapods are studied using phylogenetic analyses based on both Bayesian inference and parsimony. The skull of Doleserpeton is preserved in such detail that it allows the first description of the inner ear of an amphibamid temnospondyl. It is found to house a posteriorly positioned perilymphatic duct, a feature which is today restricted to amphibians. Evidence for the presence of a frog-like tympanic annulus is also described. During the studies of the limb skeleton of Doleserpeton, it was realized that important features of the forelimb of modern salamanders were misinterpreted in previous anatomical descriptions. Comparisons of the forelimbs of salientians (frogs), caudates (salamanders) and the Lower Jurassic caecilian Eocaecilia reveal important shared derived traits that are also found in Doleserpeton. Humeral evidence also indicates that saltation was an important part of the locomotion of the Lower Triassic salientian Triadobatrachus. Previous phylogenetic analyses are reexamined and numerous problems in previous character coding are revealed. An analysis of the new data collected suggests that modern amphibians may be a monophyletic group closely related to dissorophoid temnospondyls. 7 RÉSUMÉ L’origine des amphibiens modernes reste un sujet de controverse. Doleserpeton a longtemps été suggéré comme un proche parent des lissamphibiens, mais l’anatomie de ce spécimen important n’avait toujours pas été complètement décrite. La présente thèse porte sur ce spécimen énigmatique en comparant sa morphologie aux amphibiens modernes et fossiles. Ceci nous nous informe sur les liens phylogénétiques entre les amphibiens modernes et ceux datant du Paléozoique en utilisant des analyses basées sur la parcimonie ainsi que sur l’inférence bayésienne. Les conditions de préservation du crâne de Doleserpeton sont telles qu’elles permettent la première description de l’oreille interne d’un membre de ce groupe. Ceci a permis de trouver la présence de conduits périlymphatiques, un trait généralement réservé aux lissamphibiens. Les structures tympaniques rappellent aussi celles des anoures. Ces nouvelles études comparatives ont permis de corriger certaines informations au sujet de l’anatomie des membres supérieurs des salamandres. Les comparaisons anatomiques entre les anoures, les salamandres et le fossile Eocecilia datant du Jurassique présentent de nombreux caractères communs qui permettent de mieux situer les caractéristiques de Doleserpeton. Les données provenant de l’observation de l’humérus ont permis d’établir que la saltation était présente chez Triadobatrachus. De nouvelles analyses phylogénétiques ont été effectuées afin de rectifier les stades des caractères utilisés. Ces nouvelles analyses suggèrent une descendance commune des amphibiens modernes à partir d’un groupe relié aux temnospondyles dissorophoides. 8 INTRODUCTION The Permian amphibamid Doleserpeton annectens (Temnospondyli: Dissorophoidea) is generally regarded as one of the most important fossil taxa for our understanding of the origins of modern amphibians (Bolt, 1968, 1969; Holmes, 2000; Ruta and Coates, 2007). It was found in the Lower Permian (Leonardian) fissure fills of the Dolese Brothers limestone quarry near Fort Sill in Oklahoma. Although this small Permian temnospondyl is a subject worthy of discussion in its own right, the possibility of a close relationship between Dolseserpeton and modern amphibians provides a unique opportunity to study the evolutionary origins of a major group of tetrapods living today. Modern amphibians (often united in the taxon Lissamphibia) consist of three orders within Tetrapoda. These orders are Salientia, Caudata and Apoda (Milner, 1988; Cannatella and Hillis, 2004). Salientia comprise crown-group Anura (frogs and toads) and fossil stem salientians (proanurans). Caudata includes Urodeles (salamanders and newts) and stem taxa. Finally, Apoda consists of Gymnophiona (caecilians) and their fossil relatives. The problem of modern amphibian origins is not only due to the lack of plausible fossils sister-groups, but also the fact that the three modern orders are morphologically disparate, making the search for potential “proto-lissamphibians” difficult (Carroll, 2000). Consequently, there are several opposing hypotheses seeking to explain the evolutionary origins of extant amphibians (Vallin and Laurin, 2004; Carroll, 2007; Ruta and Coates, 2007; Anderson et al., 2008b). 