2019: the Year in Experimental Medicine Why Submit to Jem?

Total Page:16

File Type:pdf, Size:1020Kb

2019: the Year in Experimental Medicine Why Submit to Jem? 2019: THE YEAR IN EXPERIMENTAL MEDICINE WHY SUBMIT TO JEM? FORMAT NEUTRAL You may submit your papers in ANY format. 92% OF INVITED REVISIONS ARE ACCEPTED TRANSFER POLICY We welcome submissions that include reviewer comments from another journal. You may also request manuscript transfer between Rockefeller University Press journals, and we can confidentially send reviewer reports and identities to another journal beyond RUP. INITIAL DECISION IN 6 DAYS FAIR AND FAST We limit rounds of revision, and we strive to provide clear, detailed decisions that illustrate what is expected in the revisions. Articles appear online one to two days after author proofs are returned. TIME IN PEER REVIEW 38 DAYS OPEN ACCESS OPTIONS Our options include Immediate Open Access (CC-BY) and open access six months after publication (CC-BY-NC-SA). *Median 2019 An Editorial Process Guided by Your Community At JEM, all editorial decisions on research manuscripts are made through collaborative consultation between professional scientific editors and the academic editorial board. Submission or transfer Academic and scientific If appropriate, sent Academic and scientific Informed decisions editors review to Peer Review editors review comments sent to authors Revised manuscript Academic and scientific 92% of invited Published online Circulated via alerts and submission and rereview editors review revisions accepted* 1-2 days after author social media to readers proofs returned around the world 2019: THE YEAR IN EXPERIMENTAL MEDICINE t the beginning of 2020, the start of a new decade, the Journal of Experimental Medicine (JEM) is proud to present our annual Year in Experimental Medicine collection to highlight some of the articles that were of greatest interest to our readers last year. The top 10 papers A are selected by the editorial team and are based, in part, on the number of requests for PDF and full-text HTML versions of an article in the first three months after publication. These studies highlight the full breadth of JEM’s scope and our long-standing interest in original findings in disease pathogenesis. We would like to thank our authors for contributing to JEM. It is our privilege to publish ground- breaking studies that broaden knowledge in immunology, host–pathogen interaction, cancer biology, cardiovascular biology, neuroscience, and other areas relevant to disease pathogenesis. In 2019, we celebrated the recipients of the Albert Lasker Basic Medical Research Award with a collection of JEM studies from Max D. Cooper (Emory University) and Jacques Miller (Walter and Eliza Hall Institute of Medical Research) that revolutionized our understanding of the adaptive immune system. Find this collection and many others at https://rupress.org/JEM/collections. We are also grateful to our reviewers. See page 15 for a full list of those who contributed their time and expertise to ensure the publication of quality science in JEM in 2019. Last but not least, we would like to thank our readers for their interest and continued support for JEM. We hope you will enjoy reading this collection. 5 CD4+ resident memory T cells mediate local immune response Study reveals that CD4 TRM cells play a major role in immunosurveillance and local responses to reinfection Lalit K. Beura … David Masopust 6 A novel T cell subset controls IgE responses in humans A population of regulatory T cells in the follicles of human tonsils may prevent allergies by reducing IgE production Pablo F. Cañete … Carola G. Vinuesa 7 Patients with IL-6 receptor deficiency Loss-of-function mutations in human IL6R lead to recurrent infections, eczema, and abnormal inflammatory responses Kaan Boztug, Joshua D. Milner, James E.D. Thaventhiran, et al. 8 Zika-associated birth