The Myosin-Interacting Protein SMYD1 Is Essential for Sarcomere Organization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Control of Molecular Motor Motility in Electrical Devices
Control of Molecular Motor Motility in Electrical Devices Thesis submitted in accordance with the requirements of The University of Liverpool for the degree of Doctor in Philosophy By Laurence Charles Ramsey Department of Electrical Engineering & Electronics April 2014 i Abstract In the last decade there has been increased interest in the study of molecular motors. Motor proteins in particular have gained a large following due to their high efficiency of force generation and the ability to incorporate the motors into linear device designs. Much of the recent research centres on using these protein systems to transport cargo around the surface of a device. The studies carried out in this thesis aim to investigate the use of molecular motors in lab- on-a-chip devices. Two distinct motor protein systems are used to show the viability of utilising these nanoscale machines as a highly specific and controllable method of transporting molecules around the surface of a lab-on-a-chip device. Improved reaction kinetics and increased detection sensitivity are just two advantages that could be achieved if a motor protein system could be incorporated and appropriately controlled within a device such as an immunoassay or microarray technologies. The first study focuses on the motor protein system Kinesin. This highly processive motor is able to propel microtubules across a surface and has shown promise as an in vitro nanoscale transport system. A novel device design is presented where the motility of microtubules is controlled using the combination of a structured surface and a thermoresponsive polymer. Both topographic confinement of the motility and the creation of localised ‘gates’ are used to show a method for the control and guidance of microtubules. -
A Myosin II-Based Nanomachine Devised for the Study of Ca2+-Dependent Mechanisms of Muscle Regulation
International Journal of Molecular Sciences Article A Myosin II-Based Nanomachine Devised for the Study of Ca2+-Dependent Mechanisms of Muscle Regulation Irene Pertici , Giulio Bianchi, Lorenzo Bongini, Vincenzo Lombardi * and Pasquale Bianco PhysioLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy; irene.pertici@unifi.it (I.P.); [email protected] (G.B.); [email protected] (L.B.); pasquale.bianco@unifi.it (P.B.) * Correspondence: vincenzo.lombardi@unifi.it; Tel.: +39-055-457-2388 Received: 15 September 2020; Accepted: 2 October 2020; Published: 6 October 2020 Abstract: The emergent properties of the array arrangement of the molecular motor myosin II in the sarcomere of the striated muscle, the generation of steady force and shortening, can be studied in vitro with a synthetic nanomachine made of an ensemble of eight heavy-meromyosin (HMM) fragments of myosin from rabbit psoas muscle, carried on a piezoelectric nanopositioner and brought to interact with a properly oriented actin filament attached via gelsolin (a Ca2+-regulated actin binding protein) to a bead trapped by dual laser optical tweezers. However, the application of the original version of the nanomachine to investigate the Ca2+-dependent regulation mechanisms of the other sarcomeric (regulatory or cytoskeleton) proteins, adding them one at a time, was prevented by the impossibility to preserve [Ca2+] as a free parameter. Here, the nanomachine is implemented by assembling the bead-attached actin filament with the Ca2+-insensitive gelsolin fragment TL40. The performance of the nanomachine is determined both in the absence and in the presence of Ca2+ (0.1 mM, the concentration required for actin attachment to the bead with gelsolin). -
Structures of Smooth Muscle Myosin and Heavy Meromyosin in the Folded, Shutdown State, Journal of Molecular Biology, Volume 372 (5), 1165 - 1178
promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is an author produced version of a paper published in Journal of Molecular Biology. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/3456/ Published paper Burgess, S.A., Yu, S., Walker, M.L., Hawkins, R.J., Chalovich, J.M. and Knight, P.J. (2007) Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state, Journal of Molecular Biology, Volume 372 (5), 1165 - 1178. White Rose Research Online [email protected] STRUCTURES OF SMOOTH MUSCLE MYOSIN AND HEAVY MEROMYOSIN IN THE FOLDED, SHUTDOWN STATE Stan A. Burgess1,2, Shuizi Yu1,2, Matt L. Walker1,2, Rhoda J. Hawkins2,3, Joseph M. Chalovich4, Peter J. Knight1,2 1Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, U.K. 2Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, U.K. 3IRC in Polymer Science and Technology, School of Physics and Astronomy, University of Leeds, LS2 9JT, U.K. 4East Carolina University School of Medicine, Greenville, NC 27858-4354, U.S.A. Corresponding author: Dr Peter J. Knight Faculty of Biological Sciences LC Miall Building University of Leeds Leeds LS2 9JT UK Telephone: +44 113 3434349 Fax: +44 113 3431935 Email: [email protected] Running title: Structure of shutdown smooth muscle myosin Keywords: myosin, smooth muscle, regulation, electron microscopy, image processing Abbreviations: ELC, essential light chain; HMM, heavy meromyosin; RLC, regulatory light chain. S. Yu’s present address is Biotechnological Center, University of Technology, Dresden Pfotenhauerstrasse 108, Dresden D-01307, Germany. -
Cold Spring Harbor Symposia on Quantitative Biology
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME XXXVII COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY Founded in 1933 by REGINALD G. HARRIS Director of the Biological Laboratory 1924 to 1936 LIST OF PREVIOUS VOLU.~IES Vo]ume i (1933) Surface Phenomena Volume II (1934) Aspects of Growth Volulne III (1935) Photochemical Reactions Volume IV (1936) Excitation Phenomena Volume V (1937) Internal Secretions Volume VI (1938) Protein Chemistry Volume VII (1939) Biological Oxidations Volume VIH (1940) Permeability and the Nature of Cell Membranes Volume IX (1941) Genes and Chromosomes. Structure and Organization Volume X (1942) The Relation of Hormones to Development Volume XI (1946) Heredity and Variation in Microorganisms Volume XII (1947) Nucleic Acids and Nucleoproteins Volume XIII (1948) Biological Applications of Tracer Elements Volume XIV (1949) Amino Acids and Proteins Volume XV (1950) Origin and Evolution of Man Volume XVI (1951) Genes and Mutations Volume XVII (1952) The Neuron Volume XVIII (1953) Viruses Volume XIX (1954) The Mam,nalian Fetus: Physiological Aspects of Development Volume XX (1955) Population Genetics: The Nature and Causes of Genetic Variability in Population Volume XXI (1956) Genetic Mechanisms: Structure and Function Volume XX[I (1957) Population Studies: Animal Ecology and Demography Volume XXIII (1958) Exchange of Genetic 3Iatcrial: Mechanism and Consequences Volume XXIV (1959) Genetics and Twentieth Century Darwinism Volume XXV (1960) Biological Clocks Volume XXV [ (1961 ) Cellular Regulatory l~Ieehanisms -
Report 1978 Cold Spring Harbor Laboratory
COLDLABORATORY SPRING HARBOR ANNUAL REPORT 1978 COLD SPRING HARBOR LABORATORY COLD SPRING HARBOR, NEW YORK Cover: Participants at 1978 Symposium (top to bottom) G. Selzer, F. Stahl, and J. Strathern; A. Kornberg, A. Falaschi, and R. Holliday; W. Arber and D. Nathans; W. Udry, A. Bukhari, and D. Baltimore Picture credits: Cover, 82, 90, 140, Ross Meurer; 14, Cindy Carpenter; 19, W. Udry; 11, 12,13, 17, 20, 67, 136, 142, 143, 153, Robert Yaffe COLD SPRING HARBOR LABORATORY COLD SPRING HARBOR, LONG ISLAND, NEW YORK OFFICERS OF THE CORPORATION Dr. Harry Eagle, Chairman Edward Pulling, Vice-Chairman Dr. Bayard Clarkson, Secretary Clarence E. Galston, Treasurer Robert L. Cummings, Assistant Treasurer William R. Udry, Administrative Director BOARD OF TRUSTEES Institutional Trustees Albert Einstein College of Medicine University of Wisconsin Dr. Harry Julian Davies Columbia University Wawepex Society Dr. Charles R. Cantor Bache Bleecker Duke University Dr. Walter Guild Individual Trustees Long Island Biological Association Emilio G. Collado Edward Pulling Robert L. Cummings Massachusetts Institute of Technology Roderick H. Cushman Dr. Herman Eisen Norris Darrell Memorial Sloan-Kettering Cancer Center Walter N. Frank, Jr. Dr. Bayard Clarkson Clarence E. Galston Mary Lindsay New York University Medical Center William S. Robertson Dr. Vittorio Defendi Mrs. Franz Schneider Princeton University Alexander C. Tomlinson Dr. Arnold J. Levine Dr. James D. Watson The Rockefeller University Dr. Rollin Hotchkiss Honorary trustees State University of New York Dr. H. Bentley Glass at Stony Brook Dr. Alexander Hollaender Dr. Joseph R. Kates Officers and trustees listed are as of December 31, 1978 DIRECTOR'S REPORT The collective decisions of knowledgeable men go sourone likes to advertise that we may have no meaningful more often than we want. -