9 A relatively diverse fossil record of modern amphibians first occurs in the Lower Jurassic (Carroll, 2007). The earliest forms include the virtually modern- looking salientians Prosalirus (Shubin and Jenkins, 1995) from the Kayenta formation in Arizona, and Vieraella (Baez and Basso, 1996) from the Lower Jurassic of Argentina. Among the earliest unequivocal caudates we find Karaurus (Ivachnenko, 1978), and Kokartus (reviewed in Milner, 2000) from Kazakhstan and Kirghizstan respectively. The earliest undisputed caecilian is Eocaecilia (Jenkins et al., 2007), which is the only limbed apodan known to science. Like Prosalirus, it was found in the Kayenta formation. In addition to these Jurassic forms, undisputed basal salientian fossils are known from the Lower Triassic. However, only one specimen is represented by an articulated skeleton; that of Triadobatrachus massinoti from Madagascar (Rage and Roček, 1989; Roček and Rage, 2000). Whereas the Lower Jurassic salientian Prosalirus is though to have been a capable jumper (Shubin and Jenkins, 1995; Jenkins and Shubin, 1998), the mode of locomotion in Triadobatrachus is uncertain (Rage and Roček, 1989; Roček and Rage, 2000). Almost nothing is known of the evolution of the modern amphibian groups prior to the Triassic (Carroll, 2007). Although a great variety of tetrapods are known from the Carboniferous and Permian, very few show any features that can demonstrably
Recommended publications
  • Die Microsauria Des Mitteleuropäischen Rotliegend
    Die Microsauria des mitteleuropäischen Rotliegend Dissertation zur Erlangung des Grades „Doktor der Naturwissenschaften" im Promotionsfach Geologie/Paläontologie am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität in Mainz Sabine Glienke geb. in Worms Mainz, 2011 http://d-nb.info/1058187503 Inhalt Inhalt 1. Einleitung 6 1.1. Allgemeine Merkmale und Bearbeitungsgeschichte 6 1.2. Fundorte und Erhaltung 9 2. Methoden, Abkürzungen und Material 16 2.1. Methoden 16 2.1.1. Bearbeitung der Skelette 16 2.1.2. Gewinnung und Bearbeitung der Einzelknochen 16 2.1.3. Kladogramme 17 2.2. Abkürzungen 17 2.2.1. Sammlungen 17 2.2.2. In den Zeichnungen verwendete Abkürzungen 17 2.3. Übersicht über die untersuchten Skelette 19 3. Beschreibungen 21 3.1. Die Familie Brachystelechidae CARROLL& GASKILL, 1978 21 3.1.1. Systematische Stellung 21 3.1.2. Diagnose 21 3.2. Die Gattung Batropetes CARROLL & GASKILL, 1971 21 3.2.1. Systematische Stellung 21 3.2.2. Diagnose 22 3.2.3. Die vier Spezies der Gattung Batropetes 22 3.3. Batropetes niederkirchensis n. sp 26 3.3.1. Diagnose 26 3.3.2. Beschreibung 28 3.3.2.1. Schädel 28 3.3.2.1.1. Schädeldach 28 3.3.2.1.2. Gaumen 38 3.3.2.1.3. Hirnkapsel 43 3.3.2.1.4. Unterkiefer 46 3.3.2.2. Postcraniales Skelett 48 Inhalt 3.4. Batropetes palatinus n. sp 62 3.4.1. Diagnose 62 3.4.2. Beschreibung 63 3.4.2.1. Schädel 74 3.4.2.1.1. Schädeldach 74 3.4.2.1.2.
    [Show full text]
  • Dissorophus Cope
    DISSOROPHUS COPE S. W. WILLISTON The University of Chicago The material herein described and figured was collected by the writer from the upper or Clear Fork Division of the Texas Red-beds on Coffee Creek, in August, 1909. It comprises a nearly complete skull, but little distorted, the two scapulae with attached cleithra, neither complete, but the two supplementing each other nearly per- fectly; the two complete clavicles attached to the incomplete inter- clavicle; the two humeri, one complete save for the capitellar angle, the other with the distal part quite complete and the proximal portion missing; two attached proximal carpals, several vertebrae and frag- ments of ribs, the nearly complete carapace, a broken and somewhat distorted pelvis, a femur, and fragments of epipodial bones. For the most part, the surface of the skull is unimpaired, showing deep, almost circular pits, with narrow, reticulating ridges between them. The pittings seem to be most pronounced in the upper pos- terior part. There are no indications of mucous grooves, and I am convinced that, were they originally present, evidences of them would be apparent. Nor, as in the case of the skulls of Cacops, can I distinguish the sutures. The skull is very broad posteriorly, with a rounded, obtuse muzzle. The orbits are situated about midway in its length, they are rather small, nearly circular in outline, and broadly separated. The table of the cranium, back of the orbits, is rather broader than long, a little wider anteriorly, with a broad emargination behind; it is nearly plane, with its margins elevated. The parietal foramen is situated a little back of a line drawn through the posterior margin of the orbits.