defects may depend on mother’s immune response Risk of developing fetal microcephaly is linked to the types of antibody produced by pregnant mothers in response to Zika infection Davide F. Robbiani … Michel C. Nussenzweig 9 Ferroptosis drives tuberculosis pathology Study finds that iron-induced cell death promotes tissue necrosis and facilitates mycobacterial spread Eduardo P. Amaral … Alan Sher 10 Secreted splice variants mediate resistance to anti-PD-L1 therapy Non-small cell lung cancers can acquire resistance to immunotherapy by producing soluble versions of PD-L1 that can act as decoys and prevent immune checkpoint blockade Bo Gong … Ryohei Katayama Brochure articles by Ben Short, PhD Design by Christine Candia 11 Heterotypic spheroids drive ovarian cancer metastasis Cover art by Laura Avivar Fibroblasts and ascitic cancer cells form metastatic units that promote the dissemination of tumor cells throughout the abdominal cavity On the cover Anti-tumor immune response. T cells Qinglei Gao, Zongyuan Yang, et al. attacking a cancer cell. 12 Aspirin may help some patients survive head and neck cancer By lowering prostaglandin E2 levels, regular use of aspirin or other NSAIDs could prolong the life of patients with mutations in the PIK3CA gene CONNECT WITH JEM Matthew L. Hedberg, Noah D. Peyser, Julie E. Bauman … Jennifer R. Grandis @JExpMed 13 Antibiotic treatment alleviates Alzheimer’s disease symptoms in male mice Journal of Experimental Medicine By altering the gut microbiome, long-term antibiotic treatment reduces inflammation and slows the growth of amyloid plaques in male APPPS1-21 mice @rockefeller_university_press Hemraj B. Dodiya … Sangram S. Sisodia [email protected] 14 Stroke drug may also prevent Alzheimer’s disease www.jem.org The genetically engineered protein 3K3A-APC reduces amyloid deposition in mice by inhibiting transcription of BACE1 Divna Lazic, Abhay P. Sagare … Berislav V. Zlokovic 3 Executive Editor Advisory Editors Teodoro Pulvirenti Shizuo Akira Vijay K. Kuchroo Hans Schreiber phone (212) 327-8575 Kari Alitalo Ralf Kuppers Pamela Schwartzberg email: [email protected] Frederick W. Alt Tomohiro Kurosaki Charles N. Serhan Editorial Board Co-Chairs David Artis Bart N. Lambrecht Nilabh Shastri Carl Nathan K. Frank Austen Ross Levine Ethan M. Shevach Michel Nussenzweig Albert Bendelac Klaus F. Ley Robert Siliciano Editors Christine A. Biron Yong-Jun Liu Roy L. Silverstein Yasmine Belkaid Hal E. Broxmeyer Clare Lloyd Hergen Spits Jean-Laurent Casanova Meinrad Busslinger Tak Mak Jonathan Sprent Sara Cherry Arturo Casadevall Asrar Malik Janet Stavnezer David Holtzman Ajay Chawla Bernard Malissen Ulrich Steidl Susan Kaech Nicholas Chiorazzi Philippa Marrack Andreas Strasser Lewis L. Lanier Robert L. Coffman Diane Mathis Helen Su Anne O’Garra Myron I. Cybulsky Ira Mellman Joseph Sun Emmanuelle Passegué Glenn Dranoff Miriam Merad Stuart Tangye Alexander Rudensky Michael Dustin Matthias Merkenschlager Steven L. Teitelbaum Arlene Sharpe Elaine Dzierzak Hanna Mikkola Jenny Ting David Tuveson Mikala Egeblad Denise Monack Kevin J. Tracey Jedd D. Wolchok Patricia Ernst Sean J. Morrison Giorgio Trinchieri Senior Scientific Editor Richard A. Flavell Muriel Moser Shannon Turley Shachi Bhatt Paul Frenette Daniel Mucida Emil Unanue Thomas Gajewski Charles Mullighan Valerie Weaver Scientific Editors Adolfo Garcia-Sastre Cornelis Murre Raymond M. Welsh Stephanie Houston Patricia Gearhart Linda Noble-Haeusslein E. John Wherry Xin (Cindy) Sun Ronald N. Germain Jeffrey Noebels Thomas Wynn Gaia Trincucci Daniel Geschwind John J. O’Shea Sayuri Yamazaki Editors Emeriti Lucy Godley Jack Parent Leonard Zon William A. Muller Margaret (Peggy) Goodell Virginia Pascual Alan Sher Christopher Goodnow Laura Pasqualucci Monitoring Editors Managing Editor Bertie Gottgens Erika Pearce Marco Colonna Sylvia F. Cuadrado Florian Greten Fiona Powrie Jason Cyster phone (212) 