United States Patent (19) 11 Patent Number: 6,017,734 Summers Et Al
USOO6O17734A United States Patent (19) 11 Patent Number: 6,017,734 Summers et al. (45) Date of Patent: Jan. 25, 2000 54 UNIQUE NUCLEOTIDE AND AMINO ACID Ahmad, S., Bassiri, M., Banerjee, AK., Yilma, T. (1993). SEQUENCE AND USES THEREOF Immunological Characterization of the VSV Nucleocapsid (N) Protein Expressed by Recombinant Baculovirus in 75 Inventors: Max D. Summers; Sharon C. SpOdoptera exigua Larva: Use in Differential Diagnosis Braunagel; Tao Hong, all of Bryan, Between Vaccinated and Infected Animals. Virol TeX. ogy. 192:207-216. Arvinte T., Schulz B., Cudd A. Nicolau C. (1989). Low pH 73 Assignee: The Texas A & M University System, asSociation of proteins with the membranes of intact red College Station, Tex. blood cells. I. Exogenous glycophorin and the CD4 mol ecule. Biochim. Biophys. Acta 981:51-60. 21 Appl. No.: 08/792,832 Ayres, M. D., Howard, S. C., Kuzio, J., Lopez-Ferber, M., and Possee, R. D. (1994). The Complete DNA Sequence of 22 Filed: Jan. 30, 1997 Autographa californica Nuclear Polyhedrosis Virus. Virol ogy. 202:586-605. Related U.S. Application Data Belyaev, A. S., and Roy, P. (1993). Development of bacu lovirus triple and quadruple expression vectors: co-expres 63 Continuation-in-part of application No. 08/678,435, Jul. 3, Sion of three or four bluetongue virus proteins and the 1996, abandoned Synthesis of bluetongue virus-like particles in insect cells. 60 Provisional application No. 60/000,955, Jul. 7, 1995. Nucleic Acids Res. 21:1219–1223. 51 Int. Cl." ............................. C07H 21/00; C12N 5/10; Blissard, G. W., and Rohrmann, G. -
Action of Dinitrophenyl Amino Acids on Skeletal Muscle Proteins
ACTION OF DINITROPHENYL AMINO ACIDS ON SKELETAL MUSCLE PROTEINS 11.* ABSORPTION OF BIS-DINITROPHENYL-LYSINE BY LIGHT AND HEAVY MEROMYOSINS AND BY LIGHT MEROMYOSIN FRACTION I By R. w. BURLEy,t w. J. H. JACKSON,t and JEAN P. ROBERTSON t [Manuscript received August 14, 1967] Summary The quantity of bis(2,4-dinitrophenyl)-L-Iysine (abbreviation bis-DNP-Iysine) absorbed at 5°C by myosin and meromyosins of rabbit skeletal muscle was estimated in phosphate buffer (pH 7, ionic strength 0·5) by two methods, one based on equilibrium dialysis, the other on high-speed centrifugation. According to both methods, heavy meromyosin absorbed more of the reagent than did the same weight of the parent myosin; light meromyosin absorbed less, and light meromyosin fraction I absorbed less still. There were, however, relatively large quantitative differences between the two methods, possibly because of an effect of the slightly different conditions of treatment. Blocking of the sulphydryl groups with p.chloromercuribenzoate greatly increased absorption of bis-DNP-Iysine by heavy meromyosin, had a smaller effect on its absorption by light meromyosin, and had no effect on absorption by light meromyosin fraction I. At low ionic strength (0 '1) aggregates of light meromyosin absorbed less bis-DNP-lysine than did the monomer at high ionic strength (0'5), but absorption was still less than that by aggregated myosin. Absorption by heavy meromyosin was less sensitive to changes in ionic strength but, after treatment with p-chloromercuribenzoate, the relationship between ionic strength and absorption suggested the possibility of a change in configuration at an ionic strength of about O· 3. -
Dr. Goldman's Curriculum Vitae