    [Show full text]
  • Limb Ossification in the Paleozoic Branchiosaurid Apateon (Temnospondyli) and the Early Evolution of Preaxial Dominance in Tetrapod Limb Development
    EVOLUTION & DEVELOPMENT 9:1, 69 –75 (2007) Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development Nadia B. Fro¨bisch,a,Ã Robert L. Carroll,a and Rainer R. Schochb aRedpath Museum, McGill University, 859 Sherbrooke Street West, Montreal H3A 2K6, Canada bStaatliches Museum fu¨r Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany ÃAuthor for correspondence (email: [email protected]) SUMMARY Despite the wide range of shapes and sizes that divergent evolution of these two pathways and its causes are accompany a vast variety of functions, the development of still not understood. Based on an extensive ontogenetic series tetrapod limbs follows a conservative pattern of de novo we investigated the pattern of limb development of the 300 Ma condensation, branching, and segmentation. Development of old branchiosaurid amphibian Apateon. This revealed a the zeugopodium and digital arch typically occurs in a posterior preaxial dominance in limb development that was previously to anterior sequence, referred to as postaxial dominance, with believed to be unique and derived for modern salamanders. a digital sequence of 4–3–5–2–1. The only exception to this The Branchiosauridae are favored as close relatives of pattern in all of living Tetrapoda can be found in salamanders, extant salamanders in most phylogenetic hypotheses of the which display a preaxial dominance in limb development, a de highly controversial origins and relationships of extant novo condensation of a basale commune (distal carpal/tarsal amphibians. The findings provide new insights into the 112) and a precoccial development of digits I and II.
    [Show full text]
  • BOA2.1 Caecilian Biology and Natural History.Key
    The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia
    [Show full text]
  • Stuttgarter Beiträge Zur Naturkunde
    S^5 ( © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 278 175 pp., 4pls., 54figs. Stuttgart, 30. 12. 1999 Comparative osteology oi Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) By Rainer R. Schoch, Stuttgart With 4 plates and 54 textfigures Abstract Mastodonsaurus giganteus, the most abundant and giant amphibian of the German Letten- keuper, is revised. The study is based on the excellently preserved and very rieh material which was excavated during road construction in 1977 near Kupferzeil, Northern Baden- Württemberg. It is shown that there exists only one diagnosable species of Mastodonsaurus, to which all Lettenkeuper material can be attributed. All finds from other horizons must be referred to as Mastodonsauridae gen. et sp. indet. because of their fragmentary Status. A sec- ond, definitely diagnostic genus of this family is Heptasaurus from the higher Middle and Upper Buntsandstein. Finally a diagnosis of the family Mastodonsauridae is provided. Ä detailed osteological description of Mastodonsaurus giganteus reveals numerous un- known or formerly inadequately understood features, yielding data on various hitherto poor- ly known regions of the skeleton. The sutures of the skull roof, which could be studied in de- tail, are significantly different from the schemes presented by previous authors. The endocra- nium and mandible are further points of particular interest. The palatoquadrate contributes a significant part to the formation of the endocranium by an extensive and complicated epi- pterygoid.