327-8575 Philippe Gros Klaus Rajewsky Stephen Hedrick email: [email protected] Chyi Hsieh Gwendalyn J. Randolph Kristin A. Hogquist Christopher A. Hunter Rino Rappuoli Andrew McMichael Luisa Iruela-Arispe Jeffrey Ravetch Luigi Notarangelo Akiko Iwasaki Nicholas Restifo Federica Sallusto Jos Jonkers Nikolaus Romani Toshio Suda Johanna Joyce David L. Sacks Thirumala-Devi Kanneganti Shimon Sakaguchi Consulting Biostatistical Gerard Karsenty Matthew D. Scharff Editor Jay Kolls Olaf Schneewind Xi Kathy Zhou Paul Kubes Stephen P. Schoenberger Senior Preflight Editor Production Editor Copyright to articles published in this journal is held by the authors. Articles are published Laura Smith Jennifer McGullam by Rockefeller University Press under license from the authors. Conditions for reuse of the articles by third parties are listed at http://www.rupress.org/terms Preflight Editor Production Manager Rochelle Ritacco Camille Clowery Print ISSN 0022-1007 Online ISSN 1540-9538 Assistant Production Editor Production Designer Andrew Lo Bello Erinn A. Grady Rockefeller University Press 4 CD4+ RESIDENT MEMORY T CELLS MEDIATE LOCAL IMMUNE RESPONSE Study reveals that CD4 TRM cells play a major role in immunosurveillance and local responses to reinfection Naïve T cells largely patrol the body by both the innate and adaptive immune circulating through secondary lymphoid systems. The researchers saw a simi- + + organs. In contrast, CD8 memory T larly prominent role for CD4 TRM cells cells that have previously been exposed in mice exposed to an array of natural to their cognate antigen are abundant pathogens. enough to permanently station them- + selves in various nonlymphoid tissues, Beura et al. found that CD4 TRM cells share many phenotypic characteristics becoming resident memory T cells (TRM) + that can mediate local immunosurveil- with CD8 TRM cells residing in the same lance and detect
Recommended publications
  • ANNUAL REVIEW 1 October 2005–30 September
    WELLCOME TRUST ANNUAL REVIEW 1 October 2005–30 September 2006 ANNUAL REVIEW 2006 The Wellcome Trust is the largest charity in the UK and the second largest medical research charity in the world. It funds innovative biomedical research, in the UK and internationally, spending around £500 million each year to support the brightest scientists with the best ideas. The Wellcome Trust supports public debate about biomedical research and its impact on health and wellbeing. www.wellcome.ac.uk THE WELLCOME TRUST The Wellcome Trust is the largest charity in the UK and the second largest medical research charity in the world. 123 CONTENTS BOARD OF GOVERNORS 2 Director’s statement William Castell 4 Advancing knowledge Chairman 16 Using knowledge Martin Bobrow Deputy Chairman 24 Engaging society Adrian Bird 30 Developing people Leszek Borysiewicz 36 Facilitating research Patricia Hodgson 40 Developing our organisation Richard Hynes 41 Wellcome Trust 2005/06 Ronald Plasterk 42 Financial summary 2005/06 Alastair Ross Goobey 44 Funding developments 2005/06 Peter Smith 46 Streams funding 2005/06 Jean Thomas 48 Technology Transfer Edward Walker-Arnott 49 Wellcome Trust Genome Campus As at January 2007 50 Public Engagement 51 Library and information resources 52 Advisory committees Images 1 Surface of the gut. 3 Zebrafish. 5 Cells in a developing This Annual Review covers the 2 Young children in 4 A scene from Y fruit fly. Wellcome Trust’s financial year, from Kenya. Touring’s Every Breath. 6 Data management at the Sanger Institute. 1 October 2005 to 30 September 2006. CONTENTS 1 45 6 EXECUTIVE BOARD MAKING A DIFFERENCE Developing people: To foster a Mark Walport The Wellcome Trust’s mission is research community and individual Director to foster and promote research with researchers who can contribute to the advancement and use of knowledge Ted Bianco the aim of improving human and Director of Technology Transfer animal health.