CURRICULUM VITAE ROBERT D. GOLDMAN Title: Professor of Cell and Developmental Biology The Stephen Walter Ranson Professor Emeritus Address: Feinberg School of Medicine Northwestern University 303 East Chicago Avenue Ward Building W11-145 Chicago IL 60611 Telephone: 312.503.7615 E-mail: [email protected] EDUCATION University of Vermont B.A., M.S. 1961, 1963 Zoology Princeton University M.A., Ph.D. 1967 Biology Royal Postgraduate Med. School, London Postdoctoral 1968 Enzyme Cytochem. MRC Institute of Virology, Glasgow Postdoctoral 1969 Cell Biology MAJOR RESEARCH INTERESTS Cell Biology: Cytoskeleton, Intermediate Filaments, Nuclear Lamins and Nuclear Architecture. PROFESSIONAL EXPERIENCE Professor of Cell and Developmental Biology, Stephen Walter Ranson Professor Emeritus, Feinberg School of Medicine, Northwestern University, 2019-present. The Stephen Walter Ranson Professor and Chairman, Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 1994-10/2019. The Stephen Walter Ranson Professor and Chairman, Department of Cell, Molecular and Structural Biology, Feinberg School of Medicine, Northwestern University, 1989-1994. The Stephen Walter Ranson Professor and Chairman, Department of Cell Biology and Anatomy, Feinberg School of Medicine, Northwestern University, 1981-1989. Founding Director, Science Journalism Program, Marine Biological Laboratory, Woods Hole MA 1990-2008. Director, Physiology Course, Marine Biological Laboratory, 1983-1988. Program Leader, Cell Biology, Northwestern University Cancer Center, 1981-1991. Instructor, Physiology Course, Marine Biological Laboratory, 1981-1983. Summer Investigator, Marine Biological Laboratory, 1977-Present. Professor of Biological Sciences, Carnegie-Mellon University, 1977-1981. Associate Professor of Biological Sciences, Carnegie-Mellon University, 1973-1976. Visiting Scientist, Cell Biology, Cold Spring Harbor Laboratory, 1973-1974. Visiting Scientist, Imperial Cancer Research Fund Laboratories, London, with Dr. -
Preparation of the Enzymatically Active Subfragment of Myosin by Proteolysis of Myofibrils
Eur. J. Biochem. 40,527-531 (1973) Preparation of the Enzymatically Active Subfragment of Myosin by Proteolysis of Myofibrils Endre N. A. BIR~,Rose COELHO,Elisabeth EHRLICH,Florent GTJILLAIN,and Christiane Dvo~c Service de Biophysique. D6partement de Biologie, Centre d'Etudes Nuclkaires de Saclay, Gif-sur-Yvette (Received May 23/August 16, 1973) Myofibrils, when submitted to proteolysis, yield several fragments, some of which remain bound to actin. There are separated by pyrophosphate treatment and isolated by preparative centrifugation. When trypsin treatment is performed in the presence of 1 mM CaCl,, two types of products are obtained, which can be separated by chromatography on DEAE-cellulose. However, when proteolysis is performed with 10 mM EDTA in the medium, only one enzymatically active fragment is isolated. It is characterized by its sedimentation coefficient, a-helix content, amino-acid composition, actin-binding properties in the absence of ATP and actin-activation of its enzymatic activity. It is thus shown that the EDTA type fragment is similar to heavy-mero- myosin subfragment 1 obtained by direct treatment of myosin or heavy meromyosin with papain or trypsin. Bilint et al. [l] have shown that traces of In the present report we described a procedure alkaline earth ions deeply influence the pattern of to isolate these actin-bound proteins. The fragment trypsin fragmentation of the myosin molecule. If resulting from proteolysis in the presence of EDTA proteolysis is performed in the presence of calcium, is further characterized by its sedimentation coef- or magnesium at concentrations above 0.1 pM and ficient, a-helix content, amino-acid composition, 0.1 mM, respectively, only fragments of light actin-binding properties and enzymatic activity. -
Sarcomere Structure: the Importance of Desmin Protein in Muscle Atrophy
Int. J. Morphol., 36(2):576-583, 2018. Sarcomere Structure: The Importance of Desmin Protein in Muscle Atrophy Estructura de Sarcómera: La Importancia de Proteína Desmina en Atrofia Muscular Gabriel Nasri Marzuca-Nassr1; Kaio Fernando Vitzel2; Eladio Mancilla-Solorza3 & José Luis Márquez4 MARZUCA-NASSR, G. N.; VITZEL, K. F.; MANCILLA-SOLORZA, E. & MÁRQUEZ J. L. Sarcomere structure: The importance of desmin protein in muscle atrophy. Int. J. Morphol., 36(2):576-583, 2018. SUMMARY: Knowing the ultrastructure of skeletal muscle is critical to understand how it works under normal situation and the disorders caused by extreme or pathological conditions. Sarcomere is the basic structural unit of striated muscle tissue. An important element of sarcomere architecture are the intermediate filaments, including the desmin protein. Desmin