The Specific Vulnerability of Plant Biodiversity and Vegetation on Mediterranean Islands in the Face of Global Change Frederic Medail

Total Page:16

File Type:pdf, Size:1020Kb

The Specific Vulnerability of Plant Biodiversity and Vegetation on Mediterranean Islands in the Face of Global Change Frederic Medail The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change Frederic Medail To cite this version: Frederic Medail. The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Regional Environmental Change, Springer Verlag, 2017, 17 (6), pp.1775-1790. 10.1007/s10113-017-1123-7. hal-01681626 HAL Id: hal-01681626 https://hal.archives-ouvertes.fr/hal-01681626 Submitted on 7 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reg Environ Change (2017) 17:1775–1790 DOI 10.1007/s10113-017-1123-7 REVIEW ARTICLE The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change Fre´de´ric Me´dail1 Received: 5 October 2016 / Accepted: 3 February 2017 / Published online: 23 March 2017 Ó Springer-Verlag Berlin Heidelberg 2017 Abstract The numerous Mediterranean islands ([10,000) refugia’ to ensure the long-term preservation of coastal are very important from a biodiversity point of view, both plant biodiversity. They also represent fascinating ecolog- in term of plant species (numerous endemics, presence of ical systems to disentangle the role of environmental versus ‘climate relicts’) and of ecosystems’ assemblage. These human pressures on spatially simplified communities of the patterns can be explained by complex interactions between Mediterranean coastal areas. Future detailed studies of a highly heterogeneous historical biogeography and eco- these ‘natural island microcosms’ could greatly improve logical processes related to diverse island conditions. our knowledge of the functional and evolutionary processes Furthermore, most of the ups and downs of this biodiver- induced by rapid environmental changes in this region. sity were closely linked with human pressures which have changed many times through the long socio-ecological Keywords Coastal ecosystems Á Human impacts Á Insular history of these island landscapes since the Neolithic per- biogeography Á Land use changes Á Mediterranean region Á iod. At present, insular plant biodiversity and rural land- Sea-level rise scapes are threatened by diverse global environmental changes related to urbanization, habitat fragmentation, unsustainable tourism and other practices (e.g. overgrazing, Introduction forest fires), and by other more recent drivers such as cli- mate warming and aridification, sea-level rise and biolog- The complex historical biogeography and the profound ical invasions. Some of these impacts will be exacerbated environmental heterogeneity explain the high diversity of on islands because of no (or highly limited) adjacent areas landscapes and vegetation types on islands of the of expansion, notably on the smallest ones (i.e. size \ ca. Mediterranean basin, one of the 35 terrestrial biodiversity 1000 ha). With regards to the biome crisis facing the hot spots of the world (Me´dail and Myers 2004). The Mediterranean basin and induced by human activities, associated high levels of biodiversity and ecological com- islands constitute key ecological systems and ‘current plexity have favoured the emergence of functional uniqueness for several ecosystems and plant communities that occur nowhere else. With about 10,000 islands and Editor: Erica Smithwick. islets (ca. 250 regularly inhabited by humans), the Electronic supplementary material The online version of this Mediterranean Sea represents one of the regions of the article (doi:10.1007/s10113-017-1123-7) contains supplementary world with the most islands and archipelagos. Its islands material, which is available to authorized users. contain a significant component of Mediterranean biodi- & Fre´de´ric Me´dail versity, notably a number of range-restricted species and [email protected] peculiar vegetation types (e.g. Vogiatzakis et al. 2008; Me´dail 2013, 2017). Past geographical and climatic chan- 1 Institut me´diterrane´en de biodiversite´ et d’e´cologie marine et ges, combined with current environmental heterogeneities, continentale (IMBE), Aix Marseille University/CNRS/IRD/ AU. Campus Aix, Technopoˆle de l’Environnement Arbois- have moulded unusually high levels of biodiversity and Me´diterrane´e, 13545 Aix-en-Provence cedex 4, France biogeographical complexity. The diversity of ecosystems 123 1776 F. Me´dail of Mediterranean islands is also linked to the long-lasting The existence of endemic or range-limited plant species influence of humans as ‘designers’ of landscapes, who have can determine specific patterns of insular