    [Show full text]
  • Phylogeny and Evolution of the Dissorophoid Temnospondyls
    Journal of Paleontology, 93(1), 2019, p. 137–156 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2018.67 The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls Rainer R. Schoch Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany 〈[email protected]〉 Abstract.—Dissorophoid temnospondyls are widely considered to have given rise to some or all modern amphibians (Lissamphibia), but their ingroup relationships still bear major unresolved questions. An inclusive phylogenetic ana- lysis of dissorophoids gives new insights into the large-scale topology of relationships. Based on a TNT 1.5 analysis (33 taxa, 108 characters), the enigmatic taxon Perryella is found to nest just outside Dissorophoidea (phylogenetic defintion), but shares a range of synapomorphies with this clade. The dissorophoids proper are found to encompass a first dichotomy between the largely paedomorphic Micromelerpetidae and all other taxa (Xerodromes). Within the latter, there is a basal dichotomy between the large, heavily ossified Olsoniformes (Dissorophidae + Trematopidae) and the small salamander-like Amphibamiformes (new taxon), which include four clades: (1) Micropholidae (Tersomius, Pasawioops, Micropholis); (2) Amphibamidae sensu stricto (Doleserpeton, Amphibamus); (3) Branchiosaur- idae (Branchiosaurus, Apateon, Leptorophus, Schoenfelderpeton); and (4) Lissamphibia. The genera Platyrhinops and Eos- copus are here found to nest at the base of Amphibamiformes. Represented by their basal-most stem-taxa (Triadobatrachus, Karaurus, Eocaecilia), lissamphibians nest with Gerobatrachus rather than Amphibamidae, as repeatedly found by former analyses.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • The Braincase of Eocaecilia Micropodia (Lissamphibia, Gymnophiona) and the Origin of Caecilians
    The Braincase of Eocaecilia micropodia (Lissamphibia, Gymnophiona) and the Origin of Caecilians Hillary C. Maddin1,2*, Farish A. Jenkins, Jr.1, Jason S. Anderson2 1 Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, United States of America, 2 Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada Abstract The scant fossil record of caecilians has obscured the origin and evolution of this lissamphibian group. Eocaecilia micropodia from the Lower Jurassic of North America remains the only stem-group caecilian with an almost complete skull preserved. However, this taxon has been controversial, engendering re-evaluation of traits considered to be plesiomorphic for extant caecilians. Both the validity of the placement of E. micropodia as a stem caecilian and estimates of the plesiomorphic condition of extant caecilians have been questioned. In order to address these issues, the braincase of E. micropodia was examined via micro-computed tomography. The braincase is considered to be a more reliable phylogenetic indicator than peripheral regions of the skull. These data reveal significant new information, including the possession of an ossified nasal septum, ossified anterior wall of the sphenethmoid, long anterolateral processes on the sphenethmoid, and paired olfactory nerve foramina, which are known only to occur in extant caecilians; the latter are possibly related to the evolution of the tentacle, a caecilian autapomorphy. A phylogenetic analysis that included 64 non-amniote taxa and 308 characters represents the first extensive test of the phylogenetic affinities of E. micropodia. The results place E. micropodia securely on the stem of extant caecilians, representing a clade within Temnospondyli that is the sister taxon to batrachians plus Gerobatrachus.
    [Show full text]
  • The Scapulocoracoid of an Early Triassic Stem−Frog from Poland
    The scapulocoracoid of an Early Triassic stem−frog from Poland MAGDALENA BORSUK−BIAŁYNICKA and SUSAN E. EVANS Borsuk−Białynicka, M. and Evans, S.E. 2002. The scapulocoracoid of an Early Triassic stem−frog from Poland. Acta Palaeontologica Polonica 47 (1): 79–96. The scapulocoracoid of Czatkobatrachus polonicus Evans and Borsuk−Białynicka, 1998, a stem−frog from the Early Tri− assic karst locality of Czatkowice (Southern Poland), is described. The overall type of scapulocoracoid is plesiomorphic, but the subcircular shape and laterally oriented glenoid is considered synapomorphic of Salientia. The supraglenoid fora− men is considered homologous to the scapular cleft of the Anura. In Czatkobatrachus, the supraglenoid foramen occupies an intermediate position between that of the early tetrapod foramen and the scapular cleft of Anura. The cleft scapula is probably synapomorphic for the Anura. In early salientian phylogeny, the shift in position of the supraglenoid foramen may have been associated with an anterior rotation of the forelimb. This change in position of the forelimb may reflect an evolutionary shift from a mainly locomotory function to static functions (support, balance, eventually shock−absorption). Laterally extended limbs may have been more effective than posterolateral ones in absorbing landing stresses, until the specialised shock−absorption pectoral mechanism of crown−group Anura had developed. The glenoid shape and position, and the slender scapular blade, of Czatkobatrachus, in combination with the well−ossified joint surfaces on the humerus and ulna, all support a primarily terrestrial rather than aquatic mode of life. The new Polish material also permits clarifica− tion of the pectoral anatomy of the contemporaneous Madagascan genus Triadobatrachus.
    [Show full text]