protein contributes to maintenance of cell integrity, efficient transmission of force and mechanochemical signaling within the myocyte. Because of this, desmin protein has constantly been a focus of research that investigates its alterations associated to damage and muscle atrophy under different conditions. The purpose of the following literature review is to describe the basic concepts of muscle ultrastructure, emphasizing the desmin protein role under conditions of muscle disuse atrophy and aging. KEY WORDS: Sarcomere; Desmin; Muscle disuse atrophy; Hindlimb suspension; Aging; Intermediate filaments. INTRODUCTION SARCOMERE STRUCTURE The skeletal muscle cells are organized from The sarcomere is the skeletal muscle functional unit contractile units know as sarcomeres, which are the structural arranged between two Z-lines (Fig. 1) (Hopkins, 2006). In subunits arranged in a repeated pattern, along the length of vertebrate skeletal muscle, its rest length is ~2.5 mm. -
Molecular-Scale Visualization of Sarcomere Contraction Within Native Cardiomyocytes
ARTICLE https://doi.org/10.1038/s41467-021-24049-0 OPEN Molecular-scale visualization of sarcomere contraction within native cardiomyocytes Laura Burbaum1,4, Jonathan Schneider2,4, Sarah Scholze3, Ralph T. Böttcher 3, Wolfgang Baumeister2, ✉ Petra Schwille 1, Jürgen M. Plitzko 2 & Marion Jasnin 2 Sarcomeres, the basic contractile units of striated muscle, produce the forces driving muscular contraction through cross-bridge interactions between actin-containing thin filaments and 1234567890():,; myosin II-based thick filaments. Until now, direct visualization of the molecular architecture underlying sarcomere contractility has remained elusive. Here, we use in situ cryo-electron tomography to unveil sarcomere contraction in frozen-hydrated neonatal rat cardiomyocytes. We show that the hexagonal lattice of the thick filaments is already established at the neonatal stage, with an excess of thin filaments outside the trigonal positions. Structural assessment of actin polarity by subtomogram averaging reveals that thin filaments in the fully activated state form overlapping arrays of opposite polarity in the center of the sarcomere. Our approach provides direct evidence for thin filament sliding during muscle contraction and may serve as a basis for structural understanding of thin filament activation and actomyosin interactions inside unperturbed cellular environments. 1 Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany. 2 Department of Molecular Structural Biology, Max Planck Institute of -
Heavy Meromyosin: Evidence for a Refractory State Unable to Bind to Actin in the Presence of ATP (M-Tuscle/! Iyosin/Enzyrme Kinetics)
Proc. Nat. A cad. Sci. USA Vol. 69, No. :3, pp. 667-671 Mlarch 1972 Heavy Meromyosin: Evidence for a Refractory State Unable to Bind to Actin in the Presence of ATP (m-tuscle/! iyosin/enzyrme kinetics) EVAN EISENBERG, LOUIS DOBKIN, AND W. WAYNE KIELLEY Section on Cellular Physiology, Laboratory of Biochemistry, National Heart and Lung Institute, National Institutes of Health, Bethesda, Md. 20014 Conmmicated by E. R. Staudman, December 28, 1971 ABSTRACT The binding of actin to heavy meromyosin that the binding constant is greater than 2 X 106 M1 and the (HMM) in the presence of ATP was studied by analytical molar binding ratio is 2 mol of actin monomer per mol of ultracentrifuge and ATPase studies. At 0C, at very low with ionic strength, the double-reciprocal plot of HMM ATPase HIMM (4, 5). These studies are consistent the situation against actin concentration is linear. If one assumes that in vivo where inl muscle in rigor, i.e., in the absence of ATP, all of the HMM is bound to actin when the ATPase activ- it is thought that most of the myosin bridges bind to actin ity equals Vmax, then, at an actin concentration where (1, 6). the actin-HMM ATPase is 85% of Vmax, all but 15% of the On the other hand, in the presence of ATP a HMM should be complexed with actin. However, when the completely binding of HMM to actin in the presence of ATP was different situation obtains. First, x-ray diffraction studies of measured with the analytical ultracentrifuge, more than contracting muscle suggest that less than half of the myosin 60%/ of the HMM was not bound to actin.