vegetation types shaped vegetation dynamics through burning, cutting, and landscapes. On large islands, plant endemism ranges grazing and ploughing (Blondel 2008). More recently, the from 8 to 17%, whereas the total number of taxa is greater biodiversity and functioning of these ecosystems were than expected, usually between 1600 and 2800 species and threatened by global environmental change, notably eco- subspecies (Table 2). In mountain ranges of islands, the logical footprint due to human expansion, climatic and sea- level of endemism is higher: above 1700 m a.s.l. endemics level changes, and biological invasions. represent 35–40% of the vascular flora in Corsica and in Crete. Each island has its own specificities of vegetation even if major physiognomic structures may appear similar The diversity of Mediterranean islands from one island to another. They are mostly covered by typical vegetations of the thermo-mediterranean and meso- Mediterranean islands are a kaleidoscope of environmental mediterranean belts, whereas the upper vegetation levels and biotic conditions (Me´dail 2017). This is due to the are restricted to the summits of the largest islands, notably wide range of sizes (from the largest island of Sicily cov- Corsica, Sicily, Crete and Cyprus. ering 25,700 km2 to small islets a few dozen square metres in size), in altitude (from Mt. Etna, 3342 m a.s.l. to flat islets only one metre a.s.l) and in remoteness, all of which Biogeography of Mediterranean islands, museum represent key parameters in island biogeography. There are and cradle of plant diversity a total of 157 large islands exceeding 10 km2 (1000 ha) in size, of which 86 (55%) are located in Greece (Me´dail The history of the Mediterranean basin setting is highly 2017). Forty nine islands cover more than 100 km2,of complex both from a geologic and a climatic point of view which 36 cover more than 200 km2. Small islands with a (e.g. Woodward 2009; Fig. 2). Tectonic events and the surface area less than 10 km2 are the most common, and Messinian salinity crisis—which induced an almost com- there are several thousands of such islands. Most islands plete desiccation of the Mediterranean Sea between 5.96 belong to the Greek archipelago with ca. 7600 islands and million years (Ma) and 5.33 Ma (CIESM 2008) (Fig. 2c)— islets in the Aegean Sea, more than 90% of which cover have strongly influenced the palaeogeography of the less than 10 km2 (Triantis and Mylonas 2009), and ca. 300 region, and thus the biogeographical history. If some pre- islands and islets in the Ionian Sea. Croatia is the second Mediterranean plant taxa exist since the Eocene (ca. country in terms of the number of islands (n = 1246), 40 Ma: Fig. 2a), the main diversification of the Mediter- whose 79 islands of more than 1 km2 and 653 small islands ranean species took place during (1) the Miocene (Fig. 2b), and islets have vascular vegetation (Nikolic´ et al. 2008). notably in conjunction with the collision of the African and Nearly all Mediterranean island ecosystems are under Eurasian plates with the Arabian plate and (2) the Pliocene the influence of the Mediterranean climate (Fig. 1), except with the onset of the Mediterranean climate (Fig. 2d). some parts of the high mountains of Corsica that contain Recurrent episodes of species dispersal and vicariance have subalpine and alpine vegetation belts with euro-siberian occurred between the eastern and western Mediterranean and even arctic-alpine plants (Gamisans 1999). The insular regions in relation to the several marine regressions or vegetation types usually considered as ‘typically Mediter- transgressions and the ongoing rise of Alpine and Atlas ranean’ are the evergreen and sclerophyllous shrublands orogenesis (e.g. Mansion et al. 2008). and forests under semi-arid (400 \ P = annual rain- The majority of Mediterranean islands are ‘continental falls \ 600 mm) or sub-humid (600 \ P = annual rain- islands’ sensu lato (including continental shelf and conti- falls \ 800 mm) bioclimates, corresponding to thermo- nental fragments according to Whittaker and Ferna´ndez- mediterranean and meso-mediterranean vegetation belts Palacios 2007), i.e. they were once part of the continent (Table suppl.); Fig. 1). If deciduous trees were the before their separation and drifting (such as the small cornerstones of ecosystem dynamics during the post-glacial continental sub-plate of Corsica-Sardinia which separated period, notably in the northern Mediterranean, these forests during
Recommended publications
