Proceedings of the Open University Geological Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alfred Romer – Wikipedia
Alfred Romer – Wikipedia https://de.wikipedia.org/wiki/Alfred_Romer aus Wikipedia, der freien Enzyklopädie Alfred Sherwood Romer (* 28. Dezember 1894 in White Plains, New York; † 5. November 1973) war ein US-amerikanischer Paläontologe. Sein Fachgebiet war die Evolution der Wirbeltiere. Inhaltsverzeichnis 1 Leben 2 Romer-Lücke 3 Auszeichnungen und Ehrungen 4 Schriften 5 Weblinks 6 Einzelnachweise Leben Alfred Sherwood Romer wurde in White Plains, New York geboren, wo er seinen High-School-Abschluss machte. Danach arbeitete er ein Jahr lang als Angestellter bei der Eisenbahn und entschloss sich dann doch für den Besuch eines College. Mit Hilfe eines Stipendiums vom Amherst College konnte er dort Geschichte und deutsche Literatur studieren. Durch häufige Besuche des American Museum of Natural History entdeckte er seine Begeisterung für naturkundliche Fossilien. Bei Ausbruch des Ersten Weltkriegs meldete er sich als Freiwilliger zum Kriegsdienst und wurde sofort in Frankreich eingesetzt. 1919 kam er zurück nach New York und nahm das Studium der Biologie an der Columbia University auf, das er bereits zwei Jahre später mit der Promotion abschloss. Danach war er als wissenschaftliche Hilfskraft an der Bellevue Medical School der New York University beschäftigt und lehrte insbesondere Histologie, Embryologie und Allgemeine Anatomie. 1923 erhielt er einen Ruf von der Universität Chicago, wo er seine spätere Ehefrau Ruth kennenlernte, mit der er drei Kinder hatte. In Chicago fand er Bedingungen vor, die es ihm ermöglichten, sein Hauptinteresse zu intensivieren - die Paläontologie. So entstanden in den Jahren von 1925 bis 1935 37 Fachartikel, die sich mit diesem Thema befassten. 1934 wurde er zum Professor für Biologie an der Harvard University ernannt. -
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus -
Early Tetrapod Relationships Revisited
Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria -
The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882829; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The making of calibration sausage exemplified by recalibrating the transcriptomic timetree of jawed vertebrates 1 David Marjanović 2 Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, 3 Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, 4 Germany 5 ORCID: 0000-0001-9720-7726 6 Correspondence: 7 David Marjanović 8 [email protected] 9 Keywords: timetree, calibration, divergence date, Gnathostomata, Vertebrata 10 Abstract 11 Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in 12 inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the 13 fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular 14 evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of 15 the sites the fossils were found in. Paleontologists have therefore tried to help by publishing 16 compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record 17 have made heavy use of such works (in addition to using scattered primary sources -
Geological Guide to the Fossil Grove, Glasgow
A Geological Guide to the Fossil Grove, Glasgow by Iain Allison and David Webster Geological Society of Glasgow About this Guide About this Guide This new booklet on the geology of the Fossil Grove is aimed everyone with an interest in geology, however slight - but it does contain more detail for students, professionals and academics alike and for whom some further reading is suggested. A separate section on the geological framework of the Glasgow area is included, and for the beginner unfamilar with some technical terms, a short glossary is included. This guide includes several localities in the quarry area - which is always open. The Fossil House itself is open on weekend afternoons from April- October. The descriptions of the localities in the guide uses two font styles - the text in italics contains the geological descriptions and interpretations at each locality; whereas the regular font style is used for directions, history and other points of interest. This booklet replaces two booklets (now out-of-print) produced by Glasgow City Council in 1972 and 1995. A new updated Guide to the Geology of Glasgow is being produced by the Geological Society of Glasgow - and this booklet on the Fossil Grove will form an integral part of it which will replace the out-of-print ‘Geological Excursions around Glasgow and Girvan’ published by the Society in 1992. This guide has been produced by the Geological Society of Glasgow with generous support from the Fossil Grove Trust. Technical and editorial contributions from volunteers, friends and supporters are also gratefully acknowledged. Fig. A1. Three Victorian ’gentlemen scientists’ from the Geological Society of Glasgow who first described the fossil trees and recognised their importance. -
Alfred Romer to Hugh L