    [Show full text]
  • Vol 9 No 1 Spring
    A PUBLICATION OF THE AMERICAN SOCIETY FOR MATRIX BIOLOGY SPRING 2010, VOLUME 9, NO. 1 President’s Letter Expanding the Society’s Value to You and Your Role in the Society Since its inception in 2001, the principal function of the ASMB has been to organize the OFFICERS biennial meeting. The value of this meeting to our members cannot be understated. The ASMB meeting has emerged as the matrix-centric President: meeting in North America, and it provides an William Parks (2010) open venue for students, postdocs, fellows, and junior faculty to present their work and to inter- act with established investigators. Speaking for Vice Pres/President Elect myself, I very much look forward to the ASMB Jean Schwarzbauer (2010) meeting, not only because I get to see many Bill Parks friends, but also to hear a lot of incredibly good science. This year’s meeting will be no excep- Past President: tion and promises to be truly outstanding. I applaud Jean Schwarzbauer and the Renato Iozzo (2010) rest of the Program Committee for putting together an exciting meeting loaded with interesting topics and great speakers (please check out the program here). By organizing the meeting, ASMB provides value to you, the membership, but I Secretary/Treasurer think we–the Society–should always be looking to do more; that is, to provide more Joanne Murphy-Ullrich (2011) bang for your dues buck. For this year’s meeting, we have expanded the Travel Awards that will be given to trainees in recognition of outstanding research, and we recently established merit-based Minority Scholarships that will be awarded to eli- Council Members gible students and postdocs.
    [Show full text]
  • SAC 2014 Celebration of Science Book
    Fostering Innovation at MGH Poster Session Abstracts 67th Annual Meeting of the MGH Scientific Advisory Committee Celebration of Science The MGH Research Institute: Meeting the Challenges that Lie Ahead April 2 & 3, 2014 Simches Auditorium 185 Cambridge Street, 3rd Floor Management Management ECOR Administrative Offices | 50 Staniford Street, 10th Floor | Boston, MA 02114 | [email protected] Fostering Mainstay Mainstay Innovation of MGH of MGH at MGH Management Innovation Management Innovation Welcome elcome to the 67th Annual Meeting of the MGH Scientific Advisory Committee (SAC) on April 2nd and 3rd, 2014. Dr. Richard Lifton has graciously agreed to W chair our SAC meeting again this year. As in past years, we will begin our two-day SAC meeting with a Celebration of Science at MGH. Our poster session begins at 11:00 am on Wednesday, April 2, followed by an afternoon Research Symposium from 2:00 pm to 5:00 pm. The outstanding MGH researchers who will be presenting their work in our Symposium this year are the 2014 Howard Goodman Award recipient Filip Swirski, PhD and the 2014 Martin Basic and Clinical Research Prize recipients, Jayaraj Rajagopal, MD, and Stephanie Seminara, MD. We are honored to have as our keynote speaker, Richard O. Hynes, PhD, from MIT. We will close the first day with a Reception for invited guests at the Russell Museum. On Thursday, April 3, Dr. Kingston will open the SAC meeting with an ECOR Report. After this report, Anne Klibanski, MD, Partners Chief Academic Officer, will give a presentation on the Integration of MGH Research to the Partners Enterprise.
    [Show full text]
  • Hhmi Bulletin 3 4 Hhmi Club
    HHMI BULLETIN 4000 Jones Bridge Road • Chevy Chase, Maryland 20815-6789 Howard Hughes Medical Institute www.hhmi.org One Lump or Two? in this issue Once again, those fast-growing yeast find a way to turn a The Silicon Marvel long-held theory on its head. This time, it’s about prions, • Prions for Good which aren’t as universally nasty as once suspected. Some may actually help organisms evolve. The yeast colony shown here www.hhmi.org A Kaleidoscopic View contains a protein in its prion form. Because the prion, known as PSI+, is self-replicating and forms fibrous amyloids, the yeast look lumpy and bumpy—strikingly different from normally smooth yeast. Susan Lindquist’s group has found 19 yeast proteins that can switch back and forth between a normal and a prion version. The prions are thought to help the yeast adapt to changing conditions (see “A Silver Lining,” page 22). LIGHT MOVES v ol. 23 Heather True / Lindquist lab /no. 02 O b s e r v a t i O n s 16 Secret Agent MAn Skin cells do more than just cover our bodies. As a neurology resident, Stanley Prusiner saw Creutzfeldt–Jakob agent began to emerge. These data established, for the first time, that Keratinocytes, for example, anchor immune cells disease kill a patient in a matter of months. Researchers knew the rare a particular macromolecule was required for infectivity and that this within the epidermis, move and proliferate during neurodegenerative disease and scrapie, a similar disease in sheep, macromolecule was a protein …. wound healing, and even secrete inhibitory molecules were infectious but not as a result of a typical virus.