  • The Island Rule Explains Consistent Patterns of Body Size 2 Evolution Across Terrestrial Vertebrates 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The island rule explains consistent patterns of body size 2 evolution across terrestrial vertebrates 3 4 Ana Benítez-López1,2*, Luca Santini1,3, Juan Gallego-Zamorano1, Borja Milá4, Patrick 5 Walkden5, Mark A.J. Huijbregts1,†, Joseph A. Tobias5,† 6 7 1Department of Environmental Science, Institute for Wetland and Water Research, Radboud 8 University, P.O. Box 9010, NL-6500 GL, Nijmegen, the Netherlands. 9 2Integrative Ecology Group, Estación Biológica de Doñana, CSIC, 41092, Sevilla, Spain 10 3National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Via 11 Salaria km 29.300, 00015, Monterotondo (Rome), Italy 12 4Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), 13 Madrid 28006, Spain 14 5Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, 15 Berkshire SL5 7PY, United Kingdom 16 *Correspondence to: [email protected]; [email protected] 17 †These two authors contributed equally 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Phylogenetics, Flow-Cytometry and Pollen Storage in Erica L
    Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Phylogenetics, flow-cytometry and pollen storage in Erica L. (Ericaceae). Implications for plant breeding and interspecific crosses. Inaugural-Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Ana Laura Mugrabi de Kuppler aus Buenos Aires Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Referent: Prof. Dr. Jens Léon Korreferent: Prof. Dr. Jaime Fagúndez Korreferent: Prof. Dr. Dietmar Quandt Tag der mündlichen Prüfung: 15.11.2013 Erscheinungsjahr: 2013 A mis flores Rolf y Florian Abstract Abstract With over 840 species Erica L. is one of the largest genera of the Ericaceae, comprising woody perennial plants that occur from Scandinavia to South Africa. According to previous studies, the northern species, present in Europe and the Mediterranean, form a paraphyletic, basal clade, and the southern species, present in South Africa, form a robust monophyletic group. In this work a molecular phylogenetic analysis from European and from Central and South African Erica species was performed using the chloroplast regions: trnL-trnL-trnF and 5´trnK-matK , as well as the nuclear DNA marker ITS, in order i) to state the monophyly of the northern and southern species, ii) to determine the phylogenetic relationships between the species and contrasting them with previous systematic research studies and iii) to compare the results provided from nuclear data and explore possible evolutionary patterns. All species were monophyletic except for the widely spread E. arborea , and E. manipuliflora . The paraphyly of the northern species was also confirmed, but three taxa from Central East Africa were polyphyletic, suggesting different episodes of colonization of this area.
    [Show full text]
  • Rethinking Easter Island's Ecological Catastrophe
    ARTICLE IN PRESS + MODEL Journal of Archaeological Science xx (2006) 1e18 http://www.elsevier.com/locate/jas Rethinking Easter Island’s ecological catastrophe Terry L. Hunt Department of Anthropology, University of Hawai’i-Manoa, 2424 Maile Way Honolulu, HI 96822, USA Received 25 June 2006; received in revised form 1 October 2006; accepted 2 October 2006 Abstract Rapa Nui (Easter Island) has become a paragon for prehistoric human induced ecological catastrophe and cultural collapse. A popular nar- rative recounts an obsession for monumental statuary that led to the island’s ecological devastation and the collapse of the ancient civilization. Scholars offer this story as a parable of today’s global environmental problems. In this paper, I review new and emerging Rapa Nui evidence, compare ecological and recently acquired palaeo-environmental data from the Hawaiian and other Pacific Islands, and offer some perspectives for the island’s prehistoric ecological transformation and its consequences. The evidence points to a complex historical ecology for the island; one best explained by a synergy of impacts, particularly the devastating effects of introduced rats (Rattus exulans). This perspective questions the simplistic notion of reckless over-exploitation by prehistoric Polynesians and points to the need for additional research. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Easter Island; Rapa Nui; Deforestation; Ecocide; Collapse; Rats; Rattus exulans; Invasive species ‘‘It ain’t what you don’t know that gets you into trouble. It’s archaeological records also reveals a more complex historical what you know for sure that just ain’t so.’’ Mark Twain ecology for the island; one best explained by a synergy of impacts, rather than simply the reckless over-exploitation by Easter Island (Rapa Nui) has become the paragon for pre- prehistoric Polynesians.
