Changing Invaders: Trends of Gigantism in Insular Introduced Rats

Total Page:16

File Type:pdf, Size:1020Kb

Changing Invaders: Trends of Gigantism in Insular Introduced Rats Environmental Conservation (2018) 45 (3): 203–211 C Foundation for Environmental Conservation 2018 doi:10.1017/S0376892918000085 Changing invaders: trends of gigantism in insular THEMATIC SECTION Humans and Island introduced rats Environments ALEXANDRA A.E. VAN DER GEER∗ Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Date submitted: 7 November 2017; Date accepted: 20 January 2018; First published online 14 March 2018 SUMMARY within short historical periods (Rowe-Rowe & Crafford 1992; Michaux et al. 2007;Renaudet al. 2013; Lister & Hall 2014). The degree and direction of morphological change in Additionally, invasive species may also alter the evolutionary invasive species with a long history of introduction pathway of native species by mechanisms such as niche are insufficiently known for a larger scale than the displacement, hybridization, introgression and predation (e.g. archipelago or island group. Here, I analyse data for 105 Mooney & Cleland 2001; Stuart 2014; van der Geer et al. island populations of Polynesian rats, Rattus exulans, 2013). The timescale and direction of evolution of invasive covering the entirety of Oceania and Wallacea to test rodents are, however, insufficiently known. Data on how whether body size differs in insular populations and, they evolve in interaction with native species are urgently if so, what biotic and abiotic features are correlated needed with the increasing pace of introductions today due to with it. All insular populations of this rat, except globalized transport: invasive rodent species are estimated to one, exhibit body sizes up to twice the size of their have already colonized more than 80% of the world’s island mainland conspecifics. Body size of insular populations groups (Atkinson 1985). is positively correlated with latitude, consistent with Here, I present data from a ubiquitous invasive species, thermoregulatory predictions based on Bergmann’s the Polynesian rat (R. exulans), which provides an excellent rule. Body size is negatively correlated with number proxy to measure and model evolutionary changes for several of co-occurring mammalian species, confirming an reasons. First, it vastly extended its geographic range through ecological hypothesis of the island rule. The largest rats human-mediated transport (Roberts 1991)(Fig. 1)andis are found in the temperate zone of New Zealand, as well currently a commensal in islands of the Lesser Sunda as on mammalian species-poor islands of Polynesia Archipelago, the Moluccas, Sulawesi, the Philippines, New and the Solomon Islands. Carnivory in the form of Guinea, New Zealand and practically all inhabited Pacific predation on nesting seabird colonies seems to promote islands (Corbet & Hill 1992; Musser & Carleton 2005), 1.4- to 1.9-fold body size increases. and has recently also been recorded in Taiwan and the Keywords: body size evolution, invasive species, islands, island southern Ryukyu Islands (Motokawa et al. 2001). Second, the rule, kiore, Rattus exulans, Polynesia introduction of this species has a large temporal range, starting c. 3500 years ago (Roberts 1991; Wilmshurst et al. 2008). Third, it is not limited to urban and agricultural areas, but also INTRODUCTION occurs in disturbed forests (e.g. Rabor 1977; Danielsen et al. Humans have been transporting vertebrates to islands 1994) and primary forests without native rodents (Heaney worldwide since prehistoric times. This has more often et al. 1989), as well as in dry deciduous forests, mangrove than not impacted native flora and fauna (Russell et al. forests and lowland coastal forests (Molur et al. 2005). It is 2017), and Darwin (1859) remarked in this context, ‘Let an adept climber and builds nests in small trees and hedges it be remembered how powerful the influence of a single (Thomson 1922), and especially the canopy of coconut palms introduced tree or mammal has shown to be.’ The successful provide nesting and feeding opportunities (Wegmann et al. introduction of such exotics has often led to the extinction 2011). Its native range is the tropics and subtropics, but its of native species (Atkinson 1989; Groombridge et al. 1992; colonization success elsewhere shows that it thrives equally Courchamp et al. 2003; Long, 2003), especially on small, well in temperate maritime climates. Lastly, rats in general isolated islands. Invasive rats (Rattus rattus, Rattus norvegicus, have the potential to show evolutionary changes within a Rattus exulans) are likely responsible for the greatest number relatively short time span due to their high reproduction rate. of extinctions on islands (Towns et al. 2006). Not only do The combination of