Identification of the C-Terminal Activator Domain in Yeast Heat Shock Factor: Independent Control of Transient and Sustained Transcriptional Activity
The EMBO Journal vol.12 no.13 pp.5007-5018, 1993 Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity Yuqing Chen1, Nickolai A.Barlev2,3, Introduction Ole Westergaard and Bent K.Jakobsen4 In response to hyperthermia, and certain other forms of Department of Molecular Biology, University of Aarhus, C.F.Mollers stress, cells transiently increase transcription from a small Alle, Building 130, DK-8000 Aarhus C, Denmark group of genes that encode a characteristic set of proteins, lPresent address: Department of Zoology, University of Western the heat shock proteins. The heat shock proteins exercise Ontario, London, Canada protective functions in the cell during stress, for instance 2Present address: Laboratory of Structural Genome Organization, Institute of Cytology, Tihkoretsky Avenue 4, 194064 St Petersburg, by renaturing or solubilizing denatured proteins (for reviews Russia see Lindquist, 1986; Pelham, 1986; Bienz and Pelham, 3Present address: Wistar Institute, Pennsylvania University, 1987). 3601 Spruce Street, Philadelphia, PA 19104-4268, USA Heat shock promoters contain a universal sequence 4Present address: Institute of Molecular Medicine, University of element that is necessary and sufficient for their Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK transcriptional activation (the heat shock element, HSE). This Communicated by H.R.B.Pelham was originally identified as a 14 bp sequence by deletion analysis of the Drosophila hsp7O promoter (Bienz and In yeast, heat shock factor (HSF) is a trimer that binds Pelham, 1982; Pelham, 1982; Pelham and Bienz, 1982). DNA constitutively but only supports high levels of Careful examination of the HSE has demonstrated that it can transcription upon heat shock.
[Show full text]