    [Show full text]
  • Diversity of Fungal Assemblages in Roots of Ericaceae in Two
    Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems Ahlam Hamim, Lucie Miche, Ahmed Douaik, Rachid Mrabet, Ahmed Ouhammou, Robin Duponnois, Mohamed Hafidi To cite this version: Ahlam Hamim, Lucie Miche, Ahmed Douaik, Rachid Mrabet, Ahmed Ouhammou, et al.. Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. Comptes Rendus Biologies, Elsevier Masson, 2017, 340 (4), pp.226-237. 10.1016/j.crvi.2017.02.003. hal- 01681523 HAL Id: hal-01681523 https://hal.archives-ouvertes.fr/hal-01681523 Submitted on 23 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/315062117 Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems Article in Comptes rendus biologies · March 2017 DOI: 10.1016/j.crvi.2017.02.003 CITATIONS READS 0 37 7 authors, including: Ahmed Douaik Rachid Mrabet Institut National de Recherche Agronomique
    [Show full text]
  • On Christmas Island. the Presence of Trypanosoma in Cats and Rats (From All Three Locations) and Leishmania
    Invasive animals and the Island Syndrome: parasites of feral cats and black rats from Western Australia and its offshore islands Narelle Dybing BSc Conservation Biology, BSc Biomedical Science (Hons) A thesis submitted to Murdoch University to fulfil the requirements for the degree of Doctor of Philosophy in the discipline of Biomedical Science 2017 Author’s Declaration I declare that this thesis is my own account of my research and contains as its main content work that has not previously been submitted for a degree at any tertiary education institution. Narelle Dybing i Statement of Contribution The five experimental chapters in this thesis have been submitted and/or published as peer reviewed publications with multiple co-authors. Narelle Dybing was the first and corresponding author of these publications, and substantially involved in conceiving ideas and project design, sample collection and laboratory work, data analysis, and preparation and submission of manuscripts. All publication co-authors have consented to their work being included in this thesis and have accepted this statement of contribution. ii Abstract Introduced animals impact ecosystems due to predation, competition and disease transmission. The effect of introduced infectious disease on wildlife populations is particularly pronounced on islands where parasite populations are characterised by increased intensity, infra-community richness and prevalence (the “Island Syndrome”). This thesis studied parasite and bacterial pathogens of conservation and zoonotic importance in feral cats from two islands (Christmas Island, Dirk Hartog Island) and one mainland location (southwest Western Australia), and in black rats from Christmas Island. The general hypothesis tested was that Island Syndrome increases the risk of transmission of parasitic and bacterial diseases introduced/harboured by cats and rats to wildlife and human communities.
    [Show full text]
  • 5. KALIDIUM Moquin-Tandon in Candolle, Prodr. 13(2): 46, 146
    Flora of China 5: 355-356. 2003. 5. KALIDIUM Moquin-Tandon in Candolle, Prodr. 13(2): 46, 146. 1849. 盐爪爪属 yan zhua zhua shu Shrubs small, much branched; branches not jointed. Leaves alternate, terete or undeveloped, fleshy, basally decurrent. Inflorescence pedunculate, spicate. Flowers spirally arranged, (1 or)3 borne in axil of a fleshy bract, appearing sunken into fleshy rachis, without bractlets, bisexual. Perianth 4- or 5-lobed, spongy in fruit, flat on top surface. Stamens 2. Ovary ovoid; stigmas 2, papillate. Fruit a utricle, enclosed by perianth. Seed vertical, compressed; testa subleathery; embryo semi-annular; perisperm present. Five species: C and SW Asia, SE Europe; five species in China. 1a. Leaves 4–10 mm; spikes 3–4 mm in diam. .................................................................................................................... 1. K. foliatum 1b. Leaves less than 3 mm or undeveloped; spikes 1.5–3 mm in diam. 2a. Branchlets slender; flowers 1 per bract ..................................................................................................................... 5. K. gracile 2b. Branchlets stout; flowers 3 per bract. 3a. Leaves developed, 1–3 mm, ovate, adaxially curved, apex acute ............................................................... 2. K. cuspidatum 3b. Leaves undeveloped, tuberculate, less than 1 mm, apex obtuse. 4a. Plants 10–25 cm tall, branched from base; leaves of branchlets narrow and obconic at base ......... 3. K. schrenkianum 4b. Plants 20–70 cm tall, branched from middle; leaves of branchlets sheathing at base ............................ 4. K. caspicum 1. Kalidium foliatum (Pallas) Moquin-Tandon in Candolle, 1b. Leaves 1–1.5 mm; plants densely Prodr. 13(2): 147. 1849. branched .................................................... 2b. var. sinicum 盐爪爪 yan zhua zhua 2a. Kalidium cuspidatum var. cuspidatum Salicornia foliata Pallas, Reise Russ. Reich. 1: 482.