NATIONAL ACADEMY OF SCIENCES ALFRED SHERWOOD ROMER 1894—1973 A Biographical Memoir by EDWIN H. COLBERT Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1982 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. ALFRED SHERWOOD ROMER December 28, 1894 -November 5, 1973 BY EDWIN H. COLBERT LFRED SHERWOOD ROMER was a man of many aspects: a A profound scholar whose studies of vertebrate evolution based upon the comparative anatomy of fossils established him throughout the world as an outstanding figure in his field; a gifted teacher who trained several generations of paleontologists and anatomists; an effective administrator who never allowed the burden of office to diminish his re- search activities; a lucid writer whose books and scientific papers were and are of inestimable value; and a warm per- son, loved and admired by family, friends, and colleagues. Al, as he was universally known to his friends, lived a full and rewarding life, during which he led and influenced paleon- tologists, anatomists, and evolutionists in many lands. His absence is keenly felt. A1 Romer was born in White Plains, New York on December 28, 1894, the son of a newspaper man who was editor, and sometimes owner, of several small-town news- papers in Connecticut and New York, and who later worked for the Associated Press. On the paternal side he was de- scended from Jacob Romer, an emigrant from Ziirich who settled among the Dutch residents of the Hudson River Val- ley about 1725. -
(Temnospondyli), and the Evolution of Modern
THE LOWER PERMIAN DISSOROPHOID DOLESERPETON (TEMNOSPONDYLI), AND THE EVOLUTION OF MODERN AMPHIBIANS Trond Sigurdsen Department of Biology McGill University, Montreal November 2009 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Trond Sigurdsen 2009 1 ACKNOWLEDGMENTS I am deeply grateful to my supervisors Robert L. Carroll and David M. Green for their support, and for revising and correcting the drafts of the individual chapters. Without their guidance, encouragement, and enthusiasm this project would not have been possible. Hans Larsson has also provided invaluable help, comments, and suggestions. Special thanks go to John R. Bolt, who provided specimens and contributed to Chapters 1 and 3. I thank Farish Jenkins, Jason Anderson, and Eric Lombard for making additional specimens available. Robert Holmes, Jean-Claude Rage, and Zbyněk Roček have all provided helpful comments and observations. Finally, I would like to thank present and past members of the Paleolab at the Redpath Museum, Montreal, for helping out in various ways. Specifically, Thomas Alexander Dececchi, Nadia Fröbisch, Luke Harrison, Audrey Heppleston and Erin Maxwell have contributed helpful comments and technical insight. Funding was provided by NSERC, the Max Stern Recruitment Fellowship (McGill), the Delise Allison and Alma Mater student travel grants (McGill), and the Society of Vertebrate Paleontology Student Travel Grant. 2 CONTRIBUTIONS OF AUTHORS Chapters 1 and 3 were written in collaboration with Dr. John R. Bolt from the Field Museum of Chicago. The present author decided the general direction of these chapters, studied specimens, conducted the analyses, and wrote the final drafts. -
The Evolution and Function of Theropod Dinosaur Tails
University of Alberta The Evolution and Function of Theropod Dinosaur Tails by Walter Scott Persons A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Department of Biological Sciences ©Walter Scott Persons Fall 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-91864-7 Our file Notre reference ISBN: 978-0-494-91864-7 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. -
Early Vertebrate Evolution New Insights Into the Morphology of the Carboniferous Tetrapod Crassigyrinus Scoticus from Computed Tomography Eva C
Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 109, 157–175, 2019 (for 2018) Early Vertebrate Evolution New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography Eva C. HERBST* and John R. HUTCHINSON Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK. Email: [email protected] *Corresponding author ABSTRACT: The Carboniferous tetrapod Crassigyrinus scoticus is an enigmatic animal in terms of its morphology and its phylogenetic position. Crassigyrinus had extremely reduced forelimbs, and was aquatic, perhaps secondarily. Recent phylogenetic analyses tentatively place Crassigyrinus close to the whatcheeriids. Many Carboniferous tetrapods exhibit several characteristics associated with terrestrial locomotion, and much research has focused on how this novel locomotor mode evolved. However, to estimate the selective pressures and constraints during this important time in vertebrate evolution, it is also important to study early tetrapods like Crassigyrinus that either remained aquatic or secondarily became aquatic. We used computed tomographic scanning to search for more data about the skeletal morphology of Crassigyrinus and discovered several elements previously hidden by the matrix. These elements include more ribs, another neural arch, potential evidence of an ossified pubis and maybe of pleurocentra. We also discovered several additional metatarsals with interesting asymmetrical morphology that may have functional implications. Finally, we reclassify what was previously thought to be a left sacral rib as a left fibula and show previously unknown aspects of the morphology of the radius. These discoveries are examined in functional and phylogenetic contexts. KEY WORDS: evolution, palaeontology, phylogeny, water-to-land transition. -
Development, Anatomy, and Phylogenetic Relationships of Jawless Vertebrates and Tests of Hypotheses About Early Vertebrate Evolution