    [Show full text]
  • Summarised Financial Statements 2012
    Summarised Financial Statements 2012 Contents Chairman’s Statement 02 02 Summary Trustee’s Report 04 04 Vision and Objects, Mission, Focus Areas 04 and Challenges Financial Review 06 Extracts from the Review of Investment Activities 08 Independent Auditors’ Report 10 10 Consolidated Statement of Financial Activities 11 Consolidated Balance Sheet 12 Consolidated Cash Flow Statement 13 Grants Awarded 14 Reference and Administrative Details 16 Chairman’s Statement Sustained investment in research can bring real benefits or Medicine which was shared by a dozens of genomes every day. Their former Governor of the Trust, work is driving the first wave of Professor Sir John Gurdon. His work stratified medicine, improving cancer showed that mature cells had the therapy for patients by examining the potential to be reprogrammed into genetics of individual tumours, and stem cells. Subsequent decades of revealing the genetic basis of the way investment in stem cell research have specific cancers respond to different brought us ever closer to realising the drugs. promise of stem cell therapies. At the same time, ever-improving We saw again this year how sustained technology is giving us an advantage investment in research can bring real against infectious diseases. A study benefits. Genetics has been one of the published this summer demonstrated Trust’s most focused areas of funding how modern genome sequencing Summary of Chairman’s since the mid-1990s. First, we sought could track methicillin-resistant Statement to decode the human genome; then Staphylococcus aureus (MRSA). we had to find ways to apply that Retrospective analysis of samples • We committed £701 million in grant knowledge.
    [Show full text]
  • February 7, 2007 (Download PDF)
    Volume 51 – Number 16 Wednesday – February 7, 2007 TechTalk S ERVING T HE M I T C OMMUNITY Reactivated gene shrinks tumors, MIT study finds Anne Trafton cancer treatments,” said David Kirsch of known whether such activity would actu- properly, it activates DNA repair mecha- News Office MIT’s Center for Cancer Research and ally reverse tumor growth in primary nisms and prevents cells with damaged Harvard Medical School, one of the lead tumors. DNA from dividing. If DNA damage is co-authors of the paper. The new MIT study shows that re-acti- irreparable, p53 induces the cell to destroy Many cancers arise due to defects in The study appeared in the Jan. 25 vating p53 in mouse tumors dramatically itself by undergoing apoptosis, or pro- genes that normally suppress tumor issue of Nature. It was conducted in the reduces the size of the tumors, in some grammed cell death. growth. Now, for the first time, MIT laboratory of Tyler Jacks, director of the cases by 100 percent. When p53 is turned off by mutation researchers have shown that re-activat- Center for Cancer Research, the David H. “This study provides critical genetic or deletion, cells are much more likely ing one of those genes in mice can cause Koch Professor of Biology and a Howard evidence that continuous repression of a to become cancerous, because they will tumors to shrink or disappear. Hughes Medical Institute investigator. tumor suppressor gene is required for a divide uncontrollably even when DNA is The study offers evidence that the P53 has long been known to play a tumor to survive,” said Andrea Ventura, an damaged.