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • The Biogeography of Large Islands, Or How Does the Size of the Ecological Theater Affect the Evolutionary Play
    The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly To cite this version: Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 2007, 62, pp.105-168. hal-00283373 HAL Id: hal-00283373 https://hal.archives-ouvertes.fr/hal-00283373 Submitted on 14 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BIOGEOGRAPHY OF LARGE ISLANDS, OR HOW DOES THE SIZE OF THE ECOLOGICAL THEATER AFFECT THE EVOLUTIONARY PLAY? Egbert Giles LEIGH, Jr.1, Annette HLADIK2, Claude Marcel HLADIK2 & Alison JOLLY3 RÉSUMÉ. — La biogéographie des grandes îles, ou comment la taille de la scène écologique infl uence- t-elle le jeu de l’évolution ? — Nous présentons une approche comparative des particularités de l’évolution dans des milieux insulaires de différentes surfaces, allant de la taille de l’île de La Réunion à celle de l’Amé- rique du Sud au Pliocène.
    [Show full text]
  • Tllllllll,. Journal of Coastal Research, 17(1),90-94
    Journal of Coastal Research 90-94 West Palm Beach, Florida Winter 2001 Sequential Pattern in the Stabilized Dunes of Dofiana Biological Reserve (SW Spain) Jose Carlos Munoz Reinoso Departamento de Biologia Vegetal y Ecologia Universidad de Sevilla Apdo 1095 E-41080-Sevilla, Spain E-mail: [email protected] ABSTRACT _ MlTNOZ REINOSO, J.e., 2001. Sequential pattern in the stabilized dunes of Doiiana biological reserve (SW Spain). .tllllllll,. Journal of Coastal Research, 17(1),90-94. West Palm Beach (Florida), ISSN 0749-0208. ~ ~. There.is a spat~al pattern of shrub vegetation within the stabilized dunes of the Doiiana Biological Reserve consisting Sl~ sequen~e. ~ ~"# of a dune-ridge/dune-slack A vegetation data set was subjected to a Split Moving Window Boundary --+4 ¥if" ~alysls along a.10.5 km transect. ThIS method allows the identification of boundaries along transects and thereby dlffe~ent v~ge.ta~lon. zones through the calculation of metric dissimilarities between adjacent groups of samples. The obtained dlsslm~lanty pro?le shows twelve peaks, five of them corresponding to transitions to heathlands (mainly composed by Erica scoparta L.). Those patches of heathlands show a regular pattern, appearing at a distance of ca. 1,500 m away. on~ ~ro~ e~ch other, a?d are related to the location of the slacks of the ancient dune systems, where the water availability IS higher than In the dune ridges. The gen~ral.dune field is composed of several episodes of dune development, with the younger dune forms partially transgressing Inland over the older forms. Each of the dune building episodes has created dune forms with different topographic elevations and with different depths to groundwater, which is further manifested in different patterns of heathland composition.
    [Show full text]
  • CHENOPODIACEAE 藜科 Li Ke Zhu Gelin (朱格麟 Chu Ge-Ling)1; Sergei L
    Flora of China 5: 351-414. 2003. CHENOPODIACEAE 藜科 li ke Zhu Gelin (朱格麟 Chu Ge-ling)1; Sergei L. Mosyakin2, Steven E. Clemants3 Herbs annual, subshrubs, or shrubs, rarely perennial herbs or small trees. Stems and branches sometimes jointed (articulate); indumentum of vesicular hairs (furfuraceous or farinose), ramified (dendroid), stellate, rarely of glandular hairs, or plants glabrous. Leaves alternate or opposite, exstipulate, petiolate or sessile; leaf blade flattened, terete, semiterete, or in some species reduced to scales. Flowers monochlamydeous, bisexual or unisexual (plants monoecious or dioecious, rarely polygamous); bracteate or ebracteate. Bractlets (if present) 1 or 2, lanceolate, navicular, or scale-like. Perianth membranous, herbaceous, or succulent, (1–)3–5- parted; segments imbricate, rarely in 2 series, often enlarged and hardened in fruit, or with winged, acicular, or tuberculate appendages abaxially, seldom unmodified (in tribe Atripliceae female flowers without or with poorly developed perianth borne between 2 specialized bracts or at base of a bract). Stamens shorter than or equaling perianth segments and arranged opposite them; filaments subulate or linear, united at base and usually forming a hypogynous disk, sometimes with interstaminal lobes; anthers dorsifixed, incumbent in bud, 2-locular, extrorse, or dehiscent by lateral, longitudinal slits, obtuse or appendaged at apex. Ovary superior, ovoid or globose, of 2–5 carpels, unilocular; ovule 1, campylotropous; style terminal, usually short, with 2(–5) filiform or subulate stigmas, rarely capitate, papillose, or hairy on one side or throughout. Fruit a utricle, rarely a pyxidium (dehiscent capsule); pericarp membranous, leathery, or fleshy, adnate or appressed to seed. Seed horizontal, vertical, or oblique, compressed globose, lenticular, reniform, or obliquely ovoid; testa crustaceous, leathery, membranous, or succulent; embryo annular, semi-annular, or spiral, with narrow cotyledons; endosperm much reduced or absent; perisperm abundant or absent.