large geographic and temporal scales they compete ecologically with native species, they also evolve thus makes the Polynesian rat an ideal species to test potential evolutionary pathways in invasive species. For most islands, there was only a single colonization event (Barnes et al. 2006). ∗Correspondence: Alexandra A.E. van der Geer email: alexandra. The colonization history can be traced using rat haplogroup [email protected] mtDNA (Matisoo-Smith & Robins 2004), archaeological and Supplementary material can be found online at https://doi.org/ genetic data and linguistic evidence of the Polynesians (Lipson 10.1017/S0376892918000085 et al. 2014). Populations in Oceania were first established some This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.139, on 27 Sep 2021 at 01:31:36, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0376892918000085 204 van der Geer A. A. E. Figure 1 Diagrammatic map showing simplified routs of human migration (after Roberts 1991; Austin 1999). The dispersal of the Polynesian rat (Rattus exulans) has been facilitated by humans since prehistoric times. Populations in Oceania were introduced about 3000–3500 years ago (Roberts 1991; Austin 1999), in Hawaii about 1200–1700 years ago (Kirch 2001) and in New Zealand about 800 years ago (Matisoo-Smith et al. 1999). Light grey (orange in online version): native and introduced range of the Polynesian rat. White: areas without Polynesian rats. 3000–3500 years ago (Roberts 1991), whereas Hawaii, New usage, opening up the possibility to evolve in a new direction Zealand and Rapa Nui (Easter Island) were reached much (Gillespie 2009). later (c. 1190–1290 CE; Wilmshurst et al. 2011). The rats’ The null hypothesis is that body size of introduced differing morphologies among the various islands were long populations of the Polynesian rat cannot be predicted noted (e.g. Motokawa et al. 2004) and are reflected in the long based on the following variables: island size (a proxy for list of junior synonyms (e.g. Mus maorium) and subspecies species and habitat diversity); latitude (a proxy for mean status such as Rattus exulans negrinus for the Negros small environmental temperatures and a weak correlate of primary field rat. productivity); number of mammalian species (a measure of My aim is to test whether the body size of insular ecological interactions); and maximum elevation (a measure populations of the Polynesian rat varies in correlation with of topographic relief, habitat diversity and the influence biotic and abiotic variables. Here, I take samples from the of anthropogenic activities, which tend to dominate lower entire introduced and native range. This vast geographic elevations). range ensures the presence of a large variety of islands with various geographic features, with and without mammalian competitors and predators. MATERIALS AND METHODS The hypothesis is that body size evolution of this introduced mammal on the various islands complies with predictions Dataset based on the island rule, a graded trend according to which Extensive collections of the Polynesian rat are available, populations of small-sized species evolve larger body sizes on representing the entire introduced range. The dataset includes islands (gigantism) (sensu Foster 1964; Van Valen 1973). The 105 populations (n = 587) of this species introduced island rule, or island syndrome, was originally formulated onto islands and six mainland populations (n = 16) for native species and populations, but appears to apply to from Southeast Asia (Vietnam, Laos, peninsular Malaysia, populations of introduced commensal rats as well (e.g. Russell Thailand, Myanmar and Sumatra) for comparison from the et al. 2011; van der Geer et al. 2018). According to an ecological following institutes: AMNH (American Museum of Natural interpretation of the trend (Lomolino et al. 2012, 2013;van History, New York), AMS (Australian Museum, Sydney), der Geer et al. 2013), the direction and degree of size change AWMM (Auckland War Memorial Museum), LRNZ depends on a combination of biotic and abiotic factors, with (Landcare Research, Lincoln), FMNH (Field Museum of an especially important role for co-occurring mammalian Natural History, Chicago), MNZ (Museum of New Zealand species. In species-rich systems, competition and predation Te Papa Tongarewa, Wellington), RMNH.MAM (Naturalis are expected to result in diversification and ecological Biodiversity Center, Leiden; formerly Rijks Museum voor displacement among resident species (native as well as long-
Recommended publications