    [Show full text]
  • Stroma-Derived Interleukin-34 Controls the Development and Maintenance of Langerhans Cells and the Maintenance of Microglia
    Immunity Article Stroma-Derived Interleukin-34 Controls the Development and Maintenance of Langerhans Cells and the Maintenance of Microglia Melanie Greter,1,9,* Iva Lelios,1,9 Pawel Pelczar,2 Guillaume Hoeffel,3 Jeremy Price,4,5 Marylene Leboeuf,4,5 Thomas M. Ku¨ndig,7 Karl Frei,8 Florent Ginhoux,3 Miriam Merad,4,5,6,10,* and Burkhard Becher1,10 1Institute of Experimental Immunology, Neuroimmunology 2Institute of Laboratory Animal Science University of Zu¨ rich, CH 8006 Zu¨ rich, Switzerland 3Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), BIOPOLIS, 138648, Singapore 4Department of Oncological Sciences 5The Immunology Institute 6Tisch Cancer Institute Mount Sinai School of Medicine, New York, NY 10029, USA 7Clinical Tumor Biology & Immunotherapy Unit 8Department of Neurosurgery University Hospital Zu¨ rich, 8091 Zu¨ rich, Switzerland 9These authors contributed equally to this work 10These authors contributed equally to this work *Correspondence: [email protected] (M.G.), [email protected] (M.M.) http://dx.doi.org/10.1016/j.immuni.2012.11.001 SUMMARY the first immune barrier to foreign antigens that breach the skin. Microglia represent the resident macrophages of the Colony stimulating factor-1 (Csf-1) receptor and its CNS and are considered the first line of defense in many CNS ligand Csf-1 control macrophage development, main- pathologies. Most lymphoid and nonlymphoid tissue DCs and tenance, and function. The development of both macrophages are constantly repopulated by blood-derived Langerhans cells (LCs) and microglia is highly depen- circulating myeloid precursors. In contrast, epidermal LCs and dent on Csf-1 receptor signaling but independent microglia derive from embryonic precursors that take residence of Csf-1.
    [Show full text]
  • MSU Commencement Ceremonies Fall 2020
    COMMENCEMENT CEREMONIES FALL 2020 “Go forth with Spartan pride and confdence, and never lose the love for learning and the drive to make a diference that brought you to MSU.” Samuel L. Stanley Jr., M.D. President Michigan State University Photo above: an MSU entrance marker of brick and limestone, displaying our proud history as the nation’s pioneer land-grant university. On this—and other markers—is a band of alternating samara and acorns derived from maple and oak trees commonly found on campus. This pattern is repeated on the University Mace (see page 10). Inside Cover: Pattern of alternating samara and acorns. Michigan State University photos provided by University Communications. ENVIRONMENTAL TABLE OF CONTENTS STEWARDSHIP Mock Diplomas and the COMMENCEMENT Commencement Program Booklet 3 Virtual Commencement Ceremonies Commencement mock diplomas, 4 The Michigan State University Board of Trustees which are presented to degree 5 Michigan State University Mission Statement candidates at their commencement 6–8 Congratulatory Letters from the President, Provost, and Executive Vice President ceremonies, are 30% post-consumer 9 Michigan State University recycled content. The Commencement 10 Ceremony Lyrics program booklet is 100% post- 11 University Mace consumer recycled content. 12 Academic Attire 13 Keynote Speakers Caps and Gowns 14–16 Keynote Speaker Profles Graduating seniors’ caps and gowns and master’s degrees’ caps and BACCALAUREATE DEGREES gowns are made of post-consumer 18 Honors recycled content; each cap and 19 Order of Ceremonies gown is made of a minimum of 20–21 College of Agriculture and Natural Resources 23 plastic bottles. 22 Residential College in the Arts and Humanities 23–24 College of Arts and Letters Recycle Your Cap and Gown 25–26 The Eli Broad College of Business Once all of your favorite photos are 27–29 College of Communication Arts and Sciences taken on campus, please recycle 30 College of Education your gown at the MSU Union 31–32 College of Engineering Spartan Spirit Shop.
    [Show full text]
  • Table of Contents (PDF)
    189 (5) J Immunol 2012; 189:2067-2682; ; http://www.jimmunol.org/content/189/5 This information is current as of September 23, 2021. Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists http://www.jimmunol.org/ • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription by guest on September 23, 2021 Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. VOL. 189 | NO. 5 | September 1, 2012 | Pages 2067–2686 2067 IN THIS ISSUE PILLARS OF IMMUNOLOGY 2069 Cytokine Mimicry with an Immunologic Reformation: The Discovery of a Decade Kenneth M. Murphy 2072 Pillars Article: Homology of Cytokine Synthesis Inhibitory Factor (IL-10) to the Epstein-Barr Virus Gene BCRFI. Science. 1990. 248: 1230–1234 Kevin W. Moore, Paulo Vieira, David F. Fiorentino, Mary L. Trounstine, Tariq A. Khan, and Timothy R. Mosmann Downloaded from CUTTING EDGE 2079 Cutting Edge: Suppression of GM-CSF Expression in Murine and Human T Cells by IL-27 Andrew Young, Eimear Linehan, Emily Hams, Aisling C. O’Hara Hall, Angela McClurg, James A.