Development, Anatomy, and Phylogenetic Relationships of Jawless Vertebrates and Tests of Hypotheses about Early Vertebrate Evolution by Tetsuto Miyashita A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Systematics and Evolution Department of Biological Sciences University of Alberta © Tetsuto Miyashita, 2018 ii ABSTRACT The origin and early evolution of vertebrates remain one of the central questions of comparative biology. This clade, which features a breathtaking diversity of complex forms, has generated profound, unresolved questions, including: How are major lineages of vertebrates related to one another? What suite of characters existed in the last common ancestor of all living vertebrates? Does information from seemingly ‘primitive’ groups — jawless vertebrates, cartilaginous fishes, or even invertebrate outgroups — inform us about evolutionary transitions to novel morphologies like the neural crest or jaw? Alfred Romer once likened a search for the elusive vertebrate archetype to a study of the Apocalypse: “That way leads to madness.” I attempt to address these questions using extinct and extant cyclostomes (hagfish, lampreys, and their kin). As the sole living lineage of jawless vertebrates, cyclostomes diverged during the earliest phases of vertebrate evolution. However, precise relationships and evolutionary scenarios remain highly controversial, due to their poor fossil record and specialized morphology. Through a comparative analysis of embryos, I identified significant developmental similarities and differences between hagfish and lampreys, and delineated specific problems to be explored. I attacked the first problem — whether cyclostomes form a clade or represent a grade — in a description and phylogenetic analyses of a new, nearly complete fossil hagfish from the Cenomanian of Lebanon. -
Available from the Author Upon Request; See Also the Academia.Edu Web Site) Some Cover Pages That Feature My Papers
Research articles in refereed journals Listed in chronological order (available from the author upon request; see also the Academia.edu web site) Some cover pages that feature my papers. © Michel Laurin • DIDIER, G., FAU, M., and LAURIN, M. 2017. Likelihood of tree topologies with fossils and diversification rate estimation. Systematic Biology (Early View). • SMITH, H. F., PARKER, W., KOTZÉ, S. H., and LAURIN, M. 2017. Morphological evolution of the mammalian cecum and cecal appendix. Comptes Rendus Palevol. 16 (1): 39–57. • HERREL, A., MOUREAUX, C., LAURIN, M., DAGHFOUS, G., CRANDELL, K., TOLLEY, K. A., MEASEY, G. J., VANHOOYDONCK, B., and BOISTEL, R. 2016. Frog origins: Inferences based on ancestral reconstructions of locomotor performance and anatomy. Fossil Imprint 72 (1–2): 108–116. • BUFFRÉNIL, V. D., CLARAC, F., CANOVILLE, A., and LAURIN, M. 2016. Comparative data on the differentiation and growth of bone ornamentation in gnathostomes (Chordata: Vertebrata). Journal of Morphology 277 (5): 634–670. • WERNEBURG, I., LAURIN, M., KOYABU, D., and SÁNCHEZ-VILLAGRA, M. R. 2016. Evolution of organogenesis and the origin of altriciality in mammals. Evolution & Development 18 (4): 229-244. • CANOVILLE, A., BUFFRÉNIL, V. D., and LAURIN, M. 2016. Microanatomical diversity of amniote ribs: an exploratory quantitative study. Biological Journal of the Linnean Society 118 (4): 706–733. • ASCARRUNZ, E., RAGE, J.-C., LEGRENEUR, P., and LAURIN, M. 2016. Triadobatrachus massinoti, the earliest known lissamphibian (Vertebrata: Tetrapoda) re-examined by µCT-Scan, and the evolution of trunk length in batrachians. Contributions to Zoology. 85 (2): 201–234. • VILLAMIL, J. N., DEMARCO, P. N., MENEGHEL, M., BLANCO, R. E., JONES, W., RINDERKNECHT, A., LAURIN, M., and PIÑEIRO, G. -
Was Mesosaurus a Fully Aquatic Reptile?
ORIGINAL RESEARCH published: 27 July 2018 doi: 10.3389/fevo.2018.00109 Was Mesosaurus a Fully Aquatic Reptile? Pablo Nuñez Demarco 1,2*, Melitta Meneghel 3, Michel Laurin 4 and Graciela Piñeiro 5* 1 Facultad de Ciencias, Instituto de Ciencias Geológicas, Universidad de la República, Montevideo, Uruguay, 2 Facultad de Ciencias Exactas y Naturales, InGeBa, Universidad de Buenos Aires, Buenos Aires, Argentina, 3 Laboratorio de Sistemática e Historia Natural de Vertebrados, Facultad de Ciencias, IECA, Universidad de la República, Montevideo, Uruguay, 4 CR2P, UMR 7207, Centre National de la Recherche Scientifique/MNHN/UPMC, Sorbonne Universités, Paris, France, 5 Departamento de Paleontología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay Mesosaurs have been considered strictly aquatic animals. Their adaptations to the aquatic environment are well known and include putative viviparity, along with the presence of several skeletal characters such as a long, laterally compressed tail, long limbs, the foot larger than the manus, and presence of pachyosteosclerotic bones. They were also described as possessing non-coossified girdle bones and incompletely ossified epiphyses, although there could be an early fusion of the front girdle bones to form the scapulocoracoid in some specimens. Some of these features, however, are shared by most basal tetrapods that are considered semiaquatic and even some terrestrial ones. The study of vertebral columns and limbs provides essential clues about the locomotor Edited by: system and the lifestyle of early amniotes. In this study, we have found that the variation of Martin Daniel Ezcurra, the vertebral centrum length along the axial skeleton of Mesosaurus tenuidens fits better Museo Argentino de Ciencias Naturales Bernardino Rivadavia, with a semi-aquatic morphometric pattern, as shown by comparisons with other extinct Argentina and extant taxa.