  • The Island Rule Explains Consistent Patterns of Body Size 2 Evolution Across Terrestrial Vertebrates 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The island rule explains consistent patterns of body size 2 evolution across terrestrial vertebrates 3 4 Ana Benítez-López1,2*, Luca Santini1,3, Juan Gallego-Zamorano1, Borja Milá4, Patrick 5 Walkden5, Mark A.J. Huijbregts1,†, Joseph A. Tobias5,† 6 7 1Department of Environmental Science, Institute for Wetland and Water Research, Radboud 8 University, P.O. Box 9010, NL-6500 GL, Nijmegen, the Netherlands. 9 2Integrative Ecology Group, Estación Biológica de Doñana, CSIC, 41092, Sevilla, Spain 10 3National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Via 11 Salaria km 29.300, 00015, Monterotondo (Rome), Italy 12 4Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), 13 Madrid 28006, Spain 14 5Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, 15 Berkshire SL5 7PY, United Kingdom 16 *Correspondence to: [email protected]; [email protected] 17 †These two authors contributed equally 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Rethinking Easter Island's Ecological Catastrophe
    ARTICLE IN PRESS + MODEL Journal of Archaeological Science xx (2006) 1e18 http://www.elsevier.com/locate/jas Rethinking Easter Island’s ecological catastrophe Terry L. Hunt Department of Anthropology, University of Hawai’i-Manoa, 2424 Maile Way Honolulu, HI 96822, USA Received 25 June 2006; received in revised form 1 October 2006; accepted 2 October 2006 Abstract Rapa Nui (Easter Island) has become a paragon for prehistoric human induced ecological catastrophe and cultural collapse. A popular nar- rative recounts an obsession for monumental statuary that led to the island’s ecological devastation and the collapse of the ancient civilization. Scholars offer this story as a parable of today’s global environmental problems. In this paper, I review new and emerging Rapa Nui evidence, compare ecological and recently acquired palaeo-environmental data from the Hawaiian and other Pacific Islands, and offer some perspectives for the island’s prehistoric ecological transformation and its consequences. The evidence points to a complex historical ecology for the island; one best explained by a synergy of impacts, particularly the devastating effects of introduced rats (Rattus exulans). This perspective questions the simplistic notion of reckless over-exploitation by prehistoric Polynesians and points to the need for additional research. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Easter Island; Rapa Nui; Deforestation; Ecocide; Collapse; Rats; Rattus exulans; Invasive species ‘‘It ain’t what you don’t know that gets you into trouble. It’s archaeological records also reveals a more complex historical what you know for sure that just ain’t so.’’ Mark Twain ecology for the island; one best explained by a synergy of impacts, rather than simply the reckless over-exploitation by Easter Island (Rapa Nui) has become the paragon for pre- prehistoric Polynesians.
    [Show full text]
  • On Christmas Island. the Presence of Trypanosoma in Cats and Rats (From All Three Locations) and Leishmania
    Invasive animals and the Island Syndrome: parasites of feral cats and black rats from Western Australia and its offshore islands Narelle Dybing BSc Conservation Biology, BSc Biomedical Science (Hons) A thesis submitted to Murdoch University to fulfil the requirements for the degree of Doctor of Philosophy in the discipline of Biomedical Science 2017 Author’s Declaration I declare that this thesis is my own account of my research and contains as its main content work that has not previously been submitted for a degree at any tertiary education institution. Narelle Dybing i Statement of Contribution The five experimental chapters in this thesis have been submitted and/or published as peer reviewed publications with multiple co-authors. Narelle Dybing was the first and corresponding author of these publications, and substantially involved in conceiving ideas and project design, sample collection and laboratory work, data analysis, and preparation and submission of manuscripts. All publication co-authors have consented to their work being included in this thesis and have accepted this statement of contribution. ii Abstract Introduced animals impact ecosystems due to predation, competition and disease transmission. The effect of introduced infectious disease on wildlife populations is particularly pronounced on islands where parasite populations are characterised by increased intensity, infra-community richness and prevalence (the “Island Syndrome”). This thesis studied parasite and bacterial pathogens of conservation and zoonotic importance in feral cats from two islands (Christmas Island, Dirk Hartog Island) and one mainland location (southwest Western Australia), and in black rats from Christmas Island. The general hypothesis tested was that Island Syndrome increases the risk of transmission of parasitic and bacterial diseases introduced/harboured by cats and rats to wildlife and human communities.