    [Show full text]
  • Regulation of Microglia Development and Homeostasis
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Regulation of microglia development and homeostasis Greter, Melanie ; Merad, Miriam Abstract: Microglia represent the resident macrophages of the central nervous system (CNS) and account for 10% of the adult glial cell population in the normal brain. Although microglial cells are thought to contribute to most pathological conditions including CNS infections, neuroinflammatory lesions, brain tumors, and neurodegenerative diseases, their exact role in CNS development, homeostasis, and disease remains poorly understood. In contrast to most macrophage populations, microglia survive high-dose ionizing radiation and maintain themselves locally and independently of circulating precursors in the steady state. However, controversies remain on the origin of microglia in the brain and whether they could potentially be repopulated by circulating myeloid precursors after brain injury. Microglia-targeted therapies through the use of genetically modified circulating hematopoietic cells proved to be a promising therapeutic strategy for the treatment of brain diseases. It is thus of great importance to understand the contribution and developmental cues of circulating myeloid cells as potential microglia progenitors to the adult pool of microglia in the steady state and under inflammatory conditions. DOI: https://doi.org/10.1002/glia.22408 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-71412
    [Show full text]
  • The Cytokine TGF-Β Promotes the Development and Homeostasis of Alveolar Macrophages
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 The cytokine TGF-฀ promotes the development and homeostasis of alveolar macrophages Yu, Xueyang Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-159840 Dissertation Published Version Originally published at: Yu, Xueyang. The cytokine TGF-฀ promotes the development and homeostasis of alveolar macrophages. 2018, University of Zurich, Faculty of Science. The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Xueyang Yu aus der V. R. China Promotionskommission Prof. Dr. Melanie Greter (Vorsitz und Leitung der Dissertation) Prof. Dr. Burkhard Becher Prof. Dr. med. Markus Manz Zürich, 2018 Disclaimer This thesis is based upon and adapted from the following publication: The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages Xueyang Yu, Anne Buttgereit, Iva Lelios, Sebastian Utz, Dilay Cansever, Burkhard Becher, Melanie Greter Table of Contents 1 Summary ................................................................................................................ 1 2 Zusammenfassung ................................................................................................. 3 3 Abbreviations ........................................................................................................
    [Show full text]
  • Microglia Versus Myeloid Cell Nomenclature During Brain Inflammation
    MINI REVIEW published: 26 May 2015 doi: 10.3389/fimmu.2015.00249 Microglia versus myeloid cell nomenclature during brain inflammation Melanie Greter*, Iva Lelios and Andrew Lewis Croxford Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland As immune sentinels of the central nervous system (CNS), microglia not only respond rapidly to pathological conditions but also contribute to homeostasis in the healthy brain. In contrast to other populations of the myeloid lineage, adult microglia derive from primitive myeloid precursors that arise in the yolk sac early during embryonic development, after which they self-maintain locally and independently of blood-borne myeloid precursors. Under neuro-inflammatory conditions such as experimental autoimmune encephalomyeli- tis, circulating monocytes invade the CNS parenchyma where they further differentiate into macrophages or inflammatory dendritic cells. Often it is difficult to delineate resident microglia from infiltrating myeloid cells using currently known markers. Here, we will discuss the current means to reliably distinguish between these populations, and which Edited by: recent advances have helped to make clear definitions between phenotypically similar, Martin Guilliams, Ghent University – VIB, Belgium yet functionally diverse myeloid cell types. Reviewed by: Keywords: microglia, macrophage, monocyte, dendritic cell, CNS inflammation Steffen Jung, Weizmann Institute of Science, Israel Marco Prinz, University of Freiburg, Germany Introduction *Correspondence: Most tissues are populated by incredibly diverse and abundant myeloid cells. By contrast, the central Melanie Greter, nervous system (CNS) harbors comparatively few myeloid cell subsets. This is likely due to the Institute of Experimental Immunology, immune privilege and relative isolation enjoyed by the CNS compared to other non-lymphoid University of Zurich, tissues such as the gut or the lung, which are continually confronted with foreign entities.
    [Show full text]