    [Show full text]
  • Changing Invaders: Trends of Gigantism in Insular Introduced Rats
    Environmental Conservation (2018) 45 (3): 203–211 C Foundation for Environmental Conservation 2018 doi:10.1017/S0376892918000085 Changing invaders: trends of gigantism in insular THEMATIC SECTION Humans and Island introduced rats Environments ALEXANDRA A.E. VAN DER GEER∗ Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Date submitted: 7 November 2017; Date accepted: 20 January 2018; First published online 14 March 2018 SUMMARY within short historical periods (Rowe-Rowe & Crafford 1992; Michaux et al. 2007;Renaudet al. 2013; Lister & Hall 2014). The degree and direction of morphological change in Additionally, invasive species may also alter the evolutionary invasive species with a long history of introduction pathway of native species by mechanisms such as niche are insufficiently known for a larger scale than the displacement, hybridization, introgression and predation (e.g. archipelago or island group. Here, I analyse data for 105 Mooney & Cleland 2001; Stuart 2014; van der Geer et al. island populations of Polynesian rats, Rattus exulans, 2013). The timescale and direction of evolution of invasive covering the entirety of Oceania and Wallacea to test rodents are, however, insufficiently known. Data on how whether body size differs in insular populations and, they evolve in interaction with native species are urgently if so, what biotic and abiotic features are correlated needed with the increasing pace of introductions today due to with it. All insular populations of this rat, except globalized transport: invasive rodent species are estimated to one, exhibit body sizes up to twice the size of their have already colonized more than 80% of the world’s island mainland conspecifics.
    [Show full text]
  • Towards a Standard Plant Species Spectral Library Protocol for Vegetation Mapping: a Case Study in the Shrubland of Doñana National Park
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC ISPRS Int. J. Geo-Inf. 2015, 4, 2472-2495; doi:10.3390/ijgi4042472 OPEN ACCESS ISPRS International Journal of Geo-Information ISSN 2220-9964 www.mdpi.com/journal/ijgi/ Article Towards a Standard Plant Species Spectral Library Protocol for Vegetation Mapping: A Case Study in the Shrubland of Doñana National Park Marcos Jiménez 1,* and Ricardo Díaz-Delgado 2 1 Remote Sensing Area, National Institute of Aerospace Technologies (INTA), Ctra. Ajalvir s/n, Torrejón de Ardoz, 28850 Madrid, Spain 2 Remote Sensing and GIS Lab., Doñana Biological Station, CSIC, Avda. Americo Vespucio, 41092 Sevilla, Spain; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-915-201-989; Fax: +34-915-201-963. Academic Editor: Wolfgang Kainz Received: 11 August 2015 / Accepted: 8 November 2015 / Published: 16 November 2015 Abstract: One of the main applications of field spectroscopy is the generation of spectral libraries of Earth’s surfaces or materials to support mapping activities using imaging spectroscopy. To enhance the reliability of these libraries, spectral signature acquisition should be carried out following standard procedures and controlled experimental approaches. This paper presents a standard protocol for the creation of a spectral library for plant species. The protocol is based on characterizing the reflectance spectral response of different species in the spatiotemporal domain, by accounting for intra-species variation and inter-species similarity. A practical case study was conducted on the shrubland located in Doñana National Park (SW Spain).
    [Show full text]