    [Show full text]
  • Atoll Research Bulletin No. 182 the Murine Rodents
    ATOLL RESEARCH BULLETIN NO. 182 THE MURINE RODENTS RATTUS RATTUS, EXULANS, AND NORVEGICUS AS AVIAN PREDATORS by F. I. Norman Issued by THE SMITHSONIAN INSTITUTION Washington, D.C., U.S.A. January 15,1975 Contents Page Introduction 1 References to Predation by Rats 3 Apterygiformes 3 Procellariiformes 3 Pelicaniformes 4 Ciconiiformes 4 Ans eriformes Gallif ormes Charadriiformes Columbiformes Psittaciformes Passeriformes lliscussion References THE MURINE RODENTS RATTUS RATTUS, EXULANS, AND NORVEGICUS AS AVIAN PREDATORS by F. I. Norman-1 / INTRODUCTION Few mammals have adventitiously accompanied man around the world more than members of the Murinae and of these, the most ubiquitous must surely be the --Rattus group. Three species, R. rattus Linn., R. norvegicus Berkenhout, and R. exulans T~eale),have been h~storically associated with-man, and their present distribution reflects such associations. Thus although -R. exulans is generally distributed through the Pacific region, -R. rattus and norvegicus are almost worldwide in distribution, having originated presumably in Asia Minor, as did exulans (walker 1964.). All have invaded, with man's assistance, habitats which previously did not include them, and they have developed varying degrees of commensalism with man. Neither --rattus nor norvegicus has entered antarctic ecosystems, but Law and Burstall (1956) recorded their presence on subantarctic Macquarie Island. Kenyon (1961) and Schiller (1956), however, have shown that norvegicus has become established in the arctic where localised populations are dependent on refuse as a food source during the winter. More frequently, reports bave been made of the over-running of islands by these alien rats. Tristan da Cunha is one such example (Elliott 1957; Holdgate 1960), and Dampier found rattus to be common on Ascension Island in 1701 though presently -norvegicus is more widespread there (nuffey 1964).
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • The Biogeography of Large Islands, Or How Does the Size of the Ecological Theater Affect the Evolutionary Play
    The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly To cite this version: Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 2007, 62, pp.105-168. hal-00283373 HAL Id: hal-00283373 https://hal.archives-ouvertes.fr/hal-00283373 Submitted on 14 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BIOGEOGRAPHY OF LARGE ISLANDS, OR HOW DOES THE SIZE OF THE ECOLOGICAL THEATER AFFECT THE EVOLUTIONARY PLAY? Egbert Giles LEIGH, Jr.1, Annette HLADIK2, Claude Marcel HLADIK2 & Alison JOLLY3 RÉSUMÉ. — La biogéographie des grandes îles, ou comment la taille de la scène écologique infl uence- t-elle le jeu de l’évolution ? — Nous présentons une approche comparative des particularités de l’évolution dans des milieux insulaires de différentes surfaces, allant de la taille de l’île de La Réunion à celle de l’Amé- rique du Sud au Pliocène.
    [Show full text]
  • Seabird Recovery and Vegetation Dynamics After Norway Rat Eradication at Tromelin Island, Western Indian Ocean Matthieu Le Corre, D
    Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean Matthieu Le Corre, D. K. Danckwerts, David Ringler, Matthieu Bastien, S. Orlowski, C. Morey Rubio, David Pinaud, Thierry Micol To cite this version: Matthieu Le Corre, D. K. Danckwerts, David Ringler, Matthieu Bastien, S. Orlowski, et al.. Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean. Biological Conservation, Elsevier, 2015, 185, pp.85-94. 10.1016/j.biocon.2014.12.015. hal- 01207081 HAL Id: hal-01207081 https://hal.archives-ouvertes.fr/hal-01207081 Submitted on 26 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean ⇑ M. Le Corre a, , D.K. Danckwerts a,b, D. Ringler a,d, M. Bastien a, S. Orlowski a, C. Morey Rubio a, D. Pinaud c, T. Micol d,e a Laboratoire ECOMAR, FRE3560, Université de La Réunion, INEE-CNRS, 97715 Saint Denis messag cedex 9, France b Department of Zoology and Entomology. Rhodes University, Grahamstown 6140, South Africa c CEBC, UMR7372, CNRS/Université de La Rochelle, 79360 Villiers en Bois, France d TAAF, Rue Gabriel Dejean, 97410 Saint-Pierre, Reunion e LPO, Fonderies Royales, 10 rue du Dr Pujos, 17305 Rochefort, France abstract Seabirds are notoriously sensitive to introduced mammalian predators and eradication programs have benefitted seabird populations and their habitats on numerous islands throughout the world.
    [Show full text]
  • Lizards on Newly Created Islands Independently and Rapidly Adapt in Morphology and Diet
    Lizards on newly created islands independently and rapidly adapt in morphology and diet Mariana Eloy de Amorima,b,1, Thomas W. Schoenerb,1, Guilherme Ramalho Chagas Cataldi Santoroc, Anna Carolina Ramalho Linsa, Jonah Piovia-Scottd, and Reuber Albuquerque Brandãoa aLaboratório de Fauna e Unidades de Conservação, Departamento de Engenharia Florestal, Universidade de Brasília, Brasilia DF, Brazil CEP 70910-900; bEvolution and Ecology Department, University of California, Davis, CA 95616; cDepartamento de Pós-Graduação em Zoologia, Instituto de Biologia, Universidade de Brasília, Brasilia DF, Brazil CEP 70910-900; and dSchool of Biological Sciences, Washington State University, Vancouver, WA 98686-9600 Contributed by Thomas W. Schoener, June 21, 2017 (sent for review December 31, 2016; reviewed by Raymond B. Huey and Dolph Schluter) Rapid adaptive changes can result from the drastic alterations study, because it was the most common lizard species in the area at humans impose on ecosystems. For example, flooding large areas the time of the field study. for hydroelectric dams converts mountaintops into islands and We evaluated the effects of isolation (actually, insularization) leaves surviving populations in a new environment. We report on diet and morphology of G. amarali populations on islands differences in morphology and diet of the termite-eating gecko formed by the Serra da Mesa reservoir. We collected data on Gymnodactylus amarali between five such newly created islands lizard diet and morphology on five islands, as well as five nearby and five nearby mainland sites located in the Brazilian Cerrado, a mainland areas, to evaluate the changes that occurred as a result biodiversity hotspot. Mean prey size and dietary prey-size breadth of insularization.
    [Show full text]
  • The Specific Vulnerability of Plant Biodiversity and Vegetation on Mediterranean Islands in the Face of Global Change Frederic Medail
    The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change Frederic Medail To cite this version: Frederic Medail. The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Regional Environmental Change, Springer Verlag, 2017, 17 (6), pp.1775-1790. 10.1007/s10113-017-1123-7. hal-01681626 HAL Id: hal-01681626 https://hal.archives-ouvertes.fr/hal-01681626 Submitted on 7 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reg Environ Change (2017) 17:1775–1790 DOI 10.1007/s10113-017-1123-7 REVIEW ARTICLE The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change Fre´de´ric Me´dail1 Received: 5 October 2016 / Accepted: 3 February 2017 / Published online: 23 March 2017 Ó Springer-Verlag Berlin Heidelberg 2017 Abstract The numerous Mediterranean islands ([10,000) refugia’ to ensure the long-term preservation of coastal are very important from a biodiversity point of view, both plant biodiversity. They also represent fascinating ecolog- in term of plant species (numerous endemics, presence of ical systems to disentangle the role of environmental versus ‘climate relicts’) and of ecosystems’ assemblage.
    [Show full text]
  • Motokawa, M., Lu, K. and Lin, L. 2001. New Records of the Polynesian Rat
    Zoological Studies 40(4): 299-304 (2001) New Records of the Polynesian Rat Rattus exulans (Mammalia: Rodentia) from Taiwan and the Ryukyus Masaharu Motokawa1, Kau-Hung Lu2, Masashi Harada3 and Liang-Kong Lin4,* 1Kyoto University Museum, Kyoto 606-8501, Japan 2Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Wufeng, Taichung, Taiwan 413, R.O.C. 3Laboratory Animal Center, Osaka City University Medical School, Osaka 545-8585, Japan 4Laboratory of Wildlife Ecology, Department of Biology, Tunghai University, Taichung, Taiwan 407, R.O.C. (Accepted June 19, 2001) Masaharu Motokawa, Kau-Hung Lu, Masashi Harada and Liang-Kong Lin (2001) New records of the Polynesian rat Rattus exulans (Mammalia: Rodentia) from Taiwan and the Ryukyus. Zoological Studies 40(4): 299-304. The Polynesian rat Rattus exulans (Mammalia: Rodentia: Muridae) is newly recorded from Taiwan and the Ryukyus on the basis of 3 specimens from the lowland area of Kuanghua, Hualien County, eastern Taiwan, and 2 from Miyakojima Island, the southern Ryukyus. This rat may have been introduced by ships sailing to Taiwan and the Ryukyus from other islands where the species occurs. The morphological identification of R. exulans from young R. rattus is established on the basis of cranial measurements. In R. exulans, two measure- ments (breadth across the 1st upper molar and coronal width of the 1st upper molar) are smaller than corre- sponding values in R. rattus. The alveolar length of the maxillary toothrow is smaller in R. exulans from Taiwan and the Ryukyus than in available conspecific samples from Southeast Asia and other Pacific islands. Thus, this character may be useful in detecting the origin of the northernmost populations of R.
    [Show full text]
  • The Polynesian Rat
    Getting To Know … THE POLYNESIAN RAT Drawing of Polynesian Rat. Acknowledgement: Picture taken from “A Field Guide to the Mammals of Borneo”, a publication of Sabah Society and World Wildlife Fund Malaysia. Our rapid urban development has changed the rodent distribution in Singapore. In the past the rodents caught were either the Norway Rat Polynesian Rat, with a damaged tail. (Rattus norvegicus) or the Roof rat (Rattus rattus diiardii). But today with our buildings encroaching into the nature reserves, we are trapping more of the third most common rodent in the The Polynesian rat has become more closely associated with Pacific region, the Polynesian rat(Rattus exulans). It is also humans due to its easy access to food. In the Pacific islands called the Pacific rat or to the Maori, Kiore. where it is resident, it is responsible for the extinction of native birds, insects and also deforestation, by eating the It is smaller and less aggressive than the Norway rat or the stems and nuts of local palms, thus preventing the re-growth Roof rat. With large round eyes, mounted on a pointed snout, of the forest. It has also been associated with the diseases its body is covered with black/brown hair, with a lighter grey leptospirosis and murine typhus. belly and comparatively small, pale feet. The body is thin (weighs up to 80 grams) and the adult measures up to 15 cm Being a poor swimmer, its distribution to the Pacific islands (6 inches) from nose to the base of the tail. The tail is about was helped by the fact that it is considered a delicacy.
    [Show full text]
  • Diversity of Rodents and Treeshrews in Different Habitats in Western Sarawak, Borneo
    Malays. Appl. Biol. (2021) 50(1): 221–224 DIVERSITY OF RODENTS AND TREESHREWS IN DIFFERENT HABITATS IN WESTERN SARAWAK, BORNEO SIEU ZHIEN TEO1, YEE LING CHONG2 and ANDREW ALEK TUEN1* 1Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia 2Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong *E-mail: [email protected] Accepted 12 March 2021, Published online 15 May 2021 A diverse community of 63 rodent species and nine stopped once the targeted number of 50 or more treeshrew species are found in Borneo (Phillipps & small mammals were caught. These four habitat Phillipps, 2016). They play an important role in types were selected because they are the main providing ecosystem services by contributing to landscape in western Sarawak and have been pollination, seed dispersal, and germination; and subjected to different degrees of disturbance from also food for larger carnivores (Shanahan & a human. Forest sites were categorized as the least Compton, 2000; Morand et al., 2006; Payne & disturbed areas and urban sites as the most Francis, 2007; Phillipps & Phillipps, 2016). Bornean disturbed areas. Trapped rodents and treeshrews tropical forests have been lost, degraded, and were anesthetized using chloroform (Ng et al., 2017). fragmented by anthropogenic activities since the Their morphometric measurements were taken and early 1970s (Bryan et al., 2013; Gaveau et al., 2014), photographed to aid in species identification. The consequently created new or alternative habitats for method of catching rodents and treeshrews generally rodents and treeshrews especially resilient, adaptive, followed that of Aplin et al.